Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Nanotechnology ; 35(25)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38467057

RESUMO

Electrohydrodynamic-jet printing (E-jet printing) is a direct-writing technology for manufacturing micro-nano devices. To further reduce the inner diameter of the nozzle to improve the printing resolution, a large-scale manufacturing method of SU-8 polymer micro/nanoscale nozzle by means of a process combining UV exposure and hot embossing was proposed. To improve the adhesive strength between the UV mask and SU-8, the influence of the oxygen plasma treatment parameters on the water contact angles of the UV mask was analyzed. The effect of hot embossing time and temperature on the replication precision was studied. The influence of UV exposure parameters and thermal bonding parameters on the micro and nanochannel pattern was investigated. The SU-8 polymer nozzles with 188 ± 3 nm wide and 104 ± 2 nm deep nanochannels were successfully fabricated, and the replication precision can reach to 98.5%. The proposed manufacturing method of SU-8 polymer nozzles in this study will significantly advance the research on the transport properties of nanoscale channels in E-jet nozzles and facilitate further advancements in E-jet based applications.

2.
Small ; 19(19): e2207684, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36775908

RESUMO

Dead-end filtration is a facile method to globally align single wall carbon nanotubes (SWCNTs) in large area films with a 2D order parameter, S2D , approaching unity. Uniaxial alignment has been achieved using pristine and hot-embossed membranes but more sophisticated geometries have yet to be investigated. In this work, three different patterns with radial symmetry and an area of 3.8 cm2 are created. Two of these patterns are replicated by the filtered SWCNTs and S2D values of ≈0.85 are obtained. Each of the radially aligned SWCNT films is characterized by scanning cross-polarized microscopy in reflectance and laser imaging in transmittance with linear, radial, and azimuthal polarized light fields. The former is used to define a novel indicator akin to the 2D order parameter using Malu's law, yielding 0.82 for the respective film. The films are then transferred to a flexible printed circuit board and terminal two-probe electrical measurements are conducted to explore the potential of those new alignment geometries.

3.
Electrophoresis ; 41(18-19): 1641-1650, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32726462

RESUMO

This study describes an inexpensive and nonconventional soft-embossing protocol to produce microfluidic devices in poly(methyl methacrylate) (PMMA). The desirable microfluidic structure was photo-patterned in a poly(vinyl acetate) (PVAc) film deposited on glass substrate to produce a low-relief master. Then, this template was used to generate a high-relief pattern in stiffened PDMS by increasing of curing agent /monomer ratio (1:5) followed by thermal aging in a laboratory oven (200°C for 24 h). The stiffened PDMS masters were used to replicate microfluidic devices in PMMA based on soft embossing at 220-230°C and thermal sealing at 140°C. Both embossing and sealing stages were performed by using binder clips. The proposed protocol has ensured the replication of microfluidic devices in PMMA with great fidelity (>94%). Examples of MCE devices, droplet generator devices and spot test array were successfully demonstrated. For testing MCE devices, a mixture containing inorganic cations was selected as model and the achieved analytical performance did not reveal significant difference from commercial PMMA devices. Water droplets were successfully generated in an oil phase at rate of ca. 60 droplets/min (fixing the continuous phase flow rate at 100 µL/h) with size of ca. 322 ± 6 µm. Glucose colorimetric assay was performed on spot test devices and good detectability level (5 µmol/L) was achieved. The obtained results for two artificial serum samples revealed good agreement with the certified concentrations. Based on the fabrication simplicity and great analytical performance, the proposed soft-embossing protocol may emerge as promising approach for manufacturing PMMA devices.


Assuntos
Desenho de Equipamento/métodos , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Polimetil Metacrilato/química , Glicemia/análise , Colorimetria/instrumentação , Eletroforese/instrumentação , Temperatura Alta , Limite de Detecção , Modelos Lineares , Modelos Biológicos , Reprodutibilidade dos Testes
4.
Sensors (Basel) ; 20(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321761

RESUMO

Toxemia of pregnancy is a very dangerous disease for pregnant women. The mortality rate of toxemia of pregnancy is close to 10% to 15%. Early detection of pregnancy toxemia is to monitoring uric acid concentration in urine. The current mainstream method for detecting uric acid requires an enzyme (urate oxidase), which needs to be stored in a low-temperature environment, and the method requires complex chemical steps, which takes a longer time and more samples. In this study, we propose an integrated miniature three-electrode electrochemical surface-enhanced Raman spectroscopy chip (EC-SERS chip) suitable for rapid EC-SERS detection applications. The integrated microfluidic reservoir on the chip makes it easy to use, which is very suitable for rapid detection applications. The SERS active working electrode for the proposed integrated EC-SERS chip is a nanocone array polycarbonate (PC) substrate decorated with an evenly distributed and tightly packed array of gold nanospheres. It showed good uniformity and can be easily reproduced. The integrated EC-SERS chip is very small compared to the traditional electrochemical cell, which reduces the sample volume required for the testing. In addition, the chip is for one-time use only. It eliminates the need to clean electrochemical cells for reuse, thereby reducing the possibility of contamination and inaccurate detection. Various low-concentration Rhodamine 6G (R6G) solutions were tested to verify the performance of the developed EC-SERS chip. Experimental results showed that the proposed EC-SERS chip has a strong enhancement factor of up to 8.5 × 106 and a very good EC-SERS uniformity (the relative standard deviation of EC-SERS intensity is as low as 1.41%). The EC-SERS chip developed has been further tested for the detection of uric acid in synthetic urine. The results showed that the EC-SERS signal intensity has a highly linear relationship with the logarithm of the uric acid concentration in synthetic urine, which indicates that the developed EC-SERS chip is suitable for the quantitative detection of uric acid in synthetic urine. Therefore, the developed EC-SERS chip is very promising to be used in routine and early diagnosis of pregnancy toxemia and may be used in many other medical tests, food safety, and biotechnology applications.


Assuntos
Nanopartículas Metálicas , Pré-Eclâmpsia , Ácido Úrico , Eletrodos , Feminino , Ouro , Humanos , Pré-Eclâmpsia/diagnóstico , Gravidez , Análise Espectral Raman
5.
Neurobiol Learn Mem ; 160: 32-47, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30321652

RESUMO

The brain stores memories by persistently changing the connectivity between neurons. Sleep is known to be critical for these changes to endure. Research on the neurobiology of sleep and the mechanisms of long-term synaptic plasticity has provided data in support of various theories of how brain activity during sleep affects long-term synaptic plasticity. The experimental findings - and therefore the theories - are apparently quite contradictory, with some evidence pointing to a role of sleep in the forgetting of irrelevant memories, whereas other results indicate that sleep supports the reinforcement of the most valuable recollections. A unified theoretical framework is in need. Computational modeling and simulation provide grounds for the quantitative testing and comparison of theoretical predictions and observed data, and might serve as a strategy to organize the rather complicated and diverse pool of data and methodologies used in sleep research. This review article outlines the emerging progress in the computational modeling and simulation of the main theories on the role of sleep in memory consolidation.


Assuntos
Encéfalo/fisiologia , Simulação por Computador , Homeostase/fisiologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Consolidação da Memória/fisiologia , Modelos Teóricos , Fases do Sono/fisiologia , Humanos
6.
Chemphyschem ; 19(16): 2014-2024, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29917305

RESUMO

We report the design and characterization of a multiphase quadruple shape memory composite capable of switching between 4 programmed shapes, three temporary and one permanent. Our approach combined two previously reported fabrication methods by embedding an electrospun mat of PCL in a miscible blend of epoxy monomers and PMMA as a composite matrix. As epoxy polymerization occurred the matrix underwent phase separation between the epoxy and PMMA materials. This created a multiphase composite with PCL fibers and a two-phase matrix composed of phase-separated epoxy and PMMA. The resulting composite demonstrated three separate thermal transitions and amenability to mechanical programming of three separate temporary shapes in addition to one final, equilibrium shape. In addition, quadruple surface shape memory abilities are successfully demonstrated. The versatility of this approach offers a large degree of design flexibility for multi-shape memory materials.

7.
Biofouling ; 34(1): 86-97, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29283000

RESUMO

Surface topography plays a key role in the colonization of substrata by the colonizing stages of marine fouling organisms. For the innovation of marine antifouling coatings, it is essential to understand how topographic cues affect the settlement of these organisms. In this study, tapered, spiked microstructures and discrete honeycombs of varying feature dimensions were designed and fabricated in order to examine the influence of topography on the attachment of zoospores of the green macroalga Ulva linza and cells of the diatom (microalga) Navicula incerta. Contrasting results were obtained with these two species of algae. Indeed, the preferred location of cells of N. incerta was dominated by attachment point theory, which suggested a positive correlation between the density of cells adhering and the amount of available attachment points, while the settlement of spores of U. linza was mainly regulated by both Wenzel roughness and local binding geometry.


Assuntos
Incrustação Biológica , Adesão Celular/fisiologia , Diatomáceas/fisiologia , Esporos/fisiologia , Ulva/fisiologia , Contagem de Células , Sinais (Psicologia) , Diatomáceas/química , Especificidade da Espécie , Esporos/química , Propriedades de Superfície , Ulva/química
8.
Sensors (Basel) ; 17(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28531106

RESUMO

We present here an electrochemical sensor microsystem for the monitoring of pH. The all-polymeric device is comprised of a cyclic olefin copolymer substrate, a 200 nm-thin patterned layer of conductive polymer (PEDOT), and a 70 nm electropolymerized layer of a pH sensitive conductive polymer (polyaniline). The patterning of the fluidic (microfluidic channels) and conductive (wiring and electrodes) functional elements was achieved with a single soft PDMS mold via a single embossing step process. A post-processing treatment with ethylene glycol assured the functional enhancement of the electrodes, as demonstrated via an electrical and electrochemical characterization. A surface modification of the electrodes was carried out, based on voltammetric electropolymerization, to obtain a thin layer of polyaniline. The mechanism for pH sensing is based on the redox reactions of the polyaniline layer caused by protonation. The sensing performance of the microsystem was finally validated by monitoring its potentiometric response upon exposure to a relevant range of pH.

9.
Sensors (Basel) ; 17(7)2017 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-28671600

RESUMO

We propose two approaches-hot-embossing and dielectric-heating nanoimprinting methods-for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit). The rapid fabrication is also achieved by using radio-frequency (RF) sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen-antibody interactions using bovine serum albumin (BSA) and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications.


Assuntos
Nanoestruturas , Técnicas Biossensoriais , Ouro , Calefação , Ressonância de Plasmônio de Superfície
10.
Sensors (Basel) ; 16(12)2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27916849

RESUMO

We build on the concept of hot intrusion embossing to develop a one-step fabrication method for thermoplastic microfluidic channels containing integrated three-dimensional features. This was accomplished with simple, rapid-to-fabricate imprint templates containing microcavities that locally control the intrusion of heated thermoplastic based on their cross-sectional geometries. The use of circular, rectangular and triangular cavity geometries was demonstrated for the purposes of forming posts, multi-focal length microlense arrays, walls, steps, tapered features and three-dimensional serpentine microchannels. Process variables, such as temperature and pressure, controlled feature dimensions without affecting the overall microchannel geometry. The approach was demonstrated for polycarbonate, cycloolefin copolymer and polystyrene, but in principle is applicable to any thermoplastic. The approach is a step forward towards rapid fabrication of complex, robust, microfluidic platforms with integrated multi-functional elements.

11.
Nano Lett ; 15(2): 963-8, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25559737

RESUMO

Surface engineering over multiple length scales is critical for electronics, photonics, and enabling multifunctionality in synthetic materials. Here, we demonstrate a sequential embossing technique for building multi-tier patterns in metals by controlling the size-dependent thermoplastic forming of metallic glasses. Sub-100 nm to millimeter sized features are sculpted sequentially to allow an exquisite control of surface properties. The process can be integrated with net-shaping to transfer functional patterns on three-dimensional metal parts.

12.
Exp Cell Res ; 319(16): 2460-9, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23856376

RESUMO

In the 40 years since Elsdale and Bard's analysis of fibroblast culture in collagen gels we have moved far beyond the concept that such 3D fibril network systems are better models than monolayer cultures. This review analyses key aspects of that progression of models, against a background of what exactly each model system tries to mimic. This story tracks our increasing understanding of fibroblast responses to soft collagen gels, in particularly their cytoskeletal contraction, migration and integrin attachment. The focus on fibroblast mechano-function has generated models designed to directly measure the overall force generated by fibroblast populations, their reaction to external loads and the role of the matrix structure. Key steps along this evolution of 3D collagen models have been designed to mimic normal skin, wound repair, tissue morphogenesis and remodelling, growth and contracture during scarring/fibrosis. As new models are developed to understand cell-mechanical function in connective tissues the collagen material has become progressively more important, now being engineered to mimic more complex aspects of native extracellular matrix structure. These have included collagen fibril density, alignment and hierarchical structure, controlling material stiffness and anisotropy. But of these, tissue-like collagen density is key in that it contributes to control of the others. It is concluded that across this 40 year window major progress has been made towards establishing a family of 3D experimental collagen tissue-models, suitable to investigate normal and pathological fibroblast mechano-functions.


Assuntos
Colágeno/química , Células do Tecido Conjuntivo/química , Tecido Conjuntivo/química , Animais , Anisotropia , Células Cultivadas , Células do Tecido Conjuntivo/citologia , Matriz Extracelular/química , Fibroblastos/química , Fibroblastos/citologia , Géis , Humanos , Integrinas/química , Integrinas/metabolismo , Estresse Mecânico
13.
Micromachines (Basel) ; 15(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38930643

RESUMO

A novel non-isothermal glass hot embossing system utilizes a silicon mold core coated with a three-dimensional carbide-bonded graphene (CBG) coating, which acts as a thin-film resistance heater. The temperature of the system significantly influences the electrical conductivity properties of silicon with a CBG coating. Through simulations and experiments, it has been established that the electrical conductivity of silicon with a CBG coating gradually increases at lower temperatures and rapidly rises as the temperature further increases. The CBG coating predominantly affects electrical conductivity until 400 °C, after which silicon becomes the dominant factor. Furthermore, the dimensions of CBG-coated silicon and the reduction of CBG coating also affect the rate and outcome of conductivity changes. These findings provide valuable insights for detecting CBG-coated silicon during the embossing process, improving efficiency, and predicting the mold core's service life, thus enhancing the accuracy of optical lens production.

14.
Micromachines (Basel) ; 15(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542626

RESUMO

Given the growing importance of lab-on-a-chip in a number of fields, such as medical diagnosis or environmental analysis, the fact that the current fabrication process relies mainly on oil-based polymers raises an ecological concern. As an eco-responsible alternative, we presented, in this article, a manufacturing process for microfluidic devices from chitosan, a bio-sourced, biodegradable, and biocompatible polysaccharide. From chitosan powder, we produced thick and rigid films. To prevent their dissolution and reduce their swelling when in contact with aqueous solutions, we investigated a film neutralization step and characterized the mechanical and physical properties of the resulting films. On these neutralized chitosan films, we compared two micropatterning methods, i.e., hot embossing and mechanical micro-drilling, based on the resolution of microchannels from 100 µm to 1000 µm wide. Then, chitosan films with micro-drilled channels were bonded using a biocompatible dry photoresist on a glass slide or another neutralized chitosan film. Thanks to this protocol, the first functional chitosan microfluidic devices were prepared. While some steps of the fabrication process remain to be improved, these preliminary results pave the way toward a sustainable fabrication of lab-on-a-chip.

15.
Polymers (Basel) ; 16(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794610

RESUMO

The filling efficiency during the hot embossing process at micro scale is essential for micro-component replication. The presence of the unfilled area is often due to the inadequate behavior law applied to the embossed materials. This research consists of the identification of viscoplastic law (two-layer viscoplastic model) of polymers and the optimization of processing parameters. Mechanical tests have been performed for two polymers at 20 °C and 30 °C above their glass transition temperature. The viscoplastic parameters are characterized based on stress-strain curves from the compression tests. The influences of imposed displacement, temperature, and friction on mold filling are investigated. The processing parameters are optimized to achieving the complete filling of micro cavities. The replication of a micro-structured cavity has been effectuated using this process and the experimental observations validate the results in the simulation, which confirms the efficiency of the proposed numerical approach.

16.
Polymers (Basel) ; 16(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000769

RESUMO

Microbial contamination can occur on the surfaces of blow-molded bottles, necessitating the development and application of effective anti-microbial treatments to mitigate the hazards associated with microbial growth. In this study, new methods of incorporating anti-microbial particles into linear low-density polyethylene (LLDPE) extrusion blow-molded bottles were developed. The anti-microbial particles were thermally embossed on the external surface of the bottle through two particle deposition approaches (spray and powder) over the mold cavity. The produced bottles were studied for their thermal, mechanical, gas barrier, and anti-microbial properties. Both deposition approaches indicated a significant enhancement in anti-microbial activity, as well as barrier properties, while maintaining thermal and mechanical performance. Considering both the effect of anti-microbial agents and variations in tensile bar weight and thickness, the statistical analysis of the mechanical properties showed that applying the anti-microbial agents had no significant influence on the tensile properties of the blow-molded bottles. The external fixation of the particles over the surface of the bottles would result in optimum anti-microbial activity, making it a cost-effective solution compared to conventional compounding processing.

17.
Int J Adv Manuf Technol ; 131(7-8): 3631-3649, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549866

RESUMO

Precise tooling is vital for defect-free production of micro injection moulded (µ-IM) or hot-embossed products. The demoulding stage of such moulding and forming processes poses a serious challenge to the integrity of thin miniature features because of friction, adhesion, and thermal stresses. Typically, micro moulds involve geometrically textured patterns or features such as linear ridges, pillars, channels, and holes, the characteristic dimensions of which range from 10 to 300 µm. Realistically complex mould designs, containing precision micro features (enhanced fillet radius and positive draft angle) and high surface quality, are presented in this work. Electropolishing based on forward pulse currents (PC) has been used to shape and polish Ni micro moulds that contain sets of micron-scaled linear ridges and star patterns in order to ease the separation of moulded polymeric parts from the metallic mould during ejection and demoulding. The use of forward pulsed currents improved the mould design by increasing the fillet radii and draft angle while keeping the surface roughness low and maintaining a good surface shine. An optimization study of forward PC using a green solution of nickel sulfamate varied EP times (0-70 min) and duty cycles (40, 50, 60, and 70%) at a process conditions of 2.8 V, 50 °C, and 250 rpm. The best topographical and morphological changes were observed for a typical microfluidic channel (w × h, 100 × 110 µm) with an EP time of 70 min and 50% duty cycle: fillet radius increased by 3.8 µm, draft angle by 3.3°, and the channel width reduced by 11.4% while surface roughness changed by 8.6% and surface shine improved by 48.9%. Experimental validation was performed using hot embossing wherein the electropolished Ni mould replicated the micro channels and star patterns in PMMA chips with notably fewer burrs, material pile up, and no feature distortion. Moreover, there was a reduction in the side wall roughness of micro channels in PDMS casting with electropolished Ni mould by 16%. Hence, this work presents a significant scientific contribution to improving the efficiency of micro mould tools and reduces the defects caused by friction and adhesion in replicated polymeric parts.

18.
Micromachines (Basel) ; 14(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37421053

RESUMO

Molding in thermoplastic polymers using ultrasonic hot embossing technology is promising due to its high precision reproducibility. To understand, analyze and apply the formation of polymer microstructures by the ultrasonic hot embossing method, it is necessary to understand dynamic loading conditions. The Standard Linear Solid model (SLS) is a method that allows analyzing the viscoelastic properties of materials by representing them as a combination of springs and dashpots. However, this model is general, and it is challenging to represent a viscoelastic material with multiple relaxations. Therefore, this article aims to use the data obtained from dynamic mechanical analysis for extrapolation in a wide range of cyclic deformations and to use the obtained data in microstructure formation simulations. The formation was replicated using a novel magnetostrictor design that sets a specific temperature and vibration frequency. The changes were analyzed on a diffractometer. After the diffraction efficiency measurement, it was found that the highest quality structures were formed at a temperature of 68 °C, a frequency of 10 kHz, a frequency amplitude of 1.5 µm and a force of 1 kN force. Moreover, the structures could be molded on any thickness of plastic.

19.
Polymers (Basel) ; 15(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765657

RESUMO

The fabrication of nanostructures is of great importance in producing biomedical devices. Significantly, the nanostructure of the polymeric film has a significant impact on the physical and biophysical behavior of the biomolecules. This study presents an efficient nanofabrication method of nanogroove structures on an acrylic film by the micro-embossing process. In this method, a master mold was made from a thermos oxide silicon substrate using photolithography and etching techniques. An isotropic optical polymethyl methacrylate (PMMA) film is used in the experiment. The acrylic film is known for its excellent optical properties in products such as optical lenses, medical devices, and various general purpose engineering plastics. Then, the micro-embossing process was realized to fabricate nanogroove patterns on an acrylic film by using a micro-embossing machine. However, the morphology of the nanopatterns on an acrylic film was characterized by using an atomic force microscope to measure the dimensions of the nanogroove patterns. The impact of embossing temperature on the morphology of nanogroove patterns on acrylic film is experimentally investigated. The results show that when the embossing temperature is too small, the pattern is not fully formed, and slipping occurs in nanopatterns on the acrylic film. On the other hand, the effect of increasing the embossing temperature on the morphology of nanogrooves agrees with the master mold, and the crests between the nanogrooves form straight edges. It should be noted that the micro-embossing temperature also strongly influences the transferability of nanopatterns on an acrylic film. The technique has great potential for rapidly fabricating nanostructure patterns on acrylic film.

20.
Materials (Basel) ; 16(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37512353

RESUMO

As a technology for polymer surface fabrication, roll-to-roll hot embossing has been widely used because of its advantages, such as its low cost and high efficiency. However, the metal micro-mold is a major factor that determines the hot embossing of the polymer. In this study, a new metal micro-mold manufacturing method is proposed. The metal micro-mold is produced using laser shock imprinting (LSI) on the surface of metal foil. It has the characteristics of good thermal stability and high strength. During our LSI experiment, the strength of the mold increased after laser shocking. In this study, copper foils of different thicknesses were selected for LSI experiments. Through the analysis of the profile and forming depth of the microstructure, combined with the numerical simulation of the forming mechanism of copper foils with different thicknesses using ABAQUS software(Abaqus 2021), a copper foil with a flat back was selected as the final metal micro-mold. On this basis, copper molds with different microstructure shapes were created. Then, the mold was used in the hot-embossing experiment to manufacture the microstructure on the surface of polyethylene terephthalate (PET) and to study the fidelity and integrity of the molded microstructure. The deformation resistance of the copper mold under hot-embossing conditions was verified through a nano-indentation experiment. The final results show that the metal micro-mold produced via LSI had a high accuracy and molding stability and has potential applications in the field of roll-to-roll hot embossing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa