RESUMO
Historically, economic growth has been closely coupled to carbon emissions responsible for climate change, but to stabilize global mean temperature, net-zero carbon emissions are necessary. Some economies have begun to reduce emissions while continuing to grow, but this decoupling is not fast enough to achieve global climate targets. Subnational climate actions seem to be crucial for the achievement of these targets. Here, we uncover the effectiveness of subnational efforts by estimating decoupling rates and CO2 emission intensities over the last three decades for over 1,500 subnational regions, encompassing 85% of global emissions, using global data on reported economic output and gridded production-based emissions. Thirty percent of regions with available data have fully decoupled, with higher-income and historically carbon-intensive regions exhibiting higher rates of decoupling and declining emission intensity. Countries of the Organization for Economic Co-operation and Development with greater spending on subnational climate actions show higher decoupling rates, as do subnational regions in EU countries where climate policies have been implemented, highlighting the effectiveness of subnational policies. Moreover, subnational analysis reveals greater variance of decoupling rates within national boundaries than between them and that countries with weaker governance typically show higher variance of decoupling within their borders. If recent rates of production-based carbon decoupling continue, less than half of subnational regions would reach net-zero before 2050, even when accounting for observed acceleration via socioeconomic development and assuming no interregional carbon leakage.
RESUMO
Although the last several decades have seen a dramatic reduction in emissions from vehicular exhaust, nonexhaust emissions (e.g., brake and tire wear) represent an increasingly significant class of traffic-related particulate pollution. Aerosol particles emitted from the wear of automotive brake pads contribute roughly half of the particle mass attributed to nonexhaust sources, while their relative contribution to urban air pollution overall will almost certainly grow coinciding with vehicle fleet electrification and the transition to alternative fuels. To better understand the implications of this growing prominence, a more thorough understanding of the physicochemical properties of brake wear particles (BWPs) is needed. Here, we investigate the electrical properties of BWPs as emitted from ceramic and semi-metallic brake pads. We show that up to 80% of BWPs emitted are electrically charged and that this fraction is strongly dependent on the specific brake pad material used. A dependence of the number of charges per particle on charge polarity and particle size is also demonstrated. We find that brake wear produces both positive and negative charged particles that can hold in excess of 30 elementary charges and show evidence that more negative charges are produced than positive. Our results will provide insights into the currently limited understanding of BWPs and their charging mechanisms, which potentially have significant implications on their atmospheric lifetimes and thus their relevance to climate and air quality. In addition, our study will inform future efforts to remove BWP emissions before entering the atmosphere by taking advantage of their electric charge.
RESUMO
Mercury (Hg) is a contaminant of global concern, and an accurate understanding of its atmospheric fate is needed to assess its risks to humans and ecosystem health. Atmospheric oxidation of Hg is key to the deposition of this toxic metal to the Earth's surface. Short-lived halogens (SLHs) can provide halogen radicals to directly oxidize Hg and perturb the budget of other Hg oxidants (e.g., OH and O3). In addition to known ocean emissions of halogens, recent observational evidence has revealed abundant anthropogenic emissions of SLHs over continental areas. However, the impacts of anthropogenic SLHs emissions on the atmospheric fate of Hg and human exposure to Hg contamination remain unknown. Here, we show that the inclusion of anthropogenic SLHs substantially increased local Hg oxidation and, consequently, deposition in/near Hg continental source regions by up to 20%, thereby decreasing Hg export from source regions to clean environments. Our modeling results indicated that the inclusion of anthropogenic SLHs can lead to higher Hg exposure in/near Hg source regions than estimated in previous assessments, e.g., with increases of 8.7% and 7.5% in China and India, respectively, consequently leading to higher Hg-related human health risks. These results highlight the urgent need for policymakers to reduce local Hg and SLHs emissions. We conclude that the substantial impacts of anthropogenic SLHs emissions should be included in model assessments of the Hg budget and associated health risks at local and global scales.
Assuntos
Mercúrio , Humanos , Mercúrio/toxicidade , Mercúrio/análise , Monitoramento Ambiental/métodos , Ecossistema , China , ÍndiaRESUMO
Indonesia has experienced rapid primary forest loss, second only to Brazil in modern history. We examined the fates of Indonesian deforested areas, immediately after clearing and over time, to quantify deforestation drivers in Indonesia. Using time-series satellite data, we tracked degradation and clearing events in intact and degraded natural forests from 1991 to 2020, as well as land use trajectories after forest loss. While an estimated 7.8 Mha (SE = 0.4) of forest cleared during this period had been planted with oil palms by 2020, another 8.8 Mha (SE = 0.4) remained unused. Of the 28.4 Mha (SE = 0.7) deforested, over half were either initially left idle or experienced crop failure before a land use could be detected, and 44% remained unused for 5 y or more. A majority (54%) of these areas were cleared mechanically (not by escaped fires), and in cases where idle lands were eventually converted to productive uses, oil palm plantations were by far the most common outcome. The apparent deliberate creation of idle deforested land in Indonesia and subsequent conversion of idle areas to oil palm plantations indicates that speculation and land banking for palm oil substantially contribute to forest loss, although failed plantations could also contribute to this dynamic. We also found that in Sumatra, few lowland forests remained, suggesting that a lack of remaining forest appropriate for palm oil production, together with an extensive area of banked deforested land, may partially explain slowing forest loss in Indonesia in recent years.
Assuntos
Conservação dos Recursos Naturais , Florestas , Indonésia , Árvores/crescimento & desenvolvimento , AgriculturaRESUMO
The perfluorocarbons tetrafluoromethane (CF4, PFC-14) and hexafluoroethane (C2F6, PFC-116) are potent greenhouse gases with near-permanent atmospheric lifetimes relative to human timescales and global warming potentials thousands of times that of CO2. Using long-term atmospheric observations from a Chinese network and an inverse modeling approach (top-down method), we determined that CF4 emissions in China increased from 4.7 (4.2-5.0, 68% uncertainty interval) Gg y-1 in 2012 to 8.3 (7.7-8.9) Gg y-1 in 2021, and C2F6 emissions in China increased from 0.74 (0.66-0.80) Gg y-1 in 2011 to 1.32 (1.24-1.40) Gg y-1 in 2021, both increasing by approximately 78%. Combined emissions of CF4 and C2F6 in China reached 78 Mt CO2-eq in 2021. The absolute increase in emissions of each substance in China between 2011-2012 and 2017-2020 was similar to (for CF4), or greater than (for C2F6), the respective absolute increase in global emissions over the same period. Substantial CF4 and C2F6 emissions were identified in the less-populated western regions of China, probably due to emissions from the expanding aluminum industry in these resource-intensive regions. It is likely that the aluminum industry dominates CF4 emissions in China, while the aluminum and semiconductor industries both contribute to C2F6 emissions. Based on atmospheric observations, this study validates the emission magnitudes reported in national bottom-up inventories and provides insights into detailed spatial distributions and emission sources beyond what is reported in national bottom-up inventories.
RESUMO
Anthropogenic activities emit ~2,000 Mg y-1 of the toxic pollutant mercury (Hg) into the atmosphere, leading to long-range transport and deposition to remote ecosystems. Global anthropogenic emission inventories report increases in Northern Hemispheric (NH) Hg emissions during the last three decades, in contradiction with the observed decline in atmospheric Hg concentrations at NH measurement stations. Many factors can obscure the link between anthropogenic emissions and atmospheric Hg concentrations, including trends in the reemissions of previously released anthropogenic ("legacy") Hg, atmospheric sink variability, and spatial heterogeneity of monitoring data. Here, we assess the observed trends in gaseous elemental mercury (Hg0) in the NH and apply biogeochemical box modeling and chemical transport modeling to understand the trend drivers. Using linear mixed effects modeling of observational data from 51 stations, we find negative Hg0 trends in most NH regions, with an overall trend for 2005 to 2020 of -0.011 ± 0.006 ng m-3 y-1 (±2 SD). In contrast to existing emission inventories, our modeling analysis suggests that annual NH anthropogenic emissions must have declined by at least 140 Mg between the years 2005 and 2020 to be consistent with observed trends. Faster declines in 95th percentile Hg0 values than median values in Europe, North America, and East Asian measurement stations corroborate that the likely cause is a decline in nearby anthropogenic emissions rather than background legacy reemissions. Our results are relevant for evaluating the effectiveness of the Minamata Convention on Mercury, demonstrating that existing emission inventories are incompatible with the observed Hg0 declines.
RESUMO
Beef production has been identified as a significant source of anthropogenic greenhouse gas (GHG) emissions in the agricultural sector. United States and Canada account for about a quarter of the world's beef supply. To compare the GHG emission contributions of alternative beef production systems, we conducted a meta-analysis of 32 studies that were conducted between 2001 and 2023. Results indicated that GHG emissions from beef production in North America varied almost fourfold from 10.2 to 37.6 with an average of 21.4 kg CO2e/kg carcass weight (CW). Studies that considered soil C sequestration (C-seq) reported the highest mitigation potential in GHG emissions (80%), followed by growth enhancement technology (16%), diet modification (6%), and grazing management improvement (7%). Our study highlights the implications of using carbon intensity per economic activity (i.e., GHG emissions per monetary unit), compared to the more common metric of intensity on per weight of product basis (GHG emissions per kg CW) for comparisons across differentiated beef cattle products. While a positive association was found between the proportion of lifespan on grassland and the conventional weight-based indicator, grass-finished beef was found to have lower carbon intensity per economic activity than feedlot-finished beef. Our study emphasizes the need to incorporate land use and management effects and soil C-seq as fundamental aspects of beef GHG emissions and mitigation assessments.
Assuntos
Gases de Efeito Estufa , Carne Vermelha , Animais , Bovinos , Gases de Efeito Estufa/análise , Carne Vermelha/economia , Canadá , Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/economia , Estados Unidos , Agricultura/economia , Agricultura/métodos , Efeito Estufa , Mudança ClimáticaRESUMO
Indigenous communities in the North American Arctic are characterized by mixed economies that feature hunting, fishing, gathering, and trapping activities-and associated sharing practices-alongside the formal wage economy. The region is also undergoing rapid social, economic, and climate changes, including, in Canada, carbon taxation, which is impacting the cost of fuel used in local food harvesting. Because of the importance of local foods to nutrition, health, and well-being in Arctic Indigenous communities, there is an urgent need to better understand the sensitivity of Arctic food systems to social, economic, and climate changes and to develop plans for mitigating potential adverse effects. Here, we develop a Bayesian model to calculate the substitution value and carbon emissions of market replacements for local food harvests in the Inuvialuit Settlement Region, Canada. Our estimates suggest that under plausible scenarios, replacing locally harvested foods with imported market substitutes would cost over 3.1 million Canadian dollars per year and emit over 1,000 tons of CO2-equivalent emissions per year, regardless of the shipping scenario. In contrast, we estimate that gasoline inputs to harvesting cost approximately $295,000 and result in 315 to 497 tons of emissions. These results indicate that climate change policies that fail to account for local food production may undermine emissions targets and adversely impact food security and health in Arctic Indigenous communities, who already experience a high cost of living and high rates of food insecurity.
Assuntos
Mudança Climática , Abastecimento de Alimentos , Canadá , Abastecimento de Alimentos/economia , Humanos , Mudança Climática/economia , Regiões Árticas , Teorema de Bayes , Carbono/metabolismo , Povos Indígenas , Alimentos/economia , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismoRESUMO
Growing population and consumption pose unprecedented demands on food production. However, ammonia emissions mainly from food systems increase oceanic nitrogen deposition contributing to eutrophication. Here, we developed a long-term oceanic nitrogen deposition dataset (1970 to 2018) with updated ammonia emissions from food systems, evaluated the impact of ammonia emissions on oceanic nitrogen deposition patterns, and discussed the potential impact of nitrogen fertilizer overuse. Based on the chemical transport modeling approach, oceanic ammonia-related nitrogen deposition increased by 89% globally between 1970 and 2018, and now, it exceeds oxidized nitrogen deposition by over 20% in coastal regions including China Sea, India Coastal, and Northeastern Atlantic Shelves. Approximately 38% of agricultural nitrogen fertilizer was excessive, which corresponds to 15% of global oceanic ammonia-related nitrogen deposition. Policymakers and water quality managers need to pay increasingly more attention to ammonia associated with food production if the goal of reducing coastal nitrogen pollution is to be achieved for Sustainable Development Goals.
Assuntos
Amônia , Nitrogênio , Nitrogênio/análise , Amônia/análise , Fertilizantes/análise , Agricultura , China , Qualidade da Água , SoloRESUMO
Eye movements alter the relationship between the visual and auditory spatial scenes. Signals related to eye movements affect neural pathways from the ear through auditory cortex and beyond, but how these signals contribute to computing the locations of sounds with respect to the visual scene is poorly understood. Here, we evaluated the information contained in eye movement-related eardrum oscillations (EMREOs), pressure changes recorded in the ear canal that occur in conjunction with simultaneous eye movements. We show that EMREOs contain parametric information about horizontal and vertical eye displacement as well as initial/final eye position with respect to the head. The parametric information in the horizontal and vertical directions can be modeled as combining linearly, allowing accurate prediction of the EMREOs associated with oblique (diagonal) eye movements. Target location can also be inferred from the EMREO signals recorded during eye movements to those targets. We hypothesize that the (currently unknown) mechanism underlying EMREOs could impose a two-dimensional eye-movement-related transfer function on any incoming sound, permitting subsequent processing stages to compute the positions of sounds in relation to the visual scene.
Assuntos
Movimentos Oculares , Movimentos Sacádicos , Movimento , Fenômenos Fisiológicos Oculares , SomRESUMO
During the nineteenth century, a major change took place in the trade, production, and use of mercury that altered its nearly exclusive link to silver refining in the Hispanic New World. We track the global expansion of mercury markets in chronological detail from 1511 to 1900 using historical archives on production and trade, a detailed country-by-country accounting of the pool of anthropogenic mercury from which legacy mercury was ultimately generated. The nature and profile of pre-1900 legacy mercury extends beyond silver refining, mercury production, and gold extraction, and includes alternate sources (vermilion, felt, mercury fulminate) and new regions that were not major silver or gold producers (China, India, United Kingdom, France, among others), that accounted for approximately 50% of total mercury consumed in the nineteenth century. The nature of the pre-1900 mercury market requires a quantitative distinction between legacy mercury and historic anthropogenic mercury production and use, since the chemistry of its end-uses determines the pathways and timelines for its incorporation into the global biogeochemical cycle. We thus introduce the concept of a mercury source pool to account for total historic anthropogenic mercury within and outside this cycle. Together with a critical review of previous assumptions used to reconstruct the historical use and loss of mercury, a much lower level of emissions of pre-1900 legacy mercury is proposed. A coordinated effort across disciplines is needed, to complete a historically accurate scenario that can guide the multilateral policies adopted under the United Nations Minamata Convention to control mercury in the environment.
RESUMO
We apply a recently developed measurement technique for methane (CH4) isotopologues* (isotopic variants of CH4-13CH4, 12CH3D, 13CH3D, and 12CH2D2) to identify contributions to the atmospheric burden from fossil fuel and microbial sources. The aim of this study is to constrain factors that ultimately control the concentration of this potent greenhouse gas on global, regional, and local levels. While predictions of atmospheric methane isotopologues have been modeled, we present direct measurements that point to a different atmospheric methane composition and to a microbial flux with less clumping (greater deficits relative to stochastic) in both 13CH3D and 12CH2D2 than had been previously assigned. These differences make atmospheric isotopologue data sufficiently sensitive to variations in microbial to fossil fuel fluxes to distinguish between emissions scenarios such as those generated by different versions of EDGAR (the Emissions Database for Global Atmospheric Research), even when existing constraints on the atmospheric CH4 concentration profile as well as traditional isotopes are kept constant.
RESUMO
BACKGROUND & AIMS: Gastrointestinal (GI) endoscopy procedures are critical for screening, diagnosis, and treatment of a variety of GI disorders. However, like the procedures in other medical disciplines, they are a source of environmental waste generation and energy consumption. METHODS: We prospectively collected data on total waste generation, energy consumption, and the role of intraprocedural inventory audit of a single tertiary care academic endoscopy unit over a 2-month period (May-June 2022). Detailed data on items used were collected, including procedure type (esophagogastroduodenoscopy or colonoscopy), accessories, intravenous tubing, biopsy jars, linen, and personal protective equipment use. Data on endoscope reprocessing-related waste generation and energy use in the endoscopy unit (equipment, lights, and computers) were also collected. We used an endoscopy staff-guided auditing and review of the items used during procedures to determine potentially recyclable items going to landfill waste. The waste generated was stratified into biohazardous, nonbiohazardous, or potentially recyclable items. RESULTS: A total of 450 consecutive procedures were analyzed for total waste management (generation and reprocessing) and energy consumption. The total waste generated during the study period was 1398.6 kg (61.6% directly going to landfill, 33.3% biohazard waste, and 5.1% sharps), averaging 3.03 kg/procedure. The average waste directly going to landfill was 219 kg per 100 procedures. The estimated total annual waste generation approximated the size of 2 football fields (1-foot-high layered waste). Endoscope reprocessing generated 194 gallons of liquid waste per day, averaging 13.85 gallons per procedure. Total energy consumption in the endoscopy unit was 277.1 kW·h energy per day; for every 100 procedures, amounting to 1200 miles of distance traveled by an average fuel efficiency car. The estimated carbon footprint for every 100 GI procedures was 1501 kg carbon dioxide (CO2) equivalent (= 1680 lbs of coal burned), which would require 1.8 acres of forests to sequester. The recyclable waste audit and review demonstrated that 20% of total waste consisted of potentially recyclable items (8.6 kg/d) that could be avoided by appropriate waste segregation of these items. CONCLUSIONS: On average, every 100 GI endoscopy procedures (esophagogastroduodenoscopy/colonoscopy) are associated with 303 kg of solid waste and 1385 gallons of liquid waste generation, and 1980 kW·h energy consumption. Potentially recyclable materials account for 20% of the total waste. These data could serve as an actionable model for health systems to reduce total waste generation and decrease landfill waste and water waste toward environmentally sustainable endoscopy units.
Assuntos
Gerenciamento de Resíduos , Humanos , Estudos Prospectivos , Gerenciamento de Resíduos/métodos , Instalações de Eliminação de Resíduos , Endoscopia Gastrointestinal/efeitos adversos , Pegada de CarbonoRESUMO
China is set to actively reduce its methane emissions in the coming decade. A comprehensive evaluation of the current situation can provide a reference point for tracking the country's future progress. Here, using satellite and surface observations, we quantify China's methane emissions during 2010-2017. Including newly available data from a surface network across China greatly improves our ability to constrain emissions at subnational and sectoral levels. Our results show that recent changes in China's methane emissions are linked to energy, agricultural, and environmental policies. We find contrasting methane emission trends in different regions attributed to coal mining, reflecting region-dependent responses to China's energy policy of closing small coal mines (decreases in Southwest) and consolidating large coal mines (increases in North). Coordinated production of coalbed methane and coal in southern Shanxi effectively decreases methane emissions, despite increased coal production there. We also detect unexpected increases from rice cultivation over East and Central China, which is contributed by enhanced rates of crop-residue application, a factor not accounted for in current inventories. Our work identifies policy drivers of recent changes in China's methane emissions, providing input to formulating methane policy toward its climate goal.
Assuntos
Carvão Mineral , Metano , Agricultura , China , Metano/análise , PolíticasRESUMO
Marginal emissions of CO2 from the electricity sector are critical for evaluating climate policies that rely on shifts in electricity demand or supply. This paper provides estimates of marginal CO2 emissions from US electricity generation using the most recently available and comprehensive data. The estimates vary by region, hour of the day, and year to year over the last decade. We identify an important and somewhat counterintuitive finding: While average emissions have decreased substantially over the last decade (28% nationally), marginal emissions have increased (7% nationally). We show that underlying these trends is primarily a shift toward greater reliance on coal to satisfy marginal electricity use. We apply our estimates to an analysis of the Biden administration's target of having electric vehicles (EVs) make up 50% of new vehicle purchases by 2030. We find that, without significant and concurrent changes to the electricity sector, the increase in electricity emissions is likely to offset more than half of the emission reductions from having fewer gasoline-powered vehicles on the road. Moreover, using average rather than marginal emissions to predict the impacts significantly overestimates the emission benefits. Overall, we find that the promise of EVs for reducing emissions depends, to a large degree, on complementary policies that decarbonize both average and marginal emissions in the electricity sector.
RESUMO
Climate change necessitates a global effort to reduce greenhouse gas emissions while adapting to increased climate risks. This broader climate transition will involve large-scale global interventions including renewable energy deployment, coastal protection and retreat, and enhanced space cooling, all of which will result in CO2 emissions from energy and materials use. Yet, the magnitude of the emissions embedded in these interventions remains unconstrained, opening the potential for underaccounting of emissions and conflicts or synergies between mitigation and adaptation goals. Here, we use a suite of models to estimate the CO2 emissions embedded in the broader climate transition. For a gradual decarbonization pathway limiting warming to 2 °C, selected adaptation-related interventions will emit â¼1.3 GtCO2 through 2100, while emissions from energy used to deploy renewable capacity are much larger at â¼95 GtCO2. Together, these emissions are equivalent to over 2 y of current global emissions and 8.3% of the remaining carbon budget for 2 °C. Total embedded transition emissions are reduced by â¼80% to 21.2 GtCO2 under a rapid pathway limiting warming to 1.5 °C. However, they roughly double to 185 GtCO2 under a delayed pathway consistent with current policies (2.7 °C warming by 2100), mainly because a slower transition relies more on fossil fuel energy. Our results provide a holistic assessment of carbon emissions from the transition itself and suggest that these emissions can be minimized through more ambitious energy decarbonization. We argue that the emissions from mitigation, but likely much less so from adaptation, are of sufficient magnitude to merit greater consideration in climate science and policy.
Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/análise , Mudança Climática , Aclimatação , CarbonoRESUMO
SignificanceAgricultural systems are already major forces of ammonia pollution and environmental degradation. How agricultural ammonia emissions affect the spatio-temporal patterns of nitrogen deposition and where to target future mitigation efforts, remains poorly understood. We develop a substantially complete and coherent agricultural ammonia emissions dataset in nearly recent four decades, and evaluate the relative role of reduced nitrogen in total nitrogen deposition in a spatially explicit way. Global reduced nitrogen deposition has grown rapidly, and will occupy a greater dominant position in total nitrogen deposition without future ammonia regulations. Recognition of agricultural ammonia emissions on nitrogen deposition is critical to formulate effective policies to address ammonia related environmental challenges and protect ecosystems from excessive nitrogen inputs.
Assuntos
Poluentes Atmosféricos , Amônia , Agricultura , Poluentes Atmosféricos/análise , Amônia/análise , Ecossistema , Monitoramento Ambiental , Poluição Ambiental , Nitrogênio/análiseRESUMO
Constraining the climate crisis requires urgent action to reduce anthropogenic emissions while simultaneously removing carbon dioxide from the atmosphere. Improved information about the maximum magnitude and spatial distribution of opportunities for additional land-based removals of CO2 is needed to guide on-the-ground decision-making about where to implement climate change mitigation strategies. Here, we present a globally consistent spatial dataset (approximately 500-m resolution) of current, potential, and unrealized potential carbon storage in woody plant biomass and soil organic matter. We also provide a framework for prioritizing actions related to the restoration, management, and maintenance of woody carbon stocks and associated soils. By comparing current to potential carbon storage, while excluding areas critical to food production and human habitation, we find 287 petagrams (PgC) of unrealized potential storage opportunity, of which 78% (224 PgC) is in biomass and 22% (63 PgC) is in soil. Improved management of existing forests may offer nearly three-fourths (206 PgC) of the total unrealized potential, with the majority (71%) concentrated in tropical ecosystems. However, climate change is a source of considerable uncertainty. While additional research is needed to understand the impact of natural disturbances and biophysical feedbacks, we project that the potential for additional carbon storage in woody biomass will increase (+17%) by 2050 despite projected decreases (−12%) in the tropics. Our results establish an absolute reference point and conceptual framework for national and jurisdictional prioritization of locations and actions to increase land-based carbon storage.
Assuntos
Carbono , Ecossistema , Sequestro de Carbono , Clima , SoloRESUMO
The Renewable Fuel Standard (RFS) specifies the use of biofuels in the United States and thereby guides nearly half of all global biofuel production, yet outcomes of this keystone climate and environmental regulation remain unclear. Here we combine econometric analyses, land use observations, and biophysical models to estimate the realized effects of the RFS in aggregate and down to the scale of individual agricultural fields across the United States. We find that the RFS increased corn prices by 30% and the prices of other crops by 20%, which, in turn, expanded US corn cultivation by 2.8 Mha (8.7%) and total cropland by 2.1 Mha (2.4%) in the years following policy enactment (2008 to 2016). These changes increased annual nationwide fertilizer use by 3 to 8%, increased water quality degradants by 3 to 5%, and caused enough domestic land use change emissions such that the carbon intensity of corn ethanol produced under the RFS is no less than gasoline and likely at least 24% higher. These tradeoffs must be weighed alongside the benefits of biofuels as decision-makers consider the future of renewable energy policies and the potential for fuels like corn ethanol to meet climate mitigation goals.
RESUMO
Lung cancer, a highly prevalent and lethal form of cancer, is often associated with oxidative stress. Photodynamic therapy (PDT) has emerged as a promising alternative therapeutic tool in cancer treatments, but its efficacy is closely correlated to the photosensitizers generating reactive oxygen species (ROS) and the antioxidant capacity of tumor cells. In particular, glutathione (GSH) can reduce the ROS and thus compromise PDT efficacy. In this study, a GSH-responsive near-infrared photosensitizer (TBPPN) based on aggregation-induced emission for real-time monitoring of GSH levels and enhanced PDT for lung cancer treatment is developed. The strategic design of TBPPN, consisting of a donor-acceptor structure and incorporation of dinitrobenzene, enables dual functionality by not only the fluorescence being activated by GSH but also depleting GSH to enhance the cytotoxic effect of PDT. TBPPN demonstrates synergistic PDT efficacy in vitro against A549 lung cancer cells by specifically targeting different cellular compartments and depleting intracellular GSH. In vivo studies further confirm that TBPPN can effectively inhibit tumor growth in a mouse model with lung cancer, highlighting its potential as an integrated agent for the diagnosis and treatment of lung cancer. This approach enhances the effectiveness of PDT for lung cancer and deserves further exploration of its potential for clinical application.