Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 691
Filtrar
1.
Trends Biochem Sci ; 46(11): 931-943, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34294544

RESUMO

Naturally occurring DNA, RNA, and proteins predominantly exist in only one enantiomeric form (homochirality). Advances in biotechnology and chemical synthesis allow the production of the respective alternate enantiomeric form, enabling access to mirror-image versions of these natural biopolymers. Exploiting the unique properties of such mirror molecules has already led to many applications, such as biostable and nonimmunogenic therapeutics or sensors. However, a 'roadblock' for unlocking the mirror world is the lack of biological systems capable of synthesizing critical building blocks including mirror oligonucleotides and oligopeptides to reducing cost and improve purity. Here, we provide an overview of the current progress, applications, and challenges of the molecular mirror world by identifying milestones towards mirroring life.


Assuntos
Proteínas , RNA , DNA , RNA/química , Estereoisomerismo
2.
Small ; : e2404536, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045909

RESUMO

Understanding the function of a biomolecule hinges on its 3D conformation or secondary structure. Chirally sensitive, optically active techniques based on the differential absorption of UV-vis circularly polarized light excel at rapid characterisation of secondary structures. However, Raman spectroscopy, a powerful method for determining the structure of simple molecules, has limited capacity for structural analysis of biomolecules because of intrinsically weak optical activity, necessitating millimolar (mM) sample quantities. A breakthrough is presented for utilising Raman spectroscopy in ultrasensitive biomolecular conformation detection, surpassing conventional Raman optical activity by 15 orders of magnitude. This strategy combines chiral plasmonic metasurfaces with achiral molecular Raman reporters and enables the detection of different conformations (α-helix and random coil) of a model peptide (poly-L/D-lysine) at the ≤attomole level (monolayer). This exceptional sensitivity stems from the ability to detect local, molecular-scale changes in the electromagnetic (EM) environment of a chiral nanocavity induced by the presence of biomolecules using molecular Raman reporters. Further signal enhancement is achieved by incorporating achiral Au nanoparticles. The introduction of the nanoparticles creates highly localized regions of extreme optical chirality. This approach, which exploits Raman, a generic phenomenon, paves the way for next-generation technologies for the ultrasensitive detection of diverse biomolecular structures.

3.
Chemistry ; 30(34): e202401091, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38625048

RESUMO

Chiral Metal-Organic Frameworks (CMOFs) is a kind of material with great application value in recent years. Formed by the coordination of metal ions or metal clusters with organic ligands. It has ordered and adjustable pores, multi-dimensional network structure, large specific surface area and excellent adsorption properties. This material structure combines the properties of metal-organic frameworks (MOFs) with the chiral properties of chiral molecules. It has great advantages in catalysis, adsorption, separation and other fields. Therefore, it has a wide range of applications in chemistry, biology, medicine and materials science. In this paper, various synthesis strategies and preparation methods of chiral metal-organic frameworks are reviewed from different perspectives, and the advantages of each method are analyzed. In addition, the applications of chiral metal-organic framework materials in enantiomer recognition and separation, circular polarization luminescence and asymmetric catalysis are systematically summarized, and the corresponding mechanisms are discussed. Finally, the challenges and prospects of the development of chiral metal-organic frame materials are analyzed in detail.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38662093

RESUMO

Ketamine has demonstrated rapid and sustained antidepressant effects, marking its emergence as an innovative treatment of depression. Despite the growing number of preclinical and clinical studies exploring the antidepressant effects of ketamine and its enantiomers, a comprehensive bibliometric analysis in this field has yet to be conducted. This study employs bibliometric methods and visualization tools to examine the literature and identify key topics related to the antidepressant effects of ketamine and its enantiomers. We sourced publications on the antidepressant effects of ketamine and its enantiomers from the Web of Science Core Collection (WOSCC) database, covering the period from 2000 to 2023. Tools such as VOSviewer, CiteSpace and the R package "bibliometrix" were utilized for visual analysis. The study included 4,274 publications, with a notable increase in publications peaking in 2022. Co-occurrence analysis highlighted two primary research focal points: the efficacy and safety of ketamine and its enantiomers in treating depression, and the mechanisms behind their antidepressant effects. In conclusion, this analysis revealed a significant increase in research on the antidepressant effects of ketamine and its enantiomers over the past two decades, leading to the approval of esketamine nasal spray for treatment-resistant depression. The rapid antidepressant effects of ketamine have spurred further studies into its mechanisms of action and the search for new antidepressants with fewer side effects.

5.
Appl Microbiol Biotechnol ; 108(1): 403, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954014

RESUMO

2-Keto-3-deoxy-galactonate (KDGal) serves as a pivotal metabolic intermediate within both the fungal D-galacturonate pathway, which is integral to pectin catabolism, and the bacterial DeLey-Doudoroff pathway for D-galactose catabolism. The presence of KDGal enantiomers, L-KDGal and D-KDGal, varies across these pathways. Fungal pathways generate L-KDGal through the reduction and dehydration of D-galacturonate, whereas bacterial pathways produce D-KDGal through the oxidation and dehydration of D-galactose. Two distinct catabolic routes further metabolize KDGal: a nonphosphorolytic pathway that employs aldolase and a phosphorolytic pathway involving kinase and aldolase. Recent findings have revealed that L-KDGal, identified in the bacterial catabolism of 3,6-anhydro-L-galactose, a major component of red seaweeds, is also catabolized by Escherichia coli, which is traditionally known to be catabolized by specific fungal species, such as Trichoderma reesei. Furthermore, the potential industrial applications of KDGal and its derivatives, such as pyruvate and D- and L-glyceraldehyde, are underscored by their significant biological functions. This review comprehensively outlines the catabolism of L-KDGal and D-KDGal across different biological systems, highlights stereospecific methods for discriminating between enantiomers, and explores industrial application prospects for producing KDGal enantiomers. KEY POINTS: • KDGal is a metabolic intermediate in fungal and bacterial pathways • Stereospecific enzymes can be used to identify the enantiomeric nature of KDGal • KDGal can be used to induce pectin catabolism or produce functional materials.


Assuntos
Redes e Vias Metabólicas , Açúcares Ácidos , Açúcares Ácidos/metabolismo , Galactose/metabolismo , Galactose/análogos & derivados , Fungos/metabolismo , Fungos/enzimologia , Bactérias/metabolismo , Bactérias/enzimologia , Escherichia coli/metabolismo , Escherichia coli/genética , Estereoisomerismo
6.
Appl Microbiol Biotechnol ; 108(1): 50, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183482

RESUMO

Germacrene D, a sesquiterpenoid compound found mainly in plant essential oils at a low level as (+) and/or (-) enantiomeric forms, is an ingredient for the fragrance industry, but a process for the sustainable supply of enantiopure germacrene D is not yet established. Here, we demonstrate metabolic engineering in yeast (Saccharomyces cerevisiae) achieving biosynthesis of enantiopure germacrene D at a high titer. To boost farnesyl pyrophosphate (FPP) flux for high-level germacrene D biosynthesis, a background yeast chassis (CENses5C) was developed by genomic integration of the expression cassettes for eight ergosterol pathway enzymes that sequentially converted acetyl-CoA to FPP and by replacing squalene synthase promoter with a copper-repressible promoter, which restricted FPP flux to the competing pathway. Galactose-induced expression of codon-optimized plant germacrene D synthases led to 13-30 fold higher titers of (+) or (-)-germacrene D in CENses5C than the parent strain CEN.PK2.1C. Furthermore, genomic integration of germacrene D synthases in GAL80, LPP1 and rDNA loci generated CENses8(+D) and CENses8(-D) strains, which produced 41.36 µg/ml and 728.87 µg/ml of (+) and (-)-germacrene D, respectively, without galactose supplementation. Moreover, coupling of mitochondrial citrate pool to the cytosolic acetyl-CoA, by expressing a codon-optimized ATP-citrate lyase of oleaginous yeast, resulted in 137.71 µg/ml and 815.81 µg/ml of (+) or (-)-germacrene D in CENses8(+D)* and CENses8(-D)* strains, which were 67-120 fold higher titers than in CEN.PK2.1C. In fed-batch fermentation, CENses8(+D)* and CENses8(-D)* produced 290.28 µg/ml and 2519.46 µg/ml (+) and (-)-germacrene D, respectively, the highest titers in shake-flask fermentation achieved so far. KEY POINTS: • Engineered S. cerevisiae produced enantiopure (+) and (-)-germacrene D at high titers • Engineered strain produced up to 120-fold higher germacrene D than the parental strain • Highest titers of enantiopure (+) and (-)-germacrene D achieved so far in shake-flask.


Assuntos
Galactose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Acetilcoenzima A , Códon
7.
Chirality ; 36(2): e23638, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384151

RESUMO

Chiral pesticides have the special chiral structures, so enantioselective biological effects are usually observed in living organisms. Current study used paclobutrazol as a case study and explored the enantioselective degradation and oxidative stress effect on wheat. The results demonstrated that the degradation of R-paclobutrazol was faster than S-paclobutrazol significantly and improved the content of MDA and O2 - in wheat plants, which proved that the R-paclobutrazol induced oxidative damage in wheat, showing selective biological effects, and S-paclobutrazol was friendly to wheat. This study provided a theoretical basis for the selective activity of chiral pesticides and the development of chiral pesticide monomers.


Assuntos
Praguicidas , Triazóis , Triticum , Triticum/metabolismo , Estereoisomerismo , Praguicidas/química , Estresse Oxidativo
8.
Chirality ; 36(1): e23628, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926465

RESUMO

The chiral media is crucial to the chiral recognition and separation of enantiomers. In this study, we report the preparation of novel chiral carbon nanoparticles (CCNPs) via surface passivation using glucose as the carbon source and S-(-)-α-methylbenzylamine as the chiral ligand. The structures of the obtained CCNPs are characterized via FT-IR, Raman spectroscopy, DLS, XPS, XRD, TEM, and zeta potential analysis. These CCNPs could be employed as the chiral adsorbent and used for the enantioselective adsorption of the ibuprofen enantiomers. The results demonstrated that the CCNPs could selectively adsorb R-enantiomer from ibuprofen racemate solution and give an enantiomeric excess (e.e.) of about 50% under an optimal adsorption condition. Moreover, the regeneration efficiency of the CCNPs remained above e.e. of 43% after the fifth cycle. The present work confirmed that the prepared CCNPs show great potential in the enantioselective separation of ibuprofen racemate.


Assuntos
Ibuprofeno , Nanopartículas , Estereoisomerismo , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Carbono
9.
Chirality ; 36(8): e23704, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39034302

RESUMO

In order to improve and replace the enantiomer method outlined in the olodaterol hydrochloride draft monograph (From the European Pharmacopoeia forum), one new, simple, and fast enantioselective normal phase high-performance liquid chromatography chiral method was developed on polysaccharide-based Chiral MX (2) (4.6 × 250 mm, 5 µm) column. n-Hexane, ethanol, and diethylamine in the ratio of 40:60:0.1 (V/V/V) were selected as mobile phase at a flow rate of 0.8 mL/min, and the detection was performed on a photodiode array detector at 225 nm with 5 µL injection volume. The column temperature was set at 40°C for better peak shape and sensitivity. The analysis time can be shortened to 15 min, whereas the resolution between enantiomer and olodaterol was found to be even more than 10.0, which was far better than that obtained with the reported method in this draft monograph. The developed chiral method was validated in accordance with ICH Q2 (R1), including specificity, LOD&LOQ, precision, linearity, accuracy, and robustness. Thereby, the proposed method was demonstrated to be suitable for the determination of enantiomer in olodaterol hydrochloride bulk drug and drug product. Besides, the thermodynamic parameters were evaluated on the basis of Van't Hoff plots that was used to explain correlative chiral recognition mechanisms with the chiral stationary phase.


Assuntos
Benzoxazinas , Termodinâmica , Estereoisomerismo , Benzoxazinas/química , Benzoxazinas/análise , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Limite de Detecção
10.
Chirality ; 36(2): e23636, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384152

RESUMO

(S)-Lifitegrast (LFT) is the novel integrin antagonist, approved by the Food and drug administration, to treat signs and symptoms of dry eye disease. Synthesis of racemic LFT, preparative and analytical enantiomer separation, and chiral interconversion studies are lacking in the literature. Hence, in our study, synthesis of LFT racemate, chiral preparative purification procedure of enantiomer, and comprehensive analytical advancements are focused on rapid enantioselective separation and pH-dependent chiral interconversion studies. The synthesis of LFT racemate employed 2-amino-3-(3-(methylsulfonyl)phenyl)propanoic acid hydrochloride and 2-(benzofuran-6-carbonyl)-5,7-dichloro-1,2,3,4-tetrahydroisoquinoline-6-carbonyl chloride as starting materials. (R)-LFT was isolated from the racemate by preparative chiral HPLC and characterized using Q-TOF, FT-IR, NMR spectroscopy, and chiral HPLC. The purity of (R)-LFT was determined to have an enantiomeric excess of 99.12%. A precise, accurate, rapid HPLC-DAD enantioselective analytical method has been developed on Chiralpak IC [tris(3,5-dichloro phenyl carbamate) immobilized on cellulose] using water and methanol as mobile phase. The chiral interconversion study reveals 0.22% and 0.21% of interconversion of (S)-LFT into (R)-LFT at 80°C in pH 7.4 and 9.5 buffers, respectively, on the 24th day. An alternative route to enantioselective synthesis of LFT enantiomers by chromatographic separation is proposed. The validated enantioselective HPLC method will help to test the regular quality control samples.


Assuntos
Fenilalanina/análogos & derivados , Polissacarídeos , Sulfonas , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química , Concentração de Íons de Hidrogênio
11.
Arch Toxicol ; 98(3): 791-806, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267661

RESUMO

We herein present for the first time the phosphylated (*) tetrapeptide (TP)-adduct GlyGluSer198*Ala generated from butyrylcholinesterase (BChE) with proteinase K excellently suited for the verification of exposure to toxic organophosphorus nerve agents (OPNA). Verification requires bioanalytical methods mandatory for toxicological and legal reasons. OPNA react with BChE by phosphonylation of the active site serine residue (Ser198) forming one of the major target protein adducts for verification. After its enzymatic cleavage with pepsin, the nonapeptide (NP) PheGlyGluSer*AlaGlyAlaAlaSer is typically produced as biomarker. Usually OPNA occur as racemic mixtures of phosphonic acid derivatives with the stereocenter at the phosphorus atom, e.g. (±)-VX. Both enantiomers react with BChE, but the adducted NP does not allow their chromatographic distinction. In contrast, the herein introduced TP-adducts appeared as two peaks when using a stationary reversed phase (1.8 µm) in micro-liquid chromatography-electrospray ionisation tandem-mass spectrometry (µLC-ESI MS/MS) analysis. These two peaks represent diastereomers of the (+)- and (-)-OPNA adducted to the peptide that comprises chiral L-amino acids exclusively. Concentration- and time-dependent effects of adduct formation with (±)-VX and its pure enantiomers (+)- and (-)-VX as well as with (±)-cyclosarin (GF) were investigated in detail characterising enantioselective adduct formation, stability, ageing and spontaneous reactivation. The method was also successfully applied to samples from a real case of pesticide poisoning as well as to samples of biomedical proficiency tests provided by the Organisation for the Prohibition of Chemical Weapons.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Compostos Organotiofosforados , Butirilcolinesterase/metabolismo , Espectrometria de Massas em Tandem/métodos , Compostos Organotiofosforados/toxicidade , Compostos Organofosforados/toxicidade , Agentes Neurotóxicos/toxicidade , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/química
12.
Solid State Nucl Magn Reson ; 131: 101925, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582022

RESUMO

Under normal experimental conditions in an achiral environment, NMR spectra of enantiomers have chemical shifts and J couplings which are not differentiable. In this work, the reproducibility of spectral intensities for pairs of amino acid enantiomers, as well as factors influencing these intensities, is assessed using 13C and 15N cross-polarization magic-angle spinning (CP/MAS) NMR spectroscopy. Prompted by a recent literature debate over a possible influence of the chirality-induced spin selectivity (CISS) effect on spectral intensities obtained in CP/MAS NMR experiments carried out on enantiomers, a number of control experiments were performed with recycle delays of at least 5T1. These included the analysis of proton-decoupled Bloch decay solid-state NMR spectra as well as solution NMR spectra where the cross polarization process is absent. Bloch decay and CP/MAS NMR spectra yield the same relative intensities for pairs of enantiomers while solution NMR spectra provide relative intensities closest to unity. Differences of plus-or-minus a few percent in the D/L spectral intensity ratios observed in all solid-state NMR experiments are due to sample preparation (i.e., grinding, particle size, partial amorphization) and limitations on sample purity. As previously described in the literature, more drastic intensity differences on the order of 50% are easily created by ball milling the samples. Finally, apodization is shown to invert the apparent D/L ratio in low signal-to-noise 15N CP/MAS NMR spectra of aspartic acid enantiomers. In summary, no spectral intensity differences attributable to enantiomerism are identified.

13.
Mar Drugs ; 22(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667798

RESUMO

Three pairs of enantiomers (1-3)-the new 12R-aloesol (1a) and two new fatty acids (2 and 3)-and one new natural product (4) together three known compounds (5-7) were isolated from a coral-reef-derived Streptomyces sp. SCSIO 66814. Their structures were determined through extensive spectroscopic analysis, chiral analysis, and single-crystal X-ray diffraction data. Compounds 2 and 3 were presumed to be intermediates for further generating homononactic acid (5) and nonactic acid, and the latter two molecules were able to act as precursors to form macrotetrolides with remarkable biological activity. The isolation of related precursors, compounds 2-5, provided more evidence to support the proposal of a plausible biosynthetic pathway for nonactic acid and its homologs. Additionally, (+)-1 exhibited a weak activity against DPPH radicals.


Assuntos
Antozoários , Cromonas , Streptomyces , Streptomyces/metabolismo , Streptomyces/química , Cromonas/química , Cromonas/isolamento & purificação , Cromonas/farmacologia , Estereoisomerismo , Antozoários/química , Animais , Cristalografia por Raios X , Ácidos Graxos/química , Ácidos Graxos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/isolamento & purificação , Estrutura Molecular
14.
J Asian Nat Prod Res ; 26(1): 139-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050667

RESUMO

Four new 2-pyrone derivatives, two pairs of enantiomers, (±)-egypyrone A [(±)-1] and (±)-egypyrone B [(±)-2], together with a new benzophenone analogue, orbiophenone B (3), were isolated from the endophytic fungus Penicillium egyptiacum. The enantiomeric mixtures (±)-1 and (±)-2 were separated through chiral HPLC, respectively. Their structures were elucidated by extensive analysis of spectroscopic data and the absolute configuration was determined by comparing the optical rotation of structurally similar molecule. Subsequently, the cytotoxic activities of (±)-1, (±)-2, and 3 against the U87 cell line were tested and no activity was observed at a concentration of 10 µM.


Assuntos
Penicillium , Penicillium/química , Fungos , Pironas/química , Estrutura Molecular
15.
J Asian Nat Prod Res ; : 1-10, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594843

RESUMO

Two pairs of cyclohexene amide alkaloid enantiomers were obtained from the root of Piper nigrum. Their plane structures were established by NMR and HRESIMS spectra. The absolute configurations of 1a/1b and 2a/2b were determined by the comparison between the experimental and calculated electronic circular dichroism (ECD) spectra. All identified compounds were tested for inhibitory effects on acetylcholinesterase (AChE) in vitro. Notably, compounds 1b and 2b showed strong inhibitory effects on AChE and the interaction between proteins and compounds was discussed by molecular docking studies.

16.
Nano Lett ; 23(12): 5794-5801, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37310087

RESUMO

The potential of chiral metal-organic frameworks (MOFs) for circularly polarized (CP) optics has been largely unexplored. Herein, we have successfully deposited monolithic and highly oriented chiral MOF thin films prepared by a layer-by-layer method (referred to as surface-coordinated MOF thin films, SURMOF) to fabricate CP photodetection devices and distinguish enantiomers. The helicity-sensitive absorption induced by a pair of enantiopure oriented SURMOF was found to be excellent, with an anisotropy factor reaching 0.41. Moreover, the chiral SURMOFs exhibited a pronounced difference in the uptake of the l- and d-tryptophan enantiomers. To demonstrate the potential of these novel MOF thin films for chirality analysis, we fabricated a portable sensor device that allows for chiral recognition by monitoring the photocurrent signals. Our findings not only introduce a new concept of using chiral building blocks for realizing direct CP photodetectors but also provide a blueprint for novel devices in chiral optics.

17.
Nano Lett ; 23(20): 9347-9352, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37792311

RESUMO

Nanoscopic observation of chiro-optical phenomena is essential in wide scientific areas but has measurement difficulties; hence, its physics is still unknown. To obtain a full understanding of the physics of chiro-optical systems and derive the full potentials, it is essential to perform an in situ observation of the chiro-optical effect from the individual parts because the macroscopic chiro-optical effect cannot be translated directly into microscopic effects. In the present study, we observed the chiro-optical responses at the nanoscale level by detecting the chiro-optical forces, which were generated by illumination of the material-probe system with circularly polarized light. The induced optical force was dependent on the handedness and wavelength of the incident circularly polarized light and was well correlated to the electromagnetically simulated differential intensity of the longitudinal electric field. Our results facilitate the clarification of chiro-optical phenomena at the nanoscale level and could innovate chiro-optical nanotechnologies.

18.
Environ Geochem Health ; 46(9): 317, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002095

RESUMO

Chiral pesticides account for about 40% of the total pesticides. In the process of using pesticides, it will inevitably flow into the surface water and even penetrate into the groundwater through surface runoff and other means, as a consequence, it affects the water environment. Although the enantiomers of chiral pesticides have the same physical and chemical properties, their distribution, ratio, metabolism, toxicity, etc. in the organism are often different, and sometimes even show completely opposite biological activities. In this article, the selective fate of different types of chiral pesticides such as organochlorine, organophosphorus, triazole, pyrethroid and other chiral pesticides in natural water bodies and sediments, acute toxicity to aquatic organisms, chronic toxicity and other aspects are summarized to further reflect the risks between the enantiomers of chiral pesticides to non-target organisms in the water environment. In this review, we hope to further explore its harm to human society through the study of the toxicity of chiral pesticide enantiomers, so as to provide data support and theoretical basis for the development and production of biochemical pesticides.


Assuntos
Praguicidas , Poluentes Químicos da Água , Praguicidas/toxicidade , Praguicidas/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Estereoisomerismo , Organismos Aquáticos/efeitos dos fármacos , Animais , Humanos
19.
Saudi Pharm J ; 32(2): 101934, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38223203

RESUMO

Purpose: To investigate the pharmacokinetics and tissue distribution of VGB racemate and its single enantiomers, and explore the potential of clinic development for single enantiomer S-VGB. Methods: In the pharmacokinetics study, male Sprague-Dawley rats were gavaged with VGB racemate or its single enantiomers dosing 50, 100 or 200 mg/kg, and the blood samples were collected during 12 h at regular intervals. In the experiment of tissue distribution, VGB and its single enantiomers were administered intravenously dosing 200 mg/kg, and the tissues including heart, liver, spleen, lung and kidney, eyes, hippocampus, and prefrontal cortex were separated at different times. The concentrations of R-VGB and S-VGB in the plasma and tissues were measured using HPLC. Results: Both S-VGB and R-VGB could be detected in the plasma of rats administered with VGB racemate, reaching Cmax at approximately 0.5 h with t1/2 2-3 h. There was no significant pharmacokinetic difference between the two enantiomers when VGB racemate was given 200 mg/kg and 100 mg/kg. However, when given at the dose of 50 mg/kg, S-VGB presented a shorter t1/2 and a higher Cl/F than R-VGB, indicating a faster metabolism of S-VGB. Furthermore, when single enantiomer was administered respectively, S-VGB presented a slower metabolism than R-VGB, as indicated by a longer t1/2 and MRT but a lower Cmax. Moreover, compared with the VGB racemate, the single enantiomers S-VGB and R-VGB had shorter t1/2 and MRT, higher Cmax and AUC/D, and lower Vz/F and Cl/F, indicating the stronger oral absorption and faster metabolism of single enantiomer. In addition, regardless of VGB racemate administration or single enantiomer administration, S-VGB and R-VGB had similar characteristics in tissue distribution, and the content of S-VGB in hippocampus, prefrontal cortex and liver was much higher than that of R-VGB. Conclusions: Although there is no transformation between S-VGB and R-VGB in vivo, those two enantiomers display certain disparities in the pharmacokinetics and tissue distribution, and interact with each other. These findings might be a possible interpretation for the pharmacological and toxic effects of VGB and a potential direction for the development and optimization of the single enantiomer S-VGB.

20.
Angew Chem Int Ed Engl ; : e202413983, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212256

RESUMO

DNA-based tension probes with precisely programmableforce response provide important insights into cellularmechanosensing. However, their degradability in cell culture limitstheir use for long-term imaging, for instance, when cells migrate,divide, and differentiate. This is a critical limitation for providinginsights into mechanobiology for these longer-term processes. Here,we present DNA-based tension probes that are entirely designedbased on the stereoisomer of biological D-DNA, i.e., L-DNA. Wedemonstrate that L-DNA tension probes are essentially indestructibleby nucleases and provide days-long imaging without significant lossin image quality. We also show their superiority already for shortimaging times commonly used for classical D-DNA tension probes.We showcase the potential of these resilient probes to image minutemovements, and for generating long term force maps of single cellsand of collectively migrating cell populations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa