Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 97(15): 5311-5318, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28485012

RESUMO

BACKGROUND: Fine-tuning production inputs such as seeding rate, nitrogen (N), and genotype may improve end-use quality of hard red winter wheat (Triticum aestivium L.) when growing conditions are unpredictable. Studies were conducted at the Agronomy Research Farm (ARF; Lincoln, NE, USA) and the High Plains Agricultural Laboratory (HPAL; Sidney, NE, USA) in 2014 and 2015 in Nebraska, USA, to determine the effects of genotype (6), environment (4), seeding rate (3), and flag leaf top-dressed N (0 and 34 kg N ha-1 ) on the end-use quality of winter wheat. RESULTS: End-use quality traits were influenced by environment, genotype, seeding rate, top-dressed N, and their interactions. Mixograph parameters had a strong correlation with grain volume weight and flour yield. Doubling the recommended seeding rate and N at the flag leaf stage increased grain protein content by 8.1% in 2014 and 1.5% in 2015 at ARF and 4.2% in 2014 and 8.4% in 2015 at HPAL. CONCLUSION: The key finding of this research is that increasing seeding rates up to double the current recommendations with N at the flag leaf stage improved most of the end-use quality traits. This will have a significant effect on the premium for protein a farmer could receive when marketing wheat. © 2017 Society of Chemical Industry.


Assuntos
Nitrogênio/análise , Triticum/química , Triticum/crescimento & desenvolvimento , Ecossistema , Meio Ambiente , Farinha/análise , Genótipo , Nebraska , Nitrogênio/metabolismo , Estações do Ano , Sementes/química , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Triticum/genética , Triticum/metabolismo
2.
G3 (Bethesda) ; 9(5): 1405-1427, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30804024

RESUMO

Improving the end-use quality traits is one of the primary objectives in wheat breeding programs. In the current study, a population of 127 recombinant inbred lines (RILs) derived from a cross between Glenn (PI-639273) and Traverse (PI-642780) was developed and used to identify quantitative trait loci (QTL) for 16 end-use quality traits in wheat. The phenotyping of these 16 traits was performed in nine environments in North Dakota, USA. The genotyping for the RIL population was conducted using the wheat Illumina iSelect 90K SNP assay. A high-density genetic linkage map consisting of 7,963 SNP markers identified a total of 76 additive QTL (A-QTL) and 73 digenic epistatic QTL (DE-QTL) associated with these traits. Overall, 12 stable major A-QTL and three stable DE-QTL were identified for these traits, suggesting that both A-QTL and DE-QTL played an important role in controlling end-use quality traits in wheat. The most significant A-QTL (AQ.MMLPT.ndsu.1B) was detected on chromosome 1B for mixograph middle line peak time. The AQ.MMLPT.ndsu.1B A-QTL was located very close to the position of the Glu-B1 gene encoding for a subunit of high molecular weight glutenin and explained up to 24.43% of phenotypic variation for mixograph MID line peak time. A total of 23 co-localized QTL loci were detected, suggesting the possibility of the simultaneous improvement of the end-use quality traits through selection procedures in wheat breeding programs. Overall, the information provided in this study could be used in marker-assisted selection to increase selection efficiency and to improve the end-use quality in wheat.


Assuntos
Locos de Características Quantitativas , Característica Quantitativa Herdável , Triticum/genética , Mapeamento Cromossômico , Estudos de Associação Genética , Ligação Genética , Genótipo , Endogamia , Padrões de Herança , Fenótipo , Melhoramento Vegetal , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa