Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Plant Physiol ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38796833

RESUMO

Recent global marine lipidomic analysis reveals a strong relationship between ocean temperature and phytoplanktonic abundance of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential for human nutrition and primarily sourced from phytoplankton in marine food webs. In phytoplanktonic organisms, EPA may play a major role in regulating the phase transition temperature of membranes, while the function of DHA remains unexplored. In the oleaginous diatom Phaeodactylum tricornutum, DHA is distributed mainly on extraplastidial phospholipids, which is very different from the EPA enriched in thylakoid lipids. Here, CRISPR/Cas9-mediated knockout of delta-5 elongase (ptELO5a), which encodes a delta-5 elongase (ELO5) catalyzing the elongation of EPA to synthesize DHA, led to a substantial interruption of DHA synthesis in P. tricornutum. The ptELO5a mutants showed some alterations in transcriptome and glycerolipidomes, including membrane lipids and triacylglycerols under normal temperature (22°C), and were more sensitive to elevated temperature (28°C) than wild type. We conclude that PtELO5a-mediated synthesis of small amounts of DHA has indispensable functions in regulating membrane lipids, indirectly contributing to storage lipid accumulation, and maintaining thermomorphogenesis in P. tricornutum. This study also highlights the significance of DHA synthesis and lipid composition for environmental adaptation of P. tricornutum.

2.
Plant Mol Biol ; 114(5): 90, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172265

RESUMO

ELO-like elongase is a condensing enzyme elongating long chain fatty acids in eukaryotes. Eranthis hyemalis ELO-like elongase (EhELO1) is the first higher plant ELO-type elongase that is highly active in elongating a wide range of polyunsaturated fatty acids (PUFAs) and some monounsaturated fatty acids (MUFAs). This study attempted using domain swapping and site-directed mutagenesis of EhELO1 and EhELO2, a close homologue of EhELO1 but with no apparent elongase activity, to elucidate the structural determinants critical for catalytic activity and substrate specificity. Domain swapping analysis of the two showed that subdomain B in the C-terminal half of EhELO1 is essential for MUFA elongation while subdomain C in the C-terminal half of EhELO1 is essential for both PUFA and MUFA elongations, implying these regions are critical in defining the architecture of the substrate tunnel for substrate specificity. Site-directed mutagenesis showed that the glycine at position 220 in the subdomain C plays a key role in differentiating the function of the two elongases. In addition, valine at 161 and cysteine at 165 in subdomain A also play critical roles in defining the architecture of the deep substrate tunnel, thereby contributing significantly to the acceptance of, and interaction with primer substrates.


Assuntos
Acetiltransferases , Elongases de Ácidos Graxos , Mutagênese Sítio-Dirigida , Elongases de Ácidos Graxos/metabolismo , Elongases de Ácidos Graxos/genética , Especificidade por Substrato , Acetiltransferases/metabolismo , Acetiltransferases/genética , Acetiltransferases/química , Ácidos Graxos Insaturados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Sequência de Aminoácidos , Ácidos Graxos/metabolismo , Modelos Moleculares
3.
Metab Eng ; 81: 197-209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072356

RESUMO

Ricinoleic acid (C18:1-OH, RA) is a valuable hydroxy fatty acid with versatile applications. The current industrial source of RA relies on the hydrolysis of castor bean oil. However, the coexistence of the toxic compound ricin and the unstable supply of this plant have led to an exploration of promising alternatives: generating RA in heterologous plants or microorganisms. In this study, we engineered the oleaginous yeast Yarrowia lipolytica to produce RA in the form of free fatty acids (FFA). First, we overexpressed fungal Δ12 oleate hydroxylase gene (CpFAH12) from Claviceps purpurea while deleting genes related to fatty acid degradation (MEF1 and PEX10) and oleic acid desaturation (FAD2). Since Δ12 oleate hydroxylase converts oleic acid (C18:1) located at the sn-2 position of phosphatidylcholine (PC), we next focused on increasing the PC pool containing oleic acid. This objective was achieved thorough implementing metabolic engineering strategies designed to enhance the biosynthesis of PC and C18 fatty acids. To increase the PC pool, we redirected the flux towards phospholipid biosynthesis by deleting phosphatidic acid phosphatase genes (PAH1 and APP1) and diacylglycerol acyltransferase gene (DGA1), involved in the production of diacylglycerol and triacylglycerol, respectively. Furthermore, the PC biosynthesis via the CDP-DAG pathway was enhanced through the overexpression of CDS1, PSD1, CHO2, and OPI3 genes. Subsequently, to increase the oleic acid content within PC, we overexpressed the heterologous fatty acid elongase gene (MaC16E) involved in the conversion of C16 to C18 fatty acids. As RA production titer escalated, the produced RA was mainly found in the FFA form, leading to cell growth inhibition. The growth inhibition was mitigated by inducing RA secretion via Triton X-100 treatment, a process that simultaneously amplified RA production by redirecting flux towards RA synthesis. The final engineered strain JHYL-R146 produced 2.061 g/L of free RA in a medium treated with 5% Triton X-100, constituting 74% of the total FFAs produced. Generating free RA offers the added benefit of bypassing the hydrolysis stage required when employing castor bean oil as an RA source. This achievement represents the highest level of RA synthesis from glucose reported thus far, underscoring the potential of Y. lipolytica as a host for sustainable RA production.


Assuntos
Ácidos Graxos não Esterificados , Yarrowia , Ácidos Graxos não Esterificados/genética , Ácidos Graxos não Esterificados/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ácido Oleico/genética , Ácido Oleico/metabolismo , Ácidos Ricinoleicos/metabolismo , Octoxinol/metabolismo , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/genética , Engenharia Metabólica
4.
Plant Cell Environ ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041727

RESUMO

Very-long-chain fatty acids (VLCFAs) are essential precursors for plant membrane lipids, cuticular waxes, suberin, and storage oils. Integral to the fatty acid elongase (FAE) complex, 3-ketoacyl-CoA synthases (KCSs) function as crucial enzymes in the VLCFA pathway, determining the chain length of VLCFA. This study explores the in-planta role of the KCS19 gene. KCS19 is predominantly expressed in leaves and stem epidermis, sepals, styles, early silique walls, beaks, pedicels, and mature embryos. Localized in the endoplasmic reticulum, KCS19 interacts with other FAE proteins. kcs19 knockout mutants displayed reduced total wax and wax crystals, particularly alkanes, while KCS19 overexpression increased these components and wax crystals. Moreover, the cuticle permeability was higher for the kcs19 mutants compared to the wild type, rendering them more susceptible to drought and salt stress, whereas KCS19 overexpression enhanced drought and salt tolerance. Disrupting KCS19 increased C18 species and decreased C20 and longer species in seed fatty acids, indicating its role in elongating C18 to C20 VLCFAs, potentially up to C24 for seed storage lipids. Collectively, KCS19-mediated VLCFA synthesis is required for cuticular wax biosynthesis and seed storage lipids, impacting plant responses to abiotic stress.

5.
J Lipid Res ; 64(7): 100394, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245562

RESUMO

The addition of excess glucose to the diet drives a coordinated response of lipid metabolism pathways to tune the membrane composition to the altered diet. Here, we have employed targeted lipidomic approaches to quantify the specific changes in the phospholipid and sphingolipid populations that occur in elevated glucose conditions. The lipids within wild-type Caenorhabditis elegans are strikingly stable with no significant changes identified in our global mass spectrometry-based analysis. Previous work has identified ELO-5, an elongase that is critical for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs), as essential for surviving elevated glucose conditions. Therefore, we performed targeted lipidomics on elo-5 RNAi-fed animals and identified several significant changes in these animals in lipid species that contain mmBCFAs as well as in species that do not contain mmBCFAs. Of particular note, we identified a specific glucosylceramide (GlcCer 17:1;O2/22:0;O) that is also significantly upregulated with glucose in wild-type animals. Furthermore, compromising the production of the glucosylceramide pool with elo-3 or cgt-3 RNAi leads to premature death in glucose-fed animals. Taken together, our lipid analysis has expanded the mechanistic understanding of metabolic rewiring with glucose feeding and has identified a new role for the GlcCer 17:1;O2/22:0;O.


Assuntos
Proteínas de Caenorhabditis elegans , Glucosilceramidas , Animais , Glucosilceramidas/metabolismo , Lipidômica , Glucose/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
6.
Allergy ; 78(5): 1292-1306, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36609802

RESUMO

BACKGROUND: Staphylococcus (S) aureus colonization is known to cause skin barrier disruption in atopic dermatitis (AD) patients. However, it has not been studied how S. aureus induces aberrant epidermal lipid composition and skin barrier dysfunction. METHODS: Skin tape strips (STS) and swabs were obtained from 24 children with AD (6.0 ± 4.4 years) and 16 healthy children (7.0 ± 4.5 years). Lipidomic analysis of STS samples was performed by mass spectrometry. Skin levels of methicillin-sensitive and methicillin-resistant S. aureus (MSSA and MRSA) were evaluated. The effects of MSSA and MRSA were evaluated in primary human keratinocytes (HEKs) and organotypic skin cultures. RESULTS: AD and organotypic skin colonized with MRSA significantly increased the proportion of lipid species with nonhydroxy fatty acid sphingosine ceramide with palmitic acid ([N-16:0 NS-CER], sphingomyelins [16:0-18:0 SM]), and lysophosphatidylcholines [16:0-18:0 LPC], but significantly reduced the proportion of corresponding very long-chain fatty acids (VLCFAs) species (C22-28) compared to the skin without S. aureus colonization. Significantly increased transepidermal water loss (TEWL) was found in MRSA-colonized AD skin. S. aureus indirectly through interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-6, and IL-33 inhibited expression of fatty acid elongase enzymes (ELOVL3 and ELOVL4) in HEKs. ELOVL inhibition was more pronounced by MRSA and resulted in TEWL increase in organotypic skin. CONCLUSION: Aberrant skin lipid profiles and barrier dysfunction are associated with S. aureus colonization in AD patients. These effects are attributed to the inhibition of ELOVLs by S. aureus-induced IL-1ß, TNF-α, IL-6, and IL-33 seen in keratinocyte models and are more prominent in MRSA than MSSA.


Assuntos
Dermatite Atópica , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Criança , Humanos , Staphylococcus aureus , Interleucina-33/farmacologia , Interleucina-6 , Dermatite Atópica/patologia , Lipídeos
7.
J Nutr ; 153(10): 2929-2938, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37453531

RESUMO

BACKGROUND: Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are of interest because of their health effects. However, most experiments use natural oils and are confounded by PUFA concentrations and other fatty acids (FAs) that impact biosynthesis of the very long-chain derivatives (VLC). OBJECTIVES: To directly compare the effect of 18 C n-3 or n-6 FA fed at similar rates on their elongation and desaturation to VLC PUFA and their incorporation into tissues. METHODS: Oil blends that substituted ∼23% points of stearidonic acid (SDA) with alpha-linolenic acid (ALA), gamma-linolenic acid (GLA), or linoleic acid (LA) while minimizing differences in other FA were prepared. COBB500 broilers were fed the oil blends at 1.25% of the diet from day 14-35 age. RESULTS: There was greater enrichment of VLC PUFA in breast, thigh, liver, and plasma when diets were supplemented with high-SDA and high-GLA oil blends than high-ALA and high-LA oil blends. The efficiency of VLCn-3 PUFA synthesis from SDA and ALA was lower than the efficiency of VLCn-6 PUFA synthesis from GLA and LA, suggesting that the elongation and desaturation enzymes more efficiently utilized n-6 substrates. The efficiency of biotransformation of SDA to VLCn-3 PUFA was greater than that of high-ALA, and synthesis of VLCn-6 PUFA from GLA was higher than that of high-LA in breast, thigh, liver, and plasma. There were minimal effects on tissue-saturated and monounsaturated FA. CONCLUSIONS: The high-SDA and high-GLA oil blends efficiently enriched tissues with their VLC-PUFA more than high-ALA and high-LA treatments.

8.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835128

RESUMO

Omega-3 (ω-3) polyunsaturated fatty acids, including docosahexaenoic acid (DHA), are involved in numerous biological processes and have a range of health benefits. DHA is obtained through the action of elongases (ELOVLs) and desaturases, among which Elovl2 is the key enzyme involved in its synthesis, and can be further metabolized into several mediators that regulate the resolution of inflammation. Our group has recently reported that ELOVL2 deficient mice (Elovl2-/-) not only display reduced DHA levels in several tissues, but they also have higher pro-inflammatory responses in the brain, including the activation of innate immune cells such as macrophages. However, whether impaired synthesis of DHA affects cells of adaptive immunity, i.e., T lymphocytes, is unexplored. Here we show that Elovl2-/- mice have significantly higher lymphocytes in peripheral blood and that both CD8+ and CD4+ T cell subsets produce greater amounts of pro-inflammatory cytokines in both blood and spleen compared to wild type mice, with a higher percentage of cytotoxic CD8+ T cells (CTLs) as well as IFN-γ-producing Th1 and IL-17-producing Th17 CD4+ cells. Furthermore, we also found that DHA deficiency impacts the cross-talk between dendritic cells (DC) and T cells, inasmuch as mature DCs of Elovl2-/- mice bear higher expression of activation markers (CD80, CD86 and MHC-II) and enhance the polarization of Th1 and Th17 cells. Reintroducing DHA back into the diets of Elovl2-/- mice reversed the exacerbated immune responses observed in T cells. Hence, impairment of endogenous synthesis of DHA exacerbates T cell inflammatory responses, accounting for an important role of DHA in regulating adaptive immunity and in potentially counteracting T-cell-mediated chronic inflammation or autoimmunity.


Assuntos
Ácidos Docosa-Hexaenoicos , Inflamação , Animais , Camundongos , Linfócitos T CD4-Positivos/metabolismo , Citocinas , Ácidos Docosa-Hexaenoicos/metabolismo , Elongases de Ácidos Graxos , Inflamação/imunologia , Inflamação/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Linfócitos T CD8-Positivos/metabolismo
9.
Fish Physiol Biochem ; 49(3): 425-439, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37074473

RESUMO

The splendid alfonsino Beryx splendens is a commercially important deep-sea fish in East Asian countries. Because the wild stock of this species has been declining, there is an urgent need to develop aquaculture systems. In the present study, we investigated the long-chain polyunsaturated fatty acid (LC-PUFA) requirements of B. splendens, which are known as essential dietary components in many carnivorous marine fish species. The fatty acid profiles of the muscles, liver, and stomach contents of B. splendens suggested that it acquires substantial levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from its natural diet. The functional characterization of a fatty acid desaturase (Fads2) and three elongases (Elovl5, Elovl4a, and Elovl4b) from B. splendens confirmed their enzymatic capabilities in LC-PUFA biosynthesis. Fads2 showed Δ6 and Δ8 bifunctional desaturase activities. Elovl5 showed preferential elongase activities toward C18 and C20 PUFA substrates, whereas Elovl4a and Elovl4b showed activities toward various C18-22 substrates. Given that Fads2 showed no Δ5 desaturase activity and no other fads-like sequence was found in the B. splendens genome, EPA and arachidonic acid cannot be synthesized from C18 precursors; hence, they can be categorized as dietary essential fatty acids in B. splendens. EPA can be converted into DHA in B. splendens via the so-called Sprecher pathway. However, given that fads2 is only expressed in the brain, it is unlikely that the capacity of B. splendens to biosynthesize DHA from EPA can fulfill its physiological requirements. These results will be useful to researchers developing B. splendens aquaculture methods.


Assuntos
Proteínas de Peixes , Peixes , Animais , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Peixes/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Essenciais , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos , Dieta/veterinária , Ácidos Graxos
10.
J Exp Bot ; 73(9): 3004-3017, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35560210

RESUMO

Fatty acid elongase (FAE), which catalyzes the synthesis of very-long-chain fatty acids (VLCFAs), is a multiprotein complex; however, little is known about its quaternary structure. In this study, bimolecular fluorescence complementation and/or yeast two-hybrid assays showed that homo-interactions were observed in ß-ketoacyl-CoA synthases (KCS2, KCS9, and KCS6), Eceriferum2-like proteins [CER2 and CER2-Like2 (C2L2)], and FAE complex proteins (KCR1, PAS2, ECR, and PAS1), except for CER2-Like1 (C2L1). Hetero-interactions were observed between KCSs (KCS2, KCS9, and KCS6), between CER2-LIKEs (CER2, C2L2, and C2L1), and between FAE complex proteins (KCR1, PAS2, ECR, and PAS1). PAS1 interacts with FAE complex proteins (KCR1, PAS2, and ECR), but not with KCSs (KCS2, KCS9, and KCS6) and CER2-LIKEs (CER2, C2L2, and C2L1). Asp308 and Arg309-Arg311 of KCS9 were essential for the homo-interactions of KCS9 and hetero-interactions between KCS9 and PAS2 or ECR. Asp339 of KCS9 is involved in its homo- and hetero-interactions with ECR. Complementation analysis of the Arabidopsis kcs9 mutant by the expression of amino acid-substituted KCS9 mutant genes showed that Asp308 and Asp339 of KCS9 are involved in the synthesis of C24 VLCFAs from C22. This study suggests that protein-protein interaction in FAE complexes is important for VLCFA synthesis and provides insight into the quaternary structure of FAE complexes for efficient synthesis of VLCFAs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Elongases de Ácidos Graxos , Ácidos Graxos/metabolismo
11.
Exp Dermatol ; 31(2): 122-132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270128

RESUMO

Reportedly, decreases in fatty acid (FA) chain length of ceramide (CER) are associated with interferon-γ (IFN-γ), which shows increased expression in psoriasis. However, the underlying mechanism of this association remains unclear. Therefore, in this study, we aimed to clarify this association between FA chain length of CER, IFN-γ, and the major transcriptional factors involving psoriasis. CER profiling according to FA chain length and class was performed in murine epidermis (n = 10 BALB/c mice topically treated with imiquimod, n = 10 controls) and human stratum corneum (SC) (n = 12 psoriasis, n = 11 controls). The expression of lipid synthetic enzymes, including elongases (ELOVLs), in murine epidermis was also measured using RT-PCR. Furthermore, the association of IFN-γ with various enzymes and transcription factors involved in the generation of long-chain CERs was also investigated using in vitro keratinocyte. A significant decrease in the percentage of long-chain CERs was observed in psoriasis-like murine epidermis and human psoriatic SC. Additionally, the expression levels of ELOVL1, ELOVL4, and ceramide synthase3 (CerS3) were significantly decreased in psoriasis-like murine epidermis and IFN-γ-treated keratinocyte. There was also a significant decrease in the expression of transcriptional factors, including peroxisome proliferator-activated receptor (PPAR), in IFN-γ treated keratinocyte. Thus, it could be suggested that IFN-γ may regulate ELOVL and CerS levels by down-regulating the transcriptional factors. Additionally, given the possible involvement of PPARs or liver X receptor agonist in the CER elongation process, they may serve as potential therapeutic agents for lengthening the CER FAs in psoriasis.


Assuntos
Ceramidas , Psoríase , Animais , Ceramidas/metabolismo , Epiderme/metabolismo , Ácidos Graxos/metabolismo , Interferon gama/metabolismo , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo
12.
FASEB J ; 35(2): e21327, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33455016

RESUMO

Recently, elongase of very long chain fatty acids-3 (ELOVL3) was demonstrated to play a pivotal role in physiology and biochemistry of the ocular surface by maintaining a proper balance in the lipid composition of meibum. The goal of this study was to further investigate the effects of ELOVL3 ablation in homozygous Elovl3-knockout mice (E3hom) in comparison with age and sex matched wild-type controls (E3wt). Slit lamp examination of the ocular surface of mice, and histological examination of their ocular tissues, highlighted a severe negative impact of Elovl3 inactivating mutation on the Meibomian glands (MG) and conjunctiva of mice. MG transcriptomes of the E3hom and E3wt mice were assessed and revealed a range of up- and downregulated genes related to lipid biosynthesis, inflammation, and stress response, compared with E3wt mice. Heat stage polarized light microscopy was used to assess melting characteristics of normal and abnormal meibum. The loss of Elovl3 led to a 8°C drop in the melting temperature of meibum in E3hom mice, and increased its fluidity. Also noted were the excessive accumulation of lipid material and tears around the eye and severe ocular inflammation, among other abnormalities.


Assuntos
Elongases de Ácidos Graxos/metabolismo , Lágrimas/metabolismo , Animais , Elongases de Ácidos Graxos/genética , Feminino , Homeostase , Metabolismo dos Lipídeos , Masculino , Glândulas Tarsais/metabolismo , Camundongos , Mutação , Transcriptoma
13.
Mol Biol Rep ; 49(2): 1643-1647, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35028856

RESUMO

BACKGROUND: Fatty acid elongases (FAEs), which catalyse elongation reactions of a carbon chain of very-long-chain fatty acids, play an important role in shoot development in rice. The elongation reactions consist of four sequential reactions catalysed by distinct enzymes, which are assumed to form an elongation complex. However, no interacting proteins of ONION1 (ONI1) and ONI2, which are ketoacyl CoA synthase catalyzing the first step and are required for shoot development in rice, are reported. METHODS AND RESULTS: In this study ketoacyl CoA reductase (KCR) that interacts with ONI1 and ONI2 was searched. A database search identified 10 KCR genes in the rice genome. Among the genes, the expression pattern of KCR1 was similar to that of ONI2. Yeast two-hybrid analysis showed interaction of ONI2 with KCR1, which was confirmed by GST pull-down assay. No interacting partner of ONI1 was identified. CONCLUSIONS: Our results suggest that ONI2 and KCR1 form an FAE complex that may play a role in biosynthesizing VLCFAs during shoot development.


Assuntos
3-Oxoacil-(Proteína Carreadora de Acil) Redutase/metabolismo , Elongases de Ácidos Graxos/metabolismo , Oryza/metabolismo , 3-Oxoacil-(Proteína Carreadora de Acil) Redutase/fisiologia , Acetiltransferases/genética , Sequência de Aminoácidos/genética , Clonagem Molecular/métodos , Coenzima A/genética , Coenzima A/metabolismo , Elongases de Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Oxirredutases/genética , Proteínas de Plantas/genética
14.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498993

RESUMO

Most diploid freshwater and marine fish encode one elovl5 elongase, having substrate specificity and activities towards C18, C20 and C22 polyunsaturated fatty acids (PUFAs). The allo-tetraploid common carp is hypothesized to encode two duplicated elovl5 genes. How these two elovl5 genes adapt to coordinate the PUFA biosynthesis through elongase function and expression divergence requires elucidation. In this study, we obtained the full-length cDNA sequences of two elovl5 genes in common carp, named as elovl5a and elovl5b. Functional characterization showed that both enzymes had elongase activity towards C18, C20 and C22 PUFAs. Especially, the activities of these two enzymes towards C22 PUFAs ranged from 3.87% to 8.24%, higher than those in most freshwater and marine fish. The Elovl5a had higher elongase activities than Elovl5b towards seven substrates. The spatial-temporal expression showed that both genes co-transcribed in all tissues and development stages. However, the expression levels of elovl5b were significantly higher than those of elovl5a in all examined conditions, suggesting that elovl5b would be the dominantly expressed gene. These two genes had different potential transcriptional binding sites. These results revealed the complicated roles of elovl5 on PUFA synthesis in common carp. The data also increased the knowledge of co-ordination between two homoeologs of the polyploid fish through function and expression divergence.


Assuntos
Carpas , Animais , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Carpas/genética , Carpas/metabolismo , Acetiltransferases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Especificidade por Substrato
15.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563119

RESUMO

Very-long-chain fatty acids (VLCFA) are involved in a number of important plant physiological functions. Disorders in the expression of genes involved in the synthesis of VLCFA lead to a number of phenotypic consequences, ranging from growth retardation to the death of embryos. The elongation of VLCFA in the endoplasmic reticulum (ER) is carried out by multiple elongase complexes with different substrate specificities and adapted to the synthesis of a number of products required for a number of metabolic pathways. The information about the enzymes involved in the synthesis of VLCFA with more than 26 atoms of Carbon is rather poor. Recently, genes encoding enzymes involved in the synthesis of both regular-length fatty acids and VLCFA have been discovered and investigated. Polyunsaturated VLCFA in plants are formed mainly by 20:1 elongation into new monounsaturated acids, which are then imported into chloroplasts, where they are further desaturated. The formation of saturated VLCFA and their further transformation into a number of aliphatic compounds included in cuticular waxes and suberin require the coordinated activity of a large number of different enzymes.


Assuntos
Ácidos Graxos , Ceras , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ceras/metabolismo
16.
Br J Nutr ; 126(6): 844-852, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-33243305

RESUMO

PUFA modulate immune function and have been associated with the risk of childhood atopy and asthma. We investigated the effect of maternal fat intake in mice on PUFA status, elongase and desaturase gene expression, inflammatory markers and lung function in the offspring. C57BL/6J mice (n 32) were fed either standard chow (C, 20·4 % energy as fat) or a high-fat diet (HFD, 39·9 % energy as fat) for 4 weeks prior to conception and during gestation and lactation. At 21 d of age, offspring were weaned onto either the HFD or C, generating four experimental groups: C/C, C/HF, HF/C and HF/HF. Plasma and liver fatty acid composition were measured by GC and gene expression by quantitative PCR. Lung resistance to methacholine was assessed. Arachidonic acid concentrations in offspring plasma and liver phospholipids were increased by HFD; this effect was greater in the post-natal HFD group. DHA concentration in offspring liver phospholipids was increased in response to HFD and was higher in the post-natal HFD group. Post-natal HFD increased hepatic fatty acid desaturase (FADS) 2 and elongation of very long-chain fatty acid 5 expression in male offspring, whereas maternal HFD elevated expression of FADS1 and FADS2 in female offspring compared with males. Post-natal HFD increased expression of IL-6 and C-C motif chemokine ligand 2 (CCL2) in perivascular adipose tissue. The HFD lowered lung resistance to methacholine. Excessive maternal fat intake during development modifies hepatic PUFA status in offspring through regulation of gene expression of enzymes that are involved in PUFA biosynthesis and modifies the development of the offspring lungs leading to respiratory dysfunction.


Assuntos
Dieta Hiperlipídica , Pulmão/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna , Animais , Ácido Araquidônico/sangue , Dieta Hiperlipídica/efeitos adversos , Feminino , Fígado , Pulmão/efeitos dos fármacos , Masculino , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeos/análise , Gravidez
17.
Can J Physiol Pharmacol ; 99(1): 64-71, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32822561

RESUMO

The aim of this study was to compare dietary intake and status of polyunsaturated fatty acids (PUFA) in plasma and erythrocyte phospholipids metabolically healthy and unhealthy, and obese and nonobese persons. Metabolic health status in 171 participants was defined according to criteria for metabolic syndrome. Obese and nonobese metabolically unhealthy persons (MUHO and MUHNO) had higher energy intake of n-6 PUFA (7.82 ± 1.03 and 7.49 ± 0.86) and lower intake of n-3 PUFA (0.60 ± 0.12 and 0.62 ± 0.11) compared to obese and nonobese metabolically healthy persons (MHO and MHNO) (5.92 ± 0.63 and 5.72 ± 0.67; 1.20 ± 0.07 and 1.22 ± 0.09, respectively) and a higher n-6/n-3 PUFA ratio. The plasma level of n-6 PUFA was lower in the MUHO and MUHNO groups (38.49 ± 3.71 and 38.53 ± 2.19) compared to MHNO (40.90 ± 2.43), while n-3 PUFA status was lower in obese than in nonobese persons (3.58 ± 0.79 and 3.50 ± 1.02 vs. 4.21 ± 0.80 and 4.06 ± 1.15). The MHO group had a higher eicosapentaenoic/arachidonic acid ratio and estimated desaturase (SCD16, D6D) and elongase activity in plasma phospholipids compared to MHNO. The low intake of n-3 PUFA is directly associated with metabolic risk factors. These results indicated that obesity is closely associated with low levels of n-3 PUFA in plasma phospholipids, suggesting that dietary modifications including n-3 PUFA supplementation appear to be suitable therapeutic strategy in obese persons.


Assuntos
Inquéritos sobre Dietas/estatística & dados numéricos , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Síndrome Metabólica/sangue , Obesidade Metabolicamente Benigna/sangue , Adulto , Idoso , Fatores de Risco Cardiometabólico , Estudos Transversais , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/sangue , Ácidos Graxos Ômega-6/metabolismo , Feminino , Humanos , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Pessoa de Meia-Idade , Obesidade Metabolicamente Benigna/etiologia , Obesidade Metabolicamente Benigna/metabolismo
18.
Plant Mol Biol ; 104(3): 283-296, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32740897

RESUMO

KEY MESSAGE: Differences in FAE1 enzyme affinity for the acyl-CoA substrates, as well as the balance between the different pathways involved in their incorporation to triacylglycerol might be determinant of the different composition of the seed oil in Brassicaceae. Brassicaceae present a great heterogeneity of seed oil and fatty acid composition, accumulating Very Long Chain Fatty Acids with industrial applications. However, the molecular determinants of these differences remain elusive. We have studied the ß-ketoacyl-CoA synthase from the high erucic feedstock Thlaspi arvense (Pennycress). Functional characterization of the Pennycress FAE1 enzyme was performed in two Arabidopsis backgrounds; Col-0, with less than 2.5% of erucic acid in its seed oil and the fae1-1 mutant, deficient in FAE1 activity, that did not accumulate erucic acid. Seed-specific expression of the Pennycress FAE1 gene in Col-0 resulted in a 3 to fourfold increase of erucic acid content in the seed oil. This increase was concomitant with a decrease of eicosenoic acid levels without changes in oleic ones. Interestingly, only small changes in eicosenoic and erucic acid levels occurred when the Pennycress FAE1 gene was expressed in the fae1-1 mutant, with high levels of oleic acid available for elongation, suggesting that the Pennycress FAE1 enzyme showed higher affinity for eicosenoic acid substrates, than for oleic ones in Arabidopsis. Erucic acid was incorporated to triacylglycerol in the transgenic lines without significant changes in their levels in the diacylglycerol fraction, suggesting that erucic acid was preferentially incorporated to triacylglycerol via DGAT1. Expression analysis of FAE1, AtDGAT1, AtLPCAT1 and AtPDAT1 genes in the transgenic lines further supported this conclusion. Differences in FAE1 affinity for the oleic and eicosenoic substrates among Brassicaceae, as well as their incorporation to triacylglycerol might explain the differences in composition of their seed oil.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Biocombustíveis , Vias Biossintéticas , Brassicaceae/metabolismo , Thlaspi/enzimologia , Thlaspi/metabolismo , Triglicerídeos/biossíntese , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Erúcicos/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Análise de Sequência , Thlaspi/genética , Transcriptoma
19.
Appl Microbiol Biotechnol ; 104(6): 2537-2544, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32025762

RESUMO

The oleaginous yeast Lipomyces starkeyi is a potential cost-effective source for the production of microbial lipids. Fatty acid elongases have vital roles in the syntheses of long-chain fatty acids. In this study, two genes encoding fatty acid elongases of L. starkeyi, LsELO1, and LsELO2 were identified and characterized. Heterologous expression of these genes in Saccharomyces cerevisiae revealed that LsElo1 is involved in the production of saturated long-chain fatty acids with 24 carbon atoms (C24:0) and that LsElo2 is involved in the conversion of C16 fatty acids to C18 fatty acids. In addition, both LsElo1 and LsElo2 were able to elongate polyunsaturated fatty acids. LsElo1 elongated linoleic acid (C18:2) to eicosadienoic acid (C20:2), and LsElo2 elongated α-linolenic acid (C18:3) to eicosatrienoic acid (C20:3). Overexpression of LsElo2 in L. starkeyi caused a reduction in C16 fatty acids, such as palmitic and palmitoleic acids, and an accumulation of C18 fatty acids such as oleic and linoleic acids. Our findings have the potential to contribute to the remodeling of fatty acid composition and the production of polyunsaturated long-chain fatty acids in oleaginous yeasts.


Assuntos
Elongases de Ácidos Graxos/metabolismo , Lipomyces/enzimologia , Lipomyces/genética , Ácidos Eicosanoicos/análise , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/isolamento & purificação , Ácidos Graxos/biossíntese , Ácido Linoleico/análise , Ácido Oleico/análise , Saccharomyces cerevisiae/genética
20.
Andrologia ; 52(11): e13876, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33125782

RESUMO

Thirty-six 12-week-old breeder roosters (Ross 308) were randomly allocated into three groups to receive L-carnitine (LC): LC-0, LC-250 or LC-500 mg/kg of diet to evaluate the effects of dietary LC on the expression of apoptotic-related genes and desaturases and elongase mRNA transcript levels, in the cockerel testicles. Alteration of Bak (Bcl2 antagonist/killer), Bcl2, Cas3, Cas8, Cas9, Elovl2, Elovl4, Elovl5, Fads1, Fads2 and Scd expression at 24 and 34 weeks of age was compared by real-time quantitative PCR. The expression of Bcl2 and Elovl5 was significantly up-regulated (p < .05), while Cas8 expression (p < .05) and Bak/Bcl2 ratio were reduced (p < .02) in the cockerel testicles at 24 weeks of age. Although Bak mRNA abundance decreased by dietary LC, Bak/Bcl2 ratio was not affected by the treatments at 34 weeks of age. The expression of Cas3 was down-regulated, while Fads2 was up-regulated in the cockerel testicles by dietary LC at 34 weeks of age (p < .05). The results demonstrate the beneficial effects of LC supplementation in suppression of the Bak/Bcl2 ratio by altering Bak and Bcl2 mRNA abundance and, ultimately, prevention of apoptosis. Furthermore, LC increased the expression of Elovl5 and Fads2 genes which are involved in the metabolism of long chain fatty acids.


Assuntos
Galinhas , Ácidos Graxos Dessaturases , Acetiltransferases/genética , Animais , Apoptose , Carnitina , Dieta , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos , Ácidos Graxos , Masculino , Testículo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa