Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Gastroenterology ; 166(3): 483-495, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38096956

RESUMO

BACKGROUND & AIMS: Dysbiosis of the gut microbiota is considered a key contributor to inflammatory bowel disease (IBD) etiology. Here, we investigated potential associations between microbiota composition and the outcomes to biological therapies. METHODS: The study prospectively recruited 296 patients with active IBD (203 with Crohn's disease, 93 with ulcerative colitis) initiating biological therapy. Quantitative microbiome profiles of pretreatment and posttreatment fecal samples were obtained combining flow cytometry with 16S amplicon sequencing. Therapeutic response was assessed by endoscopy, patient-reported outcomes, and changes in fecal calprotectin. The effect of therapy on microbiome variation was evaluated using constrained ordination methods. Prediction of therapy outcome was performed using logistic regression with 5-fold cross-validation. RESULTS: At baseline, 65.9% of patients carried the dysbiotic Bacteroides2 (Bact2) enterotype, with a significantly higher prevalence among patients with ileal involvement (76.8%). Microbiome variation was associated with the choice of biological therapy rather than with therapeutic outcome. Only anti-tumor necrosis factor-α treatment resulted in a microbiome shift away from Bact2, concomitant with an increase in microbial load and butyrogen abundances and a decrease in potentially opportunistic Veillonella. Remission rates for patients hosting Bact2 at baseline were significantly higher with anti-tumor necrosis factor-α than with vedolizumab (65.1% vs 35.2%). A prediction model, based on anthropometrics and clinical data, stool features (microbial load, moisture, and calprotectin), and Bact2 detection predicted treatment outcome with 73.9% accuracy for specific biological therapies. CONCLUSION: Fecal characterization based on microbial load, moisture content, calprotectin concentration, and enterotyping may aid in the therapeutic choice of biological therapy in IBD.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Disbiose , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Fezes , Terapia Biológica , Fator de Necrose Tumoral alfa , Complexo Antígeno L1 Leucocitário , Necrose
2.
Proteomics ; : e2400002, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044605

RESUMO

Intestinal lavage fluid (IVF) containing the mucosa-associated microbiota instead of fecal samples was used to study the gut microbiota using different omics approaches. Focusing on the 63 IVF samples collected from healthy and hepatitis B virus-liver disease (HBV-LD), a question is prompted whether omics features could be extracted to distinguish these samples. The IVF-related microbiota derived from the omics data was classified into two enterotype sets, whereas the genomics-based enterotypes were poorly overlapped with the proteomics-based one in either distribution of microbiota or of IVFs. There is lack of molecular features in these enterotypes to specifically recognize healthy or HBV-LD. Running machine learning against the omics data sought the appropriate models to discriminate the healthy and HBV-LD IVFs based on selected genes or proteins. Although a single omics dataset is basically workable in such discrimination, integration of the two datasets enhances discrimination efficiency. The protein features with higher frequencies in the models are further compared between healthy and HBV-LD based on their abundance, bringing about three potential protein biomarkers. This study highlights that integration of metaomics data is beneficial for a molecular discriminator of healthy and HBV-LD, and reveals the IVF samples are valuable for microbiome in a small cohort.

3.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396863

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is characterized by hepatic fat accumulation by metabolic dysfunction. The rising prevalence of MAFLD, especially among Asians, may be associated with changes in gut microbiota. We investigated gut microbiota characteristics and potential mechanisms leading to MAFLD development according to enterotypes. Case-control studies examining the gut microbiota composition between MAFLD and non-MAFLD participants were searched in public databases until July 2023. Gut microbiota was categorized into two enterotypes by principal component analysis. According to the enterotypes, LEfSe, ALDEx2, XGBoost, and DCiPatho were utilized to identify differential abundances and pathogenic microbes in the gut between the MAFLD and non-MAFLD groups. We analyzed microbial community networks with the SprCC module and predicted microbial functions. In the Prevotella enterotype (ET-P), 98.6% of Asians and 65.1% of Caucasians were associated with MAFLD (p = 0.049). MAFLD incidence was correlated with enterotype, age, obesity, and ethnicity (p < 0.05). Asian MAFLD patients exhibited decreased Firmicutes and Akkermansia muciniphila and increased Bacteroidetes and P. copri. The pathogenicity scores were 0.006 for A. muciniphila and 0.868 for P. copri. The Asian MAFLD group showed decreased stability and complexity in the gut microbiota network. Metagenome function analysis revealed higher fructose metabolism and lipopolysaccharide (LPS) biosynthesis and lower animal proteins and α-linolenic acid metabolism in Asians with MAFLD compared with the non-MAFLD group. LPS biosynthesis was positively correlated with P. copri (p < 0.05). In conclusion, P. copri emerged as a potential microbial biomarker for MAFLD. These findings enhance our understanding of the pathological mechanisms of MAFLD mediated through the gut microbiota, providing insights for future interventions.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Lipopolissacarídeos , Disbiose , Prevotella/genética
4.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674145

RESUMO

Beneficial properties of lactic acid bacteria have been known long ago, but particular interest in probiotics has arisen in the last two decades due to the understanding of the important role of intestinal microflora in human life. Thus, the ability of probiotics to support healthy homeostasis of gut microbiomes has received particular attention. Here, we evaluated the effect of a probiotic consisting of Bifidobacterium longum and Lacticaseibacillus paracasei on the gut microbiome of male rats, assessed their persistence in the fecal biota, and compared probiotic-mediated changes in vitro and in vivo. As expected, microbiomes of two enterotypes were identified in the feces of 21 animals, and it turned out that even a single dose of the probiotic altered the microbial composition. Upon repeated administration, the E1 biota temporarily acquired properties of the E2 type. Being highly sensitive to the intervention of probiotic bacteria at the phylum and genus levels, the fecal microbiomes retained the identity of their enterotypes when transferred to a medium optimized for gut bacteria. For the E2 biota, even similarities between probiotic-mediated reactions in vitro and in vivo were detected. Therefore, fecal-derived microbial communities are proposed as model consortia to optimize the response of resident bacteria to various agents.


Assuntos
Fezes , Microbioma Gastrointestinal , Probióticos , Animais , Masculino , Ratos , Fezes/microbiologia , Bifidobacterium longum , RNA Ribossômico 16S/genética
5.
Rheumatology (Oxford) ; 62(3): 1087-1096, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946529

RESUMO

OBJECTIVE: The most used drug for the treatment of rheumatoid arthritis (RA) remains methotrexate (MTX). Unfortunately, up to 50% of patients do not achieve a clinically adequate outcome. Here we study whether the gut microbiota patterns can aid in the prediction of MTX efficacy for RA. METHOD: To dissect gut microbiome profiles of RA patients (n = 145), 16S rRNA gene sequencing was performed. Dirichlet multinomial mixture (DMM) clustering was used to identify enterotypes at genus level. The relationships between enterotypes and clinical measures (such as lymphocyte subsets and cytokines detected by flow cytometry) were explored. Then, enterotype stability was evaluated by the stratification of the RA patient cohort (n = 66) in Shanghai, China, using the same method. Finally, the enterotype-based gut microbial human index classifier was applied to another independent RA patient cohort (n = 27) to identify the factors associated with MTX clinical response. RESULTS: Our analysis revealed that the RA patients always displayed two different dysbiotic microbiota patterns: RA E1 comprised predominantly Prevotella and RA E2 comprised predominantly Bacteroides. Among all of the lymphocyte subsets and cytokines, only the number of CD8+ T cells showed a significant difference between RA E1 and RA E2. These results were validated in the RA patient cohort in Shanghai, China. Significant associations of RA E1 with clinical response to subsequent MTX treatment were confirmed by another independent RA patient cohort. CONCLUSION: Together, the enterotype-based gut microbial human index (EGMI) classifier was useful to precisely and effectively identify enterotypes of individual RA patients, which could effectively evaluate MTX clinical responses.


Assuntos
Artrite Reumatoide , Microbioma Gastrointestinal , Humanos , Metotrexato/uso terapêutico , RNA Ribossômico 16S/genética , China , Artrite Reumatoide/tratamento farmacológico , Citocinas
6.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686135

RESUMO

This study aimed to investigate alterations in the gut microbiota of patients with depression compared to those in the gut microbiota of healthy individuals based on enterotypes as a classification framework. Fecal bacteria FASTA/Q samples from 333 Chinese participants, including 107 healthy individuals (Healthy group) and 226 individuals suffering from depression (DP group), were analyzed. The participants were classified into three enterotypes: Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Prevotellaceae (ET-P). An α-diversity analysis revealed no significant differences in microbial diversity between the Healthy and DP groups across all enterotypes. However, there were substantial differences in the gut microbial composition for ß-diversity, particularly within ET-L and ET-B. The DP group within ET-B exhibited a higher abundance of Proteobacteria, while a linear discriminant analysis (LDA) of the DP group showed an increased relative abundance of specific genera, such as Mediterraneibacter, Blautia, Bifidobacterium, and Clostridium. Within ET-L, Bifidobacterium, Blautia, Clostridium, Collinsella, and Corynebacterium were significantly higher in the DP group in the LDA and ANOVA-like differential expression-2 (ALDEx2) analyses. At the species level of ET-L, Blautia luti, Blautia provencensis, Blautia glucerasea, Clostridium innocuum, Clostridium porci, and Clostridium leptum were the primary bacteria in the DP group identified using the machine learning approach. A network analysis revealed a more tightly interconnected microbial community within ET-L than within ET-B. This suggests a potentially stronger functional relationship among the gut microbiota in ET-L. The metabolic pathways related to glucose metabolism, tryptophan and tyrosine metabolism, neurotransmitter metabolism, and immune-related functions showed strong negative associations with depression, particularly within ET-L. These findings provide insights into the gut-brain axis and its role in the pathogenesis of depression, thus contributing to our understanding of the underlying mechanisms in Asian individuals. Further research is warranted to explain the mechanistic links between gut microbiota and depression and to explore their potential for use in precision medicine interventions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Depressão , Povo Asiático , Eixo Encéfalo-Intestino , Bifidobacterium
7.
Artigo em Inglês | MEDLINE | ID: mdl-37899210

RESUMO

BACKGROUND: Zinc absorption and competition among gut bacteria have been reported in animal studies. Thus, gut bacteria may modify zinc availability in humans. Metabolism of intestinal bacteria is known to be necessary for the activation of several phytoconstituents in the body. For example, equol, a typical substance of soybean isoflavone, is produced by intestinal bacteria metabolizing daidzein and the enterotype is one of distinct ones among Japanese population. The difference in the intestinal microflora can modify the bioavailability of zinc. In this study, we examined urinary zinc concentrations in adult female equol producers (EQPs). METHODS: Urine samples from women participating in health examinations in Miyagi, Okinawa, Kyoto, Kochi, and Hokkaido prefectures were used; from total 17,484 samples, approximately 25 samples were randomly selected for each age group from 30 to 60 years per region (subsample: n = 520), and 520 samples with available urinary zinc concentration (determined by flame atomic absorption analysis) and enterobacterial type were analyzed. EQP was defined as log(equol/daidzein) ≥ -1.42, and urinary concentrations were corrected for creatinine concentration. Urinary zinc concentrations were compared by Student's t-test and multiple regression analyses. RESULTS: The geometric mean urinary zinc concentration (µg/g-Cr) was lower in EQP than in non-EQP (p = 0.0136 by t-test after logarithm transformation). On the other hand, there was no correlation between urinary zinc concentration with daidzein (r = -0.0495, P = 0.436) and equol concentrations (r = -0.0721, P = 0.256). There was a significant negative association between urinary zinc concentration and EQP (ß = -0.392, P = 0.0311) after adjusting with other potential confounding variables, such as daidzein intake. CONCLUSIONS: The results suggest that gut bacteria that produce equol are involved in the metabolism of zinc. Based on previous studies, the bacteria that affect the metabolism of both substances are thought to be Enterococcus. Future studies are expected to identify specific intestinal bacteria for zinc availability and understand individual differences in the effects of micronutrients.


Assuntos
Equol , Microbioma Gastrointestinal , Isoflavonas , Zinco , Adulto , Animais , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Transversais , População do Leste Asiático , Equol/metabolismo , Isoflavonas/metabolismo , Zinco/metabolismo , Zinco/urina , Microbioma Gastrointestinal/fisiologia , Distribuição Aleatória
8.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33579027

RESUMO

Mothers confer natural passive immunization to their infants through the transplacental pathway during the gestation period. The objective of the present study was to establish at birth the maternal and cord plasma concentration and relationship of immunoglobulins (Igs), cytokines (CKs), and adipokines. In addition, the impact of the maternal microbiota and diet was explored. The plasma profile of these components was different between mothers and babies, with the levels of many CKs, IgM, IgG2a, IgE, IgA, and leptin significantly higher in mothers than in the cord sample. Moreover, the total Igs, all IgG subtypes, IgE, and the Th1/Th2 ratio positively correlated in the mother-infant pair. Maternal dietary components such as monounsaturated fatty acids-polyunsaturated fatty acids and fiber were positively associated with some immune factors such as IgA in cord samples. The microbiota composition clustering also influenced the plasma profile of some factors (i.e., many CKs, some Ig, and adiponectin). In conclusion, we have established the concentration of these immunomodulatory factors in the maternal-neonatal pair at birth, some positive associations, and the influence of maternal diet and the microbiota composition, suggesting that the immune status during pregnancy, in terms of CKs and Igs levels, can influence the immune status of the infant at birth.


Assuntos
Citocinas/sangue , Dieta , Sangue Fetal , Imunoglobulinas/sangue , Microbiota , Adipocinas/sangue , Adipocinas/imunologia , Citocinas/imunologia , Fezes/microbiologia , Feminino , Sangue Fetal/química , Sangue Fetal/imunologia , Humanos , Imunidade , Imunoglobulinas/imunologia , Recém-Nascido , Masculino , Estado Nutricional , Gravidez
9.
J Surg Res ; 254: 340-347, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32526503

RESUMO

BACKGROUND: The assessment of fecal volatile organic compounds (VOCs) has emerged as a noninvasive biomarker in many different pathologies. Before assessing whether VOCs can be used to diagnose intestinal diseases, including necrotizing enterocolitis (NEC), it is necessary to measure the impact of variable infant demographic factors on VOC signals. MATERIALS AND METHODS: Stool samples were collected from term infants at four hospitals in a large metropolitan area. Samples were heated, and fecal VOCs assessed by the Cyranose 320 Electronic Nose. Twenty-eight sensors were combined into an overall smellprint and were also assessed individually. 16s rRNA gene sequencing was used to categorize infant microbiomes. Smellprints were correlated to feeding type (formula versus breastmilk), sex, hospital of birth, and microbial enterotype. Overall smellprints were assessed by PERMANOVA with Euclidean distances, and individual sensors from each smellprint were assessed by Mann-Whitney U-tests. P < 0.05 was significant. RESULTS: Overall smellprints were significantly different according to diet. Individual sensors were significantly different according to sex and hospital of birth, but overall smellprints were not significantly different. Using a decision tree model, two individual sensors could reliably predict microbial enterotype. CONCLUSIONS: Assessment of fecal VOCs with an electronic nose is impacted by several demographic characteristics of infants and can be used to predict microbiome composition. Further studies are needed to design appropriate algorithms that are able to predict NEC based on fecal VOC profiles.


Assuntos
Fezes/química , Microbioma Gastrointestinal , Compostos Orgânicos Voláteis/análise , Fezes/microbiologia , Feminino , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos
10.
BMC Genomics ; 20(Suppl 2): 191, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30967109

RESUMO

BACKGROUND: One of the major challenges in microbial studies is detecting associations between microbial communities and a specific disease. A specialized feature of microbiome count data is that intestinal bacterial communities form clusters called as "enterotype", which are characterized by differences in specific bacterial taxa, making it difficult to analyze these data under health and disease conditions. Traditional probabilistic modeling cannot distinguish between the bacterial differences derived from enterotype and those related to a specific disease. RESULTS: We propose a new probabilistic model, named as ENIGMA (Enterotype-like uNIGram mixture model for Microbial Association analysis), which can be used to address these problems. ENIGMA enabled simultaneous estimation of enterotype-like clusters characterized by the abundances of signature bacterial genera and the parameters of environmental effects associated with the disease. CONCLUSION: In the simulation study, we evaluated the accuracy of parameter estimation. Furthermore, by analyzing the real-world data, we detected the bacteria related to Parkinson's disease. ENIGMA is implemented in R and is available from GitHub ( https://github.com/abikoushi/enigma ).


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal , Interações Microbianas , Modelos Biológicos , Doença de Parkinson/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles , Humanos , Metagenômica , Microbiota , Doença de Parkinson/genética , RNA Ribossômico 16S
11.
J Nutr ; 149(12): 2174-2181, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504699

RESUMO

BACKGROUND: The key to effective weight loss may be to match diet and gut microbes, since recent studies have found that subjects with high Prevotella abundances in their gut microbiota lose more weight on diets rich in fiber than subjects with low Prevotella abundances. OBJECTIVES: We reanalyzed a 6-wk, parallel, randomized trial to investigate difference in body weight changes when participants, stratified by fecal microbiota composition, consumed ad libitum a whole-grain (WG) or a refined-wheat (RW) diet. METHODS: We stratified 46 (19 men, 27 women; ages 30-65 y) healthy, overweight adults by baseline Prevotella-to-Bacteroides ratios and Prevotella abundances. Subjects with no Prevotella were analyzed separately (n = 24). Compared with the RW diet (mean = 221 g/d), the WG diet (mean = 228 g/d) had a higher fiber content (33 g/d compared with 23 g/d). Linear mixed models and correlations were applied to link 6-wk changes in body weights and metabolic and microbiota markers, according to Prevotella groups and diets. RESULTS: The Prevotella abundances correlated inversely with weight changes (r = -0.34; P = 0.043). Consequently, subjects with high Prevotella abundances (n = 15) spontaneously lost 1.80 kg (95% CI: -3.23, -0.37 kg; P = 0.013) more on the WG diet than on the RW diet, whereas those with low Prevotella abundances (n = 31) were weight stable (-0.22 kg; 95% CI: -1.40, 0.96 kg; P = 0.72). Thus, the mean difference between the Prevotella groups was 2.02 kg (95% CI: -3.87, -0.17 kg; P = 0.032). Subjects with no Prevotella lost 1.59 kg (95% CI: -2.65, -0.52 kg; P = 0.004) more on the WG diet than on the RW diet. No 6-wk changes in appetite sensations, glucose metabolisms, or fecal SCFAs were associated with the Prevotella groups. CONCLUSIONS: Healthy, overweight adults with high Prevotella abundances lost more weight than subjects with low Prevotella abundances when consuming a diet rich in WG and fiber ad libitum for 6 wk. This further supports enterotypes as a potential biomarker in personalized nutrition for obesity management. This t rial was registered at clinicaltrials.gov as NCT02358122.


Assuntos
Sobrepeso/dietoterapia , Prevotella/isolamento & purificação , Redução de Peso , Grãos Integrais , Adulto , Idoso , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
BMC Vet Res ; 15(1): 172, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31126262

RESUMO

BACKGROUND: The gut microbiota impacts on a range of host biological processes, and the imbalances in its composition are associated with pathology. Though the understanding of contribution of the many factors, e.g. gender, diet and age, in the development of gut microbiota has been well established, the dynamic changes of the phylogenetic composition and the interaction networks along with the age remain unclear in pigs. RESULTS: Here we applied 16S ribosomal RNA gene sequencing, enterotype-like clustering (Classification of the gut microbiome into distinct types) and phylogenetic co-occurrence network to explore the dynamic changes of pig gut microbiome following the ages with a successive investigation at four ages in a cohort of 953 pigs. We found that Firmicutes and Bacteroidetes are two predominant phyla throughout the experimental period. The richness of gut microbiota was significantly increased from 25 to 240 days of age. Principal coordinates analysis showed a clear difference in the gut microbial community compositions between pre-weaning piglets and the pigs at the other three age groups. The gut microbiota of pre-weaning piglets was clearly classified into two enterotypes, which were dominated by Fusobacterium and p-75-a5, respectively. However, Prevotella and Treponema were the main drivers of the enterotypes for pigs at the age of 80, 120 and 240 days. Besides the piglets, even some adult pigs switched putative enterotypes between ages. We confirmed that the topological features of phylogenetic co-occurrence networks, including scale, stability and complexity were increased along with the age. The biological significance for modules in the network of piglets were mainly associated with the utilization of simple carbohydrate and lactose, whereas the sub-networks identified at the ages of 80, 120 and 240 days may be involved in the digestion of complex dietary polysaccharide. The modules related to the metabolism of protein and amino acids could be identified in the networks at 120 and 240 days. This dynamic change of the functional capacities of gut microbiome was further supported by functional prediction analysis. CONCLUSIONS: The present study provided meaningful biological insights into the age-based dynamic shifts of ecological community of porcine gut microbiota.


Assuntos
Fatores Etários , Bactérias/classificação , Microbioma Gastrointestinal/fisiologia , Sus scrofa/microbiologia , Animais , Bactérias/genética , Técnicas de Tipagem Bacteriana , Feminino , Masculino , Metagenômica , Filogenia , RNA Ribossômico 16S/genética
13.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29685983

RESUMO

The morbidity and mortality resulting from acute gastroenteritis and associated chronic sequelae represent a substantial burden on health care systems worldwide. Few studies have investigated changes in the gut microbiome following an episode of acute gastroenteritis. By using nondirected 16S rRNA gene amplicon sequencing, the fecal microbiota of 475 patients with acute gastroenteritis was examined. Patient age was correlated with the overall microbial composition, with a decrease in the abundance of Faecalibacterium being observed in older patients. We observed the emergence of a potential Escherichia-Shigella-dominated enterotype in a subset of patients, and this enterotype was predicted to be more proinflammatory than the other common enterotypes, with the latter being dominated by Bacteroides or Faecalibacterium The increased abundance of Escherichia-Shigella did not appear to be associated with infection with an agent of a similar sequence similarity. Stool color and consistency were associated with the diversity and composition of the microbiome, with deviations from the norm (not brown and solid) showing increases in the abundances of bacteria such as Escherichia-Shigella and Veillonella Analysis of enriched outliers within the data identified a range of genera previously associated with gastrointestinal diseases, including Treponema, Proteus, Capnocytophaga, Arcobacter, Campylobacter, Haemophilus, Aeromonas, and Pseudomonas Our data represent the first in-depth analysis of gut microbiota in acute gastroenteritis. Phenotypic changes in stool color and consistency were associated with specific changes in the microbiota. Enriched bacterial taxa were detected in cases where no causative agent was identified by using routine diagnostic tests, suggesting that in the future, microbiome analyses may be utilized to improve diagnostics.


Assuntos
Bactérias/isolamento & purificação , Gastroenterite/etiologia , Microbioma Gastrointestinal , Doença Aguda , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Criança , Pré-Escolar , Fezes , Gastroenterite/microbiologia , Humanos , Lactente , Pessoa de Meia-Idade , Adulto Jovem
14.
BMC Microbiol ; 18(1): 215, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30547751

RESUMO

BACKGROUND: There are growing evidences showing that gut microbiota should play an important role in host appetite and feeding behavior. However, what kind of microbe(s) and how they affect porcine appetite remain unknown. RESULTS: In this study, 280 commercial Duroc pigs were raised in a testing station with the circadian feeding behavior records for a continuous period of 30-100 kg. We first analyzed the influences of host gender and genetics in porcine average daily feed intake (ADFI), but no significant effect was observed. We found that the Prevotella-predominant enterotype had a higher ADFI than the Treponema enterotype-like group. Furthermore, 12 out of the 18 OTUs positively associated with the ADFI were annotated to Prevotella, and Prevotella was the hub bacteria in the co-abundance network. These results suggested that Prevotella might be a keystone bacterial taxon for increasing host feed intake. However, some bacteria producing short-chain fatty acids (SCFAs) and lactic acid (e.g. Ruminococcaceae and Lactobacillus) showed negative associations with the ADFI. Predicted function capacity analysis showed that the genes for amino acid biosynthesis had significantly different enrichment between pigs with high and low ADFI. CONCLUSIONS: The present study provided important information on the profound effect of gut microbiota on porcine appetite and feeding behavior. This will profit us to regulate porcine appetite through modulating the gut microbiome in the pig industry.


Assuntos
Apetite , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Suínos/microbiologia , Suínos/fisiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Comportamento Alimentar , Feminino , Masculino , Filogenia
15.
Wien Med Wochenschr ; 168(3-4): 62-66, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28887729

RESUMO

Psychological comorbidity is highly present in irritable bowel syndrome (IBS). Recent research points to a role of intestinal microbiota in visceral hypersensitivity, anxiety, and depression. Increased disease reactivity to psychological stress has been described too. A few clinical studies have attempted to identify features of dysbiosis in IBS. While animal studies revealed strong associations between stress and gut microbiota, studies in humans are rare. This review covers the most important studies on intestinal microbial correlates of psychological and clinical features in IBS, including stress, anxiety, and depression.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Estresse Psicológico , Animais , Disbiose , Humanos , Intestinos/microbiologia , Síndrome do Intestino Irritável/microbiologia
16.
BMC Genomics ; 18(Suppl 1): 932, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28198673

RESUMO

BACKGROUND: Gastrointestinal microbiota, particularly gut microbiota, is associated with human health. The biodiversity of gut microbiota is affected by ethnicities and environmental factors such as dietary habits or medicine intake, and three enterotypes of the human gut microbiome were announced in 2011. These enterotypes are not significantly correlated with gender, age, or body weight but are influenced by long-term dietary habits. However, to date, only two enterotypes (predominantly consisting of Bacteroides and Prevotella) have shown these characteristics in previous research; the third enterotype remains ambiguous. Understanding the enterotypes can improve the knowledge of the relationship between microbiota and human health. RESULTS: We obtained 181 human fecal samples from adults in Taiwan. Microbiota compositions were analyzed using next-generation sequencing (NGS) technology, which is a culture-independent method of constructing microbial community profiles by sequencing 16S ribosomal DNA (rDNA). In these samples, 17,675,898 sequencing reads were sequenced, and on average, 215 operational taxonomic units (OTUs) were identified for each sample. In this study, the major bacteria in the enterotypes identified from the fecal samples were Bacteroides, Prevotella, and Enterobacteriaceae, and their correlation with dietary habits was confirmed. A microbial interaction network in the gut was observed on the basis of the amount of short-chain fatty acids, pH value of the intestine, and composition of the bacterial community (enterotypes). Finally, a decision tree was derived to provide a predictive model for the three enterotypes. The accuracies of this model in training and independent testing sets were 97.2 and 84.0%, respectively. CONCLUSIONS: We used NGS technology to characterize the microbiota and constructed a predictive model. The most significant finding was that Enterobacteriaceae, the predominant subtype, could be a new subtype of enterotypes in the Asian population.


Assuntos
Biodiversidade , Microbioma Gastrointestinal , Metagenoma , Metagenômica , Adulto , Análise por Conglomerados , Árvores de Decisões , Fezes/microbiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metagenômica/métodos , Fenótipo , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Anaerobe ; 48: 206-214, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28882708

RESUMO

Isomaltooligosaccharides (IMOs) are enzymatically synthesized oligosaccharides that have potential prebiotic effects. Five IMO substrates with 2-16° of polymerization (DP) were studied for their fermentation capacities using human microbiomes in an in vitro batch fermentation model. Eleven fecal slurries belonging to three enterotypes, including the Bacteroides-, Prevotella- and Mixed-type, exhibited different degradation rates for long chain IMOs (DP 7 to 16). In contrast, the degradation rates for short chain IMOs (DP 2 to 6) were not affected by enterotypes. Both 16S rRNA gene sequencing and quantitative PCR demonstrated that, after fermentation, the Bifidobacterium growth with IMOs was primarily detected in the Bacteroides- and Mixed-type (non-Prevotella-type), and to a lesser degree in the Prevotella-type. Interestingly, the Prevotella-type microbiome had higher levels of propionic acid and butyric acid production than non-Prevotella-type microbiome after IMOs fermentation. Moreover, principal coordinate analysis (PCoA) of both denaturing gradient gel electrophoresis (DGGE) profiling and 16S rRNA sequencing data demonstrated that the microbiome community compositions were separately clustered based on IMO chain length, suggesting significant impact of DP on the bacterial community structure. The current results clearly demonstrated that the IMO chain length could modulate the structure and composition of the human colonic microbiome. Different responses to short and long chain IMOs were observed from three human enterotypes, indicating that IMOs may be used as therapeutic substrates for directly altering human colonic bacteria.


Assuntos
Fezes/microbiologia , Fermentação , Microbioma Gastrointestinal , Oligonucleotídeos/biossíntese , Bacteroides/genética , Bacteroides/metabolismo , Técnicas de Cultura Celular por Lotes , Bifidobacterium/genética , Bifidobacterium/metabolismo , Biodiversidade , Cromatografia em Camada Fina , Humanos
18.
Front Microbiol ; 15: 1412991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974029

RESUMO

Age and gender have been recognized as two pivotal covariates affecting the composition of the gut microbiota. However, their mediated variations in microbiota seem to be inconsistent across different countries and races. In this study, 613 individuals, whom we referred to as the "healthy" population, were selected from 1,018 volunteers through rigorous selection using 16S rRNA sequencing. Three enterotypes were identified, namely, Escherichia-Shigella, mixture (Bacteroides and Faecalibacterium), and Prevotella. Moreover, 11 covariates that explain the differences in microbiota were determined, with age being the predominant factor. Furthermore, age-related differences in alpha diversity, beta diversity, and core genera were observed in our cohort. Remarkably, after adjusting for 10 covariates other than age, abundant genera that differed between age groups were demonstrated. In contrast, minimal differences in alpha diversity, beta diversity, and differentially abundant genera were observed between male and female individuals. Furthermore, we also demonstrated the age trajectories of several well-known beneficial genera, lipopolysaccharide (LPS)-producing genera, and short-chain fatty acids (SCFAs)-producing genera. Overall, our study further elucidated the effects mediated by age and gender on microbiota differences, which are of significant importance for a comprehensive understanding of the gut microbiome spectrum in healthy individuals.

19.
Toxicology ; 504: 153790, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552894

RESUMO

Polychlorinated biphenyls (PCBs) are persistent organic pollutants that pose a current ecosystem and human health concern. PCB exposure impacts the gut microbiome in animal models, suggesting a mechanistic link between PCB exposure and adverse health outcomes. The presence and absence of the microbiome and exposure to PCBs independently affect the lipid composition in the liver, which in turn affects the PCB disposition in target tissues, such as the liver. Here, we investigated microbiome × subacute PCB effects on the hepatic lipid composition of conventional and germ-free female mice exposed to 0, 6, or 30 mg/kg body weight of an environmental PCB mixture in sterile corn oil once daily for 3 consecutive days. Hepatic triacylglyceride and polar lipid levels were quantified using mass spectrometric methods following the subacute PCB exposure. The lipidomic analysis revealed no PCB effect on the hepatic levels. No microbiome effect was observed on levels of triacylglyceride and most polar lipid classes. The total hepatic levels of phosphatidylcholine (PC) and ether-phosphatidylcholine (ePC) lipids were lower in germ-free mice than the conventional mice from the same exposure group. Moreover, levels of several unsaturated PCs, such as PC(36:5) and PC(42:10), and ePCs, such as ePC(36:2) and ePC(4:2), were lower in germ-free than conventional female mice. Based on a KEGG pathway meta-analysis of RNA sequencing data, the ether lipid metabolism pathway is altered in the germ-free mouse liver. In contrast to the liver, extractable lipid levels, determined gravimetrically, differed in several tissues from naïve conventional vs. germ-free mice. Overall, microbiome × subacute PCB exposure effects on hepatic lipid composition are unlikely to affect PCB distribution into the mouse liver. Further studies are needed to assess how the different extractable lipid levels in other tissues alter PCB distribution in conventional vs. germ-free mice.


Assuntos
Vida Livre de Germes , Fígado , Fosfatidilcolinas , Bifenilos Policlorados , Animais , Bifenilos Policlorados/toxicidade , Fígado/metabolismo , Fígado/efeitos dos fármacos , Feminino , Fosfatidilcolinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal/efeitos dos fármacos , Lipidômica
20.
Food Res Int ; 192: 114852, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147529

RESUMO

Crohn's disease (CD) is a chronic and progressive inflammatory disease that can involve any part of the gastrointestinal tract. The protective role of dietary polyphenols has been documented in preclinical models of CD. Gut microbiota mediates the metabolism of polyphenols and affects their bioactivity and physiological functions. However, it remains elusive the capacity of microbial polyphenol metabolism in CD patients and healthy controls (HCs) along with its correlation with polyphenols intake and polyphenol-derived metabolites. Thus, we aimed to decode polyphenol metabolism in CD patients through aspects of diet, gut microbiota, and metabolites. Dietary intake analysis revealed that CD patients exhibited decreased intake of polyphenols. Using metagenomic data from two independent clinical cohorts (FAH-SYSU and PRISM), we quantified abundance of polyphenol degradation associated bacteria and functional genes in CD and HCs and observed a lower capacity of flavonoids degradation in gut microbiota residing in CD patients. Furthermore, through analysis of serum metabolites and enterotypes in participants of FAH-SYSU cohort, we observed that CD patients exhibited reduced levels of serum hippuric acid (HA), one of polyphenol-derived metabolites. HA level was higher in healthier enterotypes (characterized by dominance of Ruminococcaceae and Prevotellaceae, dominant by HCs) and positively correlated with multiple polyphenols intake and abundance of bacteria engaged in flavonoids degradation as well as short-chain fatty acid production, which could serve as a biomarker for effective polyphenol metabolism by the gut microbiota and a healthier gut microbial community structure. Overall, our findings provide a foundation for future work exploring the polyphenol-based or microbiota-targeted therapeutic strategies in CD.


Assuntos
Doença de Crohn , Dieta , Microbioma Gastrointestinal , Polifenóis , Humanos , Doença de Crohn/microbiologia , Doença de Crohn/metabolismo , Doença de Crohn/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Polifenóis/metabolismo , Feminino , Masculino , Adulto , Hipuratos/metabolismo , Pessoa de Meia-Idade , Adulto Jovem , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Fezes/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa