Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Annu Rev Pharmacol Toxicol ; 60: 637-659, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31580774

RESUMO

Research in the cannabinoid field, namely on phytocannabinoids, the endogenous cannabinoids anandamide and 2-arachidonoyl glycerol and their metabolizing and synthetic enzymes, the cannabinoid receptors, and anandamide-like cannabinoid compounds, has expanded tremendously over the last few years. Numerous endocannabinoid-like compounds have been discovered. The Cannabis plant constituent cannabidiol (CBD) was found to exert beneficial effects in many preclinical disease models ranging from epilepsy, cardiovascular disease, inflammation, and autoimmunity to neurodegenerative and kidney diseases and cancer. CBD was recently approved in the United States for the treatment of rare forms of childhood epilepsy. This has triggered the development of many CBD-based products for human use, often with overstated claims regarding their therapeutic effects. In this article, the recently published research on the chemistry and biological effects of plant cannabinoids (specifically CBD), endocannabinoids, certain long-chain fatty acid amides, and the variety of relevant receptors is critically reviewed.


Assuntos
Canabinoides/farmacologia , Dronabinol/farmacologia , Endocanabinoides/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Glicerídeos/metabolismo , Humanos , Alcamidas Poli-Insaturadas/metabolismo
2.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887239

RESUMO

Cannabis-based terpenes are believed to modulate physiological responses to disease and alter the efficacy of cannabinoids in the so-called "entourage effect". The monoterpene myrcene can reduce nociception produced by noxious thermal and mechanical stimuli as well as reducing acute inflammation. The current study examined the role of myrcene and cannabidiol (CBD) in controlling chronic joint inflammation and pain. Chronic arthritis was induced in male Wistar rats by intra-articular injection of Freund's complete adjuvant into the right knee. On days 7 and 21 after arthritis induction, joint pain (von Frey hair algesiometry), inflammation (intravital microscopy, laser speckle contrast analysis) and joint histopathology were assessed. Local application of myrcene (1 and 5 mg/kg s.c.) reduced joint pain and inflammation via a cannabinoid receptor mechanism. The combination of myrcene and CBD (200 µg) was not significantly different from myrcene alone. Repeated myrcene treatment had no effect on joint damage or inflammatory cytokine production. These data suggest that topical myrcene has the potential to reduce chronic arthritis pain and inflammation; however, it has no synergistic effect with CBD.


Assuntos
Artrite , Canabidiol , Cannabis , Dor Crônica , Alucinógenos , Monoterpenos Acíclicos , Alcenos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artralgia , Artrite/induzido quimicamente , Artrite/tratamento farmacológico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Dor Crônica/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Ratos , Ratos Wistar , Terpenos/farmacologia , Terpenos/uso terapêutico
3.
Molecules ; 27(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36296511

RESUMO

Differences between therapeutic effects of medical cannabis inflorescences and those of their extracts are generally attributed to the differences in administration form and in the resultant pharmacokinetics. We hypothesized that difference may further extend to the composition of the actually consumed drug. Cannabinoid and terpene contents were compared between commercial cannabis inflorescences (n = 19) and decarboxylated extracts (n = 12), and between inflorescences and decarboxylated extracts produced from them (n = 10). While cannabinoid content was preserved in the extracts, a significant loss of terpenes was evident, mainly in the more volatile monoterpenes and monoterpenoids (representing a loss of about 90%). This loss changes the total terpene content, the proportion of monoterpenes out of the total terpenes, and the monoterpene/cannabinoid ratio. Terpene deficiency might impair extracts' pharmacological efficacy and might contribute to the patients' preference to inflorescences-smoking. This argues against the validity of terms such as "whole plant" and "full spectrum" extracts and creates a misleading assumption that extracts represent the pharmacological profile of the sourced inflorescences. Furthermore, it reduces the diversity in extracts, such as loss of differences between sativa-type and indica-type. Enriching cannabis extracts with selected terpenes may provide a suitable solution, generating a safe, precise, and reproducible drug with tailored cannabinoid and terpene contents. Careful selection of terpenes to be added enables tailor-made extracts, adjusted for various medicinal aims and for different populations.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Maconha Medicinal , Humanos , Terpenos , Monoterpenos , Agonistas de Receptores de Canabinoides , Extratos Vegetais
4.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144771

RESUMO

Cannabis-infused product manufacturers often add terpenes to enhance flavor. Meanwhile, labeling requirements for these same products necessitate testing for residual solvent levels. We have found that heating terpene samples containing an oxygen or air atmosphere results in the detection of significantly higher levels of acetone when compared to the same compound in argon atmosphere using temperature regimes common to headspace autosampler routines. This formation was statistically significant (p = 0.05) for most of the predominant terpenes found in cannabis. The largest increase in acetone formation was seen for terpinolene which showed an 885% increase in oxygen atmosphere (4603.6 PPM) when compared to analysis under argon (519.9 PPM). Cannabinoids were shown to reduce this formation and explain why high levels of acetone are not reported in cannabis extracts, even though these can contain up to 40% terpenes.


Assuntos
Canabinoides , Cannabis , Acetona , Argônio , Artefatos , Canabinoides/análise , Oxigênio , Solventes , Terpenos/análise
5.
Molecules ; 26(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771097

RESUMO

Cannabis sativa L. crops have been traditionally exploited as sources of fibers, nutrients, and bioactive phytochemicals of medical interest. In the present study, two terpene-rich organic extracts, namely FOJ and FOS, obtained from Felina 32 hemp inflorescences collected in June and September, respectively, have been studied for their in vitro anticancer properties. Particularly, their cytotoxicity was evaluated in different cancer cell lines, and the possible entourage effect between nonintoxicating phytocannabinoids (cannabidiol and cannabichromene) and caryophyllane sesquiterpenes (ß-caryophyllene, ß-caryophyllene oxide and α-humulene), as identified at GC/MS analysis, was characterized. Modulation of cannabinoid CB1 and CB2 receptors was studied as a mechanistic hypothesis. Results highlighted marked cytotoxic effects of FOJ, FOS, and pure compounds in triple negative breast cancer MDA-MB-468 cells, likely mediated by a CB2 receptor activation. Cannabidiol was the main cytotoxic constituent, although low levels of caryophyllane sesquiterpenes and cannabichromene induced potentiating effects; the presence in the extracts of unknown antagonistic compounds has been highlighted too. These results suggest an interest in Felina 32 hemp inflorescences as a source of bioactive phytocomplexes with anticancer properties and strengthen the importance of considering the possible involvement of minor terpenes, such as caryophyllane sesquiterpenes, in the entourage effect of hemp-based extracts.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Inflorescência/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos Policíclicos/farmacologia , Antineoplásicos Fitogênicos/química , Cannabis/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Sesquiterpenos Monocíclicos/química , Sesquiterpenos Monocíclicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/química , Sesquiterpenos Policíclicos/química , Receptor CB2 de Canabinoide/metabolismo , Neoplasias de Mama Triplo Negativas
6.
Molecules ; 24(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438532

RESUMO

Mixtures of different Cannabis sativa phytocannabinoids are more active biologically than single phytocannabinoids. However, cannabis terpenoids as potential instigators of phytocannabinoid activity have not yet been explored in detail. Terpenoid groups were statistically co-related to certain cannabis strains rich in Δ9-tetrahydrocannabinolic acid (THCA) or cannabidiolic acid (CBDA), and their ability to enhance the activity of decarboxylase phytocannabinoids (i.e., THC or CBD) was determined. Analytical HPLC and GC/MS were used to identify and quantify the secondary metabolites in 17 strains of C. sativa, and correlations between cannabinoids and terpenoids in each strain were determined. Column separation was used to separate and collect the compounds, and cell viability assay was used to assess biological activity. We found that in "high THC" or "high CBD" strains, phytocannabinoids are produced alongside certain sets of terpenoids. Only co-related terpenoids enhanced the cytotoxic activity of phytocannabinoids on MDA-MB-231 and HCT-116 cell lines. This was found to be most effective in natural ratios found in extracts of cannabis inflorescence. The correlation in a particular strain between THCA or CBDA and a certain set of terpenoids, and the partial specificity in interaction may have influenced the cultivation of cannabis and may have implications for therapeutic treatments.


Assuntos
Canabinoides/farmacologia , Cannabis/química , Terpenos/farmacologia , Canabinoides/química , Carboxiliases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Células HCT116 , Humanos , Terpenos/química
7.
Plants (Basel) ; 13(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38931051

RESUMO

Cannabis sativa L. has been widely used by humans for centuries for various purposes, such as industrial, ceremonial, medicinal, and food. The bioactive components of Cannabis sativa L. can be classified into two main groups: cannabinoids and terpenes. These bioactive components of Cannabis sativa L. leaf and inflorescence extracts were analyzed. Mice were systemically administered 30 mg/kg of Cannabis sativa L. leaf extract 1 h before lipopolysaccharide (LPS) administration, and behavioral tests were performed. We conducted an investigation into the oxygen saturation, oxygen tension, and degranulation of mast cells (MCs) in the deep cervical lymph nodes (DCLNs). To evaluate the anti-inflammatory effect of Cannabis sativa L. extracts in BV2 microglial cells, we assessed nitrite production and the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. The main bioactive components of the Cannabis sativa L. extracts were THCA (a cannabinoid) and ß-caryophyllene (a terpene). Cannabis sativa L. leaf extract reduced the immobility time in the forced swimming test and increased sucrose preference in the LPS model, without affecting the total distance and time in the center in the open field test. Additionally, Cannabis sativa L. leaf extract improved oxygen levels and inhibited the degranulation of MCs in DCLNs. The Cannabis sativa L. extracts inhibited IL-1ß, IL-6, TNF-α, nitrite, iNOS, and COX-2 expression in BV2 microglia cells. The efficacy of Cannabis sativa L. extracts was suggested to be due to the entourage effect of various bioactive phytochemicals. Our findings indicate that these extracts have the potential to be used as effective treatments for a variety of diseases associated with acute inflammatory responses.

8.
Nat Prod Bioprospect ; 13(1): 19, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37284961

RESUMO

This study investigates the potential of cannabidiol (CBD), one major cannabinoid of the plant Cannabis sativa, alone and in combination with a terpene-enriched extract from Humulus lupulus ("Hops 1"), on the LPS-response of RAW 264.7 macrophages as an established in vitro model of inflammation. With the present study, we could support earlier findings of the anti-inflammatory potential of CBD, which showed a dose-dependent [0-5 µM] reduction in nitric oxide and tumor necrosis factor-alpha (TNF-α) released by LPS-stimulated RAW 264.7 macrophages. Moreover, we observed an additive anti-inflammatory effect after combined CBD [5 µM] and hops extract [40 µg/mL] treatment. The combination of CBD and Hops 1 showed effects in LPS-stimulated RAW 264.7 cells superior to the single substance treatments and akin to the control hydrocortisone. Furthermore, cellular CBD uptake increased dose-dependently in the presence of terpenes from Hops 1 extract. The anti-inflammatory effect of CBD and its cellular uptake positively correlated with terpene concentration, as indicated by comparison with a hemp extract containing both CBD and terpenes. These findings may contribute to the postulations for the so-called "entourage effect" between cannabinoids and terpenes and support the potential of CBD combined with phytomolecules from a non-cannabinoid source, such as hops, for the treatment of inflammatory diseases.

9.
J Cannabis Res ; 5(1): 4, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755303

RESUMO

BACKGROUND: Little is known about the frequency with which different combinations of phytochemicals (chemovars) arise in Cannabis flower or whether common chemovars are associated with distinct pharmacodynamics and patient health outcomes. This study created a clinically relevant, user-friendly, scalable chemovar indexing system summarizing primary cannabinoid and terpene contents and tested whether the most frequently consumed chemovars differ in their treatment effectiveness and experienced side effects. METHODS: Between 09/10/2016 and 03/11/2021, 204 people used the freely available, educational mobile software application, Releaf App, to record 6309 real-time consumption sessions using 633 distinct Cannabis flower products, unique at the user level, with terpene and cannabinoid potency information. The indexing system is based on retrospective data analysis of the products' primary and secondary terpene contents and tetrahydrocannabinol (THC) and cannabidiol (CBD) potencies and yielded a total of 478 distinct chemovars. Analyses of covariances (ANCOVAs) were used to compare symptom levels and side effects experienced across the five most common chemovars before and after cannabis consumption for app users overall and for those treating chronic pain and depression or anxiety. RESULTS: Examination of the five most frequently consumed chemovars showed significant differences in symptom treatment effectiveness for chronic pain and for depression and anxiety (ps < .001). While the effects varied in magnitude, the five chemovars were effective across conditions except for MC61 (mercene .01-0.49%/beta-caryophyllene .01 to 0.49%/THC 20-25%/CBD 0.01-1.0%), which exacerbated feelings of anxiety or depression. The chemovars also differed in their association with experiencing positive, negative, and context-specific side effects, with two chemovars, MC61 and MC62 (mercene .01-0.49%/beta-caryophyllene .01-0.49%/THC 20-25%/CBD 1-5%), generating two to three fewer positive side effects and as much as one more negative and two more context-specific side effects than the other three chemovars. CONCLUSIONS: The findings provide "proof-of-concept" that a simple, yet comprehensive chemovar indexing system can be used to identify systematic differences in clinically relevant patient health outcomes and other common experiences across Cannabis flower products, irrespective of the product's commercial or strain name. This study was limited by self-selection into cannabis and app use and a lack of user-specific information. Further research using this chemovar indexing system should assess how distinct combinations of phytochemicals interact with user-level characteristics to produce general and individualized Cannabis consumption experiences and health outcomes, ideally using randomized methods to assess differences in effects across chemovars.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37535820

RESUMO

Background: The concept of an "entourage" effect in the cannabis and cannabinoids' field was first introduced in the late 1990s, during a period when most research on medical cannabinoids focused on the effects of isolated cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabinol. Over the past decade, however, with the increased understanding of the endocannabinoid system, the discovery of other phytocannabinoids and their potential therapeutic uses, the term has gained widespread use in scientific reviews and marketing campaigns. Objective: Critically review the application of the term "entourage effect (EE)" in the literature and its endorsement by certain sectors of the cannabis market. Also, explore the perspectives for further interpretation and elaboration of the term based on current evidence, aiming to contribute to a more nuanced understanding of the concept and its implications for cannabinoid-based medicine. Methods: A comprehensive review of the literature was conducted to evaluate the current state of knowledge regarding the entourage effect. Relevant studies and scientific reviews were analyzed to assess the evidence of clinical efficacy and safety, as well as the regulation of cannabinoid-containing product production. Results: The EE is now recognized as a synergistic phenomenon in which multiple components of cannabis interact to modulate the therapeutic actions of the plant. However, the literature provides limited evidence to support it as a stable and predictable phenomenon. Hence, there is also limited evidence to support clinical efficacy, safety, and appropriate regulation for cannabinoid-containing products based on a "entourage" hypothesis. Conclusion: The EE has significant implications for the medical use of cannabinoid-containing products and their prescription. Nevertheless, a critical evaluation of the term's application is necessary. Further research and evidence are needed to establish the clinical efficacy, safety, and regulatory framework for these products. It's crucial that regulators, the pharmaceutical industry, the media, and health care providers exercise caution and avoid prematurely promoting the entourage effect hypothesis as a scientific proven phenomenon for cannabinoids and other cannabis-derived compound combinations.

11.
Curr Pharm Des ; 29(6): 394-406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36330630

RESUMO

Cannabis sativa L. has been used as medicine for thousands of years. Since the early identification of tetrahydrocannabinol (THC) in 1960, pharmacological activities were attributed to a group of unique structures named cannabinoids. For decades, research and development were applied to determine different cannabinoids and their medicinal properties. Nowadays there is evidence that the therapeutic benefits of the plant are based on the synergy of cannabinoids and other secondary metabolites such as terpenes and flavonoids. Differences between the medical performance of isolated compounds like cannabidiol (CBD) or THC and full-spectrum plant extracts are notable. Indeed, the superiority of the last one is provoked by the synergy between various different compounds. This improved medicinal effect is called the entourage effect. Chromatography has become the method of choice for the determination of cannabinoids, terpenes, and flavonoids, so it represents an excellent tool for a proper characterization of the plant and plant derived products. The objective of characterization relies not only in analyzing the fingerprint of cannabis, but also to identify different chemotypes for medical purposes. To understand the contributions of each natural product to this "entourage effect", this review presents an in-depth analysis of the utilization of High-performance liquid chromatography (HPLC), Gas chromatography (GC) and other methods for the analysis of phytocomponents of Cannabis sativa L. In this sense, a representative number of examples and advances made in the field together with limitations and future needs are provided. It can be concluded that standardized protocols and quality control policies and procedures are necessary for the comprehensive analysis of cannabis extracts and derivatives.


Assuntos
Canabidiol , Canabinoides , Cannabis , Humanos , Cannabis/química , Cannabis/metabolismo , Metabolismo Secundário , Canabinoides/análise , Canabinoides/química , Canabinoides/farmacologia , Canabidiol/farmacologia , Terpenos/análise , Flavonoides/metabolismo , Cromatografia Gasosa , Dronabinol/análise , Dronabinol/metabolismo , Dronabinol/farmacologia
12.
Biomedicines ; 11(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37626819

RESUMO

The 'entourage effect' term was originally coined in a pre-clinical study observing endogenous bio-inactive metabolites potentiating the activity of a bioactive endocannabinoid. As a hypothetical afterthought, this was proposed to hold general relevance to the usage of products based on Cannabis sativa L. The term was later juxtaposed to polypharmacy pertaining to full-spectrum medicinal Cannabis products exerting an overall higher effect than the single compounds. Since the emergence of the term, a discussion of its pharmacological foundation and relevance has been ongoing. Advocates suggest that the 'entourage effect' is the reason many patients experience an overall better effect from full-spectrum products. Critics state that the term is unfounded and used primarily for marketing purposes in the Cannabis industry. This scoping review aims to segregate the primary research claiming as well as disputing the existence of the 'entourage effect' from a pharmacological perspective. The literature on this topic is in its infancy. Existing pre-clinical and clinical studies are in general based on simplistic methodologies and show contradictory findings, with the clinical data mostly relying on anecdotal and real-world evidence. We propose that the 'entourage effect' is explained by traditional pharmacological terms pertaining to other plant-based medicinal products and polypharmacy in general (e.g., synergistic interactions and bioenhancement).

13.
Metabolites ; 12(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629962

RESUMO

Adelmidrol is a promising palmitoylethanolamide (PEA) analog which displayed up-and-coming anti-inflammatory properties in several inflammatory conditions. Recent studies demonstrated that Adelmidrol is an in vitro enhancer of PEA endogenous production, through the so called "entourage" effect. The present study investigated the ability of Adelmidrol (1 and 10 mg/Kg per os) to increase the endogenous level of PEA in the duodenum and colon of mice after 21-day oral administration in the presence and absence of PPAR-γ inhibitor (1 mg/kg). The level of PEA was analyzed by HPLC-MS. The expression of PEA-related enzymatic machinery was evaluated by western blot and RT-PCR analysis. Our findings demonstrated that Adelmidrol significantly increased PEA levels in the duodenum and colon in a dose/time-dependent manner. We also revealed that Adelmidrol up regulated the enzymatic machinery responsible for PEA metabolism and catabolism. Interestingly, the use of the selective irreversible PPAR-γ antagonist did not affect either PEA intestinal levels or expression/transcription of PEA metabolic enzymes following Adelmidrol administration. The "entourage effect" with Adelmidrol as an enhancer of PEA was thus PPAR-γ-independent. The findings suggest that Adelmidrol can maximize a PEA therapeutic-based approach in several intestinal morbidities.

14.
J Pain Res ; 15: 3493-3507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36394060

RESUMO

Background: The endocannabinoid 2-Arachidonyl glycerol (2-AG) exerts dose-related anti-nociceptive effects, which are potentiated by the related but inactive 2-palmitoyl glycerol (2-PG) and 2-linoleoyl glycerol (2-LG). This potentiation of analgesia and other in vivo measures was described as the "entourage effect". We investigated this effect on TRPV1 signalling in cultured dorsal root ganglion (DRG) nociceptors. Methods: Adult rat DRG neurons were cultured in medium containing NGF and GDNF at 37°C. 48 h later cultures were loaded with 2 µM Fura2AM for calcium imaging, and treated with 2-AG, 2-PG and 2-LG, individually or combined, for 5 min, followed by 1 µMol capsaicin. The amplitude and latency of capsaicin responses were measured (N=3-7 rats, controls N=16), and analysed. Results: In controls, 1 µMol capsaicin elicited immediate calcium influx in a subset of neurons, with average latency of 1.27 ± 0.2 s and amplitude of 0.15 ± 0.01 Units. 2-AG (10-100 µMol) elicited calcium influx in some neurons. In the presence of 2-AG (0.001-100 µMol), capsaicin responses were markedly delayed in 64% neurons by up to 320 s (P<0.001). 2-PG increased capsaicin response latency at 0.1 nMol-100 µMol (P<0.001), in 60% neurons, as did 2-LG at 0.1-100 µMol (P<0.001), in 76% neurons. Increased capsaicin response latency due to 2-AG and 2-PG was sensitive to the CB2 but not to the CB1 receptor antagonist. Combined application of 1 µMol 2-AG, 5 µMol 2-PG and 10 µMol 2-LG, also resulted in significantly increased capsaicin response latency up to 281.5 ± 41.5 s (P<0.001), in 96% neurons, that was partially restored by the CB2, but not the CB1 antagonist. Conclusion: 2-AG, 2-LG and 2-PG significantly delayed TRPV1 signalling in the majority of capsaicin-sensitive DRG neurons, that was markedly increased following combined application. Further studies of these endocannabinoids are required to identify the underlying mechanisms.

15.
Biomedicines ; 10(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36551898

RESUMO

Cannabis is a complex biosynthetic plant, with a long history of medicinal use. While cannabinoids have received the majority of the attention for their psychoactive and pharmacological activities, cannabis produces a diverse array of phytochemicals, such as terpenes. These compounds are known to play a role in the aroma and flavor of cannabis but are potent biologically active molecules that exert effects on infectious as well as chronic diseases. Furthermore, terpenes have the potential to play important roles, such as synergistic and/or entourage compounds that modulate the activity of the cannabinoids. This review highlights the diversity and bioactivities of terpenes in cannabis, especially minor or secondary terpenes that are less concentrated in cannabis on a by-mass basis. We also explore the question of the entourage effect in cannabis, which studies to date have supported or refuted the concept of synergy in cannabis, and where synergy experimentation is headed, to better understand the interplay between phytochemicals within Cannabis sativa L.

16.
Contemp Clin Trials ; 122: 106933, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36154908

RESUMO

BACKGROUND: The burden of illness for PTSD is staggering and confers significant interference in work, social functioning, as well as increased risk for other physical and mental health problems. Recently, there's been considerable attention paid to the potential therapeutic use of cannabidiol (CBD) products in the treatment of a variety of physical and mental health problems. The endocannabinoid system (ECS) is a logical therapeutic target for combating PTSD and other fear-based disorders given that cannabinoid receptors and other molecular mediators crucial for ECS signaling are richly expressed in a variety of brain regions that govern the regulation of learned fear and defensive behavior. METHODS: This is an 8-week single-site Phase II randomized double-blind placebo-controlled fixed dose clinical trial. Participants recruited throughout the United States (N = 150) meeting DSM-5 criteria for posttraumatic stress disorder are randomly assigned to one of three treatment arms: (a) 300 mg CBD Isolate; (b) 300 mg CBD Broad Spectrum; and (c) Placebo oil. The primary outcome is PTSD symptom severity as indexed by the PTSD Checklist for DSM-5 (PCL-5) assessed at post treatment (Week 9) and follow-up (Week 13). Secondary outcomes including patient-rated depression, overall disability, anxiety, quality of life, and alcohol use are assessed weekly throughout the trial. Safety and CBD adherence are assessed daily throughout the trial. CONCLUSION: This is the first placebo-controlled clinical trial investigating (a) CBD for the treatment of PTSD; and (b) the first study to test the relative efficacy of CBD Isolate vs CBD Broad Spectrum. Trial registration ClinicalTrials.gov registered (12/12/2019), trial identifier NCT04197102. PROTOCOL VERSION: issued 08/04/2022, protocol amendment number #2019-05-0123.


Assuntos
Canabidiol , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Canabidiol/uso terapêutico , Canabidiol/efeitos adversos , Método Duplo-Cego , Qualidade de Vida , Ansiedade , Resultado do Tratamento
17.
J Cannabis Res ; 4(1): 30, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689251

RESUMO

BACKGROUND: Purified cannabidiol (CBD), a non-psychoactive phytocannabinoid, has gained regulatory approval to treat intractable childhood epilepsies. Despite this, artisanal and commercial CBD-dominant hemp-based products continue to be used by epilepsy patients. Notably, the CBD doses used in these latter products are much lower than that found to be effective in reducing seizures in clinical trials with purified CBD. This might be because these CBD-dominant hemp products contain other bioactive compounds, including phytocannabinoids and terpenes, which may exert unique effects on epilepsy-relevant drug targets. Voltage-gated sodium (NaV) channels are vital for initiation of neuronal action potential propagation and genetic mutations in these channels result in epilepsy phenotypes. Recent studies suggest that NaV channels are inhibited by purified CBD. However, the effect of cannabis-based products on the function of NaV channels is unknown. METHODS: Using automated-planar patch-clamp technology, we profile a hemp-derived nutraceutical product (NP) against human NaV1.1-NaV1.8 expressed in mammalian cells to examine effects on the biophysical properties of channel conductance, steady-state fast inactivation and recovery from fast inactivation. RESULTS: NP modifies peak current amplitude of the NaV1.1-NaV1.7 subtypes and has variable effects on the biophysical properties for all channel subtypes tested. NP potently inhibits NaV channels revealing half-maximal inhibitory concentration (IC50) values of between 1.6 and 4.2 µg NP/mL. Purified CBD inhibits NaV1.1, NaV1.2, NaV1.6 and NaV1.7 to reveal IC50 values in the micromolar range. The CBD content of the product equates to IC50 values (93-245 nM), which are at least an order of magnitude lower than purified CBD. Unlike NP, hemp seed oil vehicle alone did not inhibit NaV channels, suggesting that the inhibitory effects of NP are independent of hemp seed oil. CONCLUSIONS: This CBD-dominant NP potently inhibits NaV channels. Future study of the individual elements of NP, including phytocannabinoids and terpenes, may reveal a potent individual component or that its components interact to modulate NaV channels.

18.
Cannabis Cannabinoid Res ; 6(6): 457-461, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33998883

RESUMO

Decades of research have discovered a broad variety of interesting in vitro activities resulting from cannabinoid exposure. Recent investigations of cannabidiol, however, present a potential explanation for these findings, which relies on the nonspecific effects of colloidal dispersions as opposed to those of specific drug interactions with macromolecular targets. This perspective raises the question of how false-positive assay results arising from such colloidal interference may permeate the field of cannabinoid pharmacology. It further suggests a direction for future research with the intent of identifying true pharmacological interactions that might be more efficiently developed into therapeutic targets.


Assuntos
Canabidiol , Canabinoides , Cannabis , Canabinoides/farmacologia
19.
Pain Manag ; 11(4): 395-403, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33703917

RESUMO

The recent legalization of medicinal cannabis in several jurisdictions has spurred the development of therapeutic formulations for chronic pain. Unlike pure delta-9-tetrahydrocannabinol (THC), full-spectrum products contain naturally occurring cannabinoids and have been reported to show improved efficacy or tolerability, attributed to synergy between cannabinoids and other components in the cannabis plant. Although 'synergy' indicates that two or more active compounds may produce an additive or combined effect greater than their individual analgesic effect, potentiation of the biological effect of a compound by related but inactive compounds, in combination, was termed the 'entourage effect'. Here, we review current evidence for potential synergistic and entourage effects of cannabinoids in pain relief. However, definitive clinical trials and in vitro functional studies are still required.


Lay abstract Cannabis-based medicines have been used for millennia, and recent studies have identified their main constituents for pain relief, delta-9-tetrahydrocannabinol and cannabidiol (CBD). However, cannabis contains hundreds of other potentially active compounds, and their combined effects may underlie the reported preference of some patients for cannabinoid extracts, rather than pure delta-9-tetrahydrocannabinol. Further, cannabis-based drugs may interact with endocannabinoids, which are produced within the body and are related to the compounds found in cannabis. We have reviewed the evidence for cannabinoids in combination, and with other drugs, for pain relief. Although there is some evidence for an advantage of combinations, basic research and clinical studies are still required.


Assuntos
Canabinoides , Cannabis , Dor Crônica , Maconha Medicinal , Analgésicos , Canabinoides/uso terapêutico , Dor Crônica/tratamento farmacológico , Humanos , Maconha Medicinal/uso terapêutico
20.
J Cannabis Res ; 3(1): 44, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598738

RESUMO

BACKGROUND: Whole-plant cannabis extracts are consumed by the public for medical and non-medical ("recreational") purposes but are poorly researched compared to pure cannabinoids. There is emerging evidence that cannabis extracts comprising complex mixtures of cannabinoids may have different biological effects from that of pure cannabinoids. In the current study, we sought to assess the effect of whole-plant cannabis extracts produced from different chemotypes of cannabis on the normal behavior of zebrafish larvae. METHODS: Three cannabis plant chemotypes were used in this study that contained either high amounts of THC, high amounts of CBD, high but equal amounts of THC and CBD, or low but equal amounts of THC and CBD. Following solvent extraction, liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) was performed for the detection and quantitation of target cannabinoids. Larval zebrafish behavioral models were subsequently used to assess the effect of the four different whole-plant cannabis extracts on the normal larval behavior using the DanioVision behavioral tracking systems and software. To compare, changes in the behavior activity levels for 30 min periods were compared to controls using 2-way ANOVA with multiple comparisons followed by a Bonferroni post hoc test. RESULTS: It was found that the whole-plant extracts that contained high levels of THC had similar effects on larval behavior, while the high CBD and low THC:CBD extracts produced distinct effects on normal larval behavior. Exposure of larvae to concentration-matched levels of THC and CBD found in the extracts revealed that a subset of the cannabis extracts tested had similar behavioral profiles to the pure cannabinoids while others did not. CONCLUSIONS: To our knowledge, this is the first study to test and compare the bioactivity of different whole-plant cannabis extracts in larval zebrafish. This work will provide a framework for future studies of distinct cannabis extracts and will be useful for comparing the bioactivity of extracts from different cannabis chemotypes as well as extracts made through various heating processes. It will also act as the first stage of assessment before testing the extracts against zebrafish models of toxicity and disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa