Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Chemistry ; : e202402981, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370910

RESUMO

Chemiluminescence is the emission of light that occurs as a result of a chemical reaction. Depending on the rate of chemiexcitation, light emission can occur as a long-lasting, glow-type reaction or a rapid, highly intense flash-type reaction. Assays using a flash-type mode of action provide enhanced detection sensitivity compared to those using a glow-type mode. Recently, our group discovered that applying spiro-strain to 1,2-dioxetanes significantly increases their chemiexcitation rate. However, further examination of the structure-activity relationships revealed that the spiro-strain severely compromises the chemical stability of the 1,2-dioxetanes. We hypothesized that a combination of spiro-strain, steric hindrance, and an electron-withdrawing effect, will result in a chemically stable spiro-strained dioxetane with an accelerated chemiexcitation rate. Indeed, spiro-fused tetramethyl-oxetanyl exhibited a 128-fold faster chemiexcitation rate compared to adamantyl while maintaining similar chemical stability, with a half-life of over 400 hours in PBS 7.4 buffer at room temperature. Turn-on probes composed of tetramethyl-oxetanyl spiro-dioxetane exhibited significantly improved chemical stability in bacterial and mammalian cell media compared to previously developed dioxetane probes fused to a cyclobutyl unit. The superior chemical stability enables a tetramethyl-oxetanyl dioxetane probe to detect ß-galactosidase activity with enhanced sensitivity in E. coli assays and leucine aminopeptidase activity in cancer cells.

2.
Anal Biochem ; 689: 115506, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460899

RESUMO

Prolidase (EC.3.4.13.9) is a dipeptidase known nowadays to play a pivotal role in several physiological and pathological processes. More in particular, this enzyme is involved in the cleavage of proline- and hydroxyproline-containing dipeptides (imidodipeptides), thus finely regulating the homeostasis of free proline and hydroxyproline. Abnormally high or low levels of prolidase have been found in numerous acute and chronic syndromes affecting humans (chronic liver fibrosis, viral and acute hepatitis, cancer, neurological disorders, inflammation, skin diseases, intellectual disability, respiratory infection, and others) for which the content of proline is well recognized as a clinical marker. As a consequence, the accurate analytical determination of prolidase activity is of greatly significant importance in clinical diagnosis and therapy. Apart from the Chinard's assay, some other more sensitive and well validated methodologies have been published. These include colorimetric and spectrophotometric determinations of free proline produced by enzymatic reactions, capillary electrophoresis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, electrochemoluminescence, thin layer chromatography, and HPLC. The aim of this comprehensive review is to make a detailed survey of the in so far reported analytical techniques, highlighting their general features, as well as their advantages and possible drawbacks, providing in the meantime suggestions to stimulate further research in this intriguing field.


Assuntos
Dipeptidases , Ensaios Enzimáticos , Humanos , Colorimetria , Dipeptidases/análise , Dipeptidases/química , Fibrose , Hidroxiprolina , Prolina/análise , Ensaios Enzimáticos/métodos
3.
Int J Mol Sci ; 25(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39456864

RESUMO

The search and development of effective sirtuin small molecule inhibitors (SIRTIs) continues to draw great attention due to their wide range of pharmacological applications. Based on SIRTs' involvement in different biological pathways, their ligands were investigated for many diseases, such as cancer, neurodegenerative disorders, diabetes, cardiovascular diseases and autoimmune diseases. The elucidation of a substantial number of SIRT2-ligand complexes is steering the identification of novel and more selective modulators. Among them, SIRT2 in the presence of the SirReal2 analog series was the most studied. On this basis, we recently reported structure-based analyses leading to the discovery of thiazole-based compounds acting as SIRT2 inhibitors (T1, SIRT2 IC50 = 17.3 µM). Herein, ligand-based approaches followed by molecular docking simulations allowed us to evaluate in silico a novel small series of thiazoles (3a-3d and 5a, 5d) as putative SIRT2 inhibitors. Results from the computational studies revealed comparable molecular interaction fields (MIFs) and docking positionings of most of these compounds with respect to reference SIRT2Is. Biochemical and biological assays validated this study and pointed to compound 5a (SIRT2 IC50 = 9.0 µM) as the most interesting SIRT2I that was worthy of further development as an anticancer agent.


Assuntos
Antineoplásicos , Simulação de Acoplamento Molecular , Sirtuína 2 , Tiazóis , Sirtuína 2/antagonistas & inibidores , Sirtuína 2/química , Sirtuína 2/metabolismo , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Descoberta de Drogas , Modelos Moleculares , Ligantes , Linhagem Celular Tumoral
4.
Bioorg Med Chem Lett ; 96: 129506, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820774

RESUMO

Rhizomides are a family of depsipeptide macrolactones synthesized by a non-ribosomal peptide synthetase (NRPS) encoded in the genome of Paraburkholderia rhizoxinica str. HKI 454. In this study, the total and chemoenzymatic synthesis of the depsipeptide rhizomide A is described. Rhizomide A was generated through macrolactamization while thelinear C-terminal N-acetylcysteamine (SNAC) thioester substrate was synthesized through a C-terminal thioesterification strategy. It was shown that the rhizomide A thioesterase (RzmA-TE) is an active macrocyclization catalyst, allowing the chemoenzymatic synthesis of rhizomide A.This work further showcases the biocatalytic power of TEs in accessing complex macrocyclic natural products.


Assuntos
Depsipeptídeos , Biocatálise , Catálise , Ciclização
5.
Bioorg Med Chem ; 94: 117453, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37741121

RESUMO

Vitamin K antagonists (VKAs) anticoagulants have been used since the 1950s as medicines and rodenticides. These molecules are mainly 4-hydroxycoumarin derivatives and act by inhibiting the vitamin K epoxide reductase (VKORC1), an endoplasmic reticulum membrane resident enzyme. However, many VKORC1 mutations have been reported over the last decade, inducing VKAs resistances and thus treatments failures. Although studies have reported experimental and computational investigations of VKAs based on VKORC1 structural homology models, the development of new effective anticoagulants has been quite complex due to the lack of structural data and reliable structure-activity relationships. However, the recent publication of VKORC1 crystal structure provides new information for further studies. Based on these findings, we combined chemical synthesis, enzymatic assays and molecular modelling methods to design a structure-activity relationship (SAR) model. Our results proved that the lipophilicity, the membrane permeability of inhibitors and their affinity towards human VKORC1 enzyme are the main characteristics for potent anticoagulants. Our SAR model managed to rank compounds according to their ability to inhibit the human VKORC1. Such a tool might constitute an alternative to evaluate new molecules potency before their chemical synthesis and biological assessment and might assist the development of new VKAs.

6.
Acta Microbiol Immunol Hung ; 70(3): 220-230, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37405903

RESUMO

The present study aimed to explore the virulence characteristics in 221 Bulgarian nosocomial Stenotrophomonas maltophilia isolates (2011-2022) via screening for the presence of virulence genes, their mutational variability, and the corresponding enzyme activity. PCR amplification, enzymatic assays, whole-genome sequencing (WGS), and biofilm quantification on a polystyrene plate were performed. The incidence of virulence determinants was as follows: stmPr1 (encoding for the major extracellular protease StmPr1) 87.3%, stmPr2 (minor extracellular protease StmPr2) 99.1%, Smlt3773 locus (outer membrane esterase) 98.2%, plcN1 (non-hemolytic phospholipase C) 99.1%, and smf-1 (type-1 fimbriae, biofilm-related gene) 96.4%. The 1621-bp allele of stmPr1 was most frequently found (61.1%), followed by the combined allelic variant (17.6%), stmPr1-negative genotype (12.7%), and 868-bp allele (8.6%). Protease, esterase, and lecithinase activity was observed in 95%, 98.2%, and 17.2% of the isolates, respectively. The WGS-subjected isolates (n = 9) formed two groups. Five isolates possessed only the 1621-bp variant of stmPr1, higher biofilm formation ability (Optical Density at λ = 550 nm (OD550): 1.253-1.789), as well as a low number of mutations in the protease genes and smf-1. Three other isolates had only the 868-bp variant, weaker biofilm production (OD550: 0.788-1.108), and higher number of mutations within these genes. The only weak biofilm producer (OD550 = 0.177) had no stmPr1 alleles. In conclusion, the similar PCR detection rates did not allow differentiation of the isolates. In contrast, WGS permitted stmPr1 alleles-based differentiation. To the best of our knowledge, this is the first Bulgarian study presenting genotypic and phenotypic insights into virulence factors of S. maltophilia isolates.


Assuntos
Infecção Hospitalar , Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Fatores de Virulência/genética , Bulgária/epidemiologia , Stenotrophomonas maltophilia/genética , Infecção Hospitalar/epidemiologia , Genótipo , Biofilmes , Peptídeo Hidrolases/genética , Infecções por Bactérias Gram-Negativas/epidemiologia
7.
Anal Biochem ; 643: 114577, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134389

RESUMO

Neutral ceramidase is a hydrolase of ceramide that has been implicated in multiple biologic processes, including inflammation and oncogenesis. Ceramides and other sphingolipids, belong to a family of N-acyl linked lipids that are biologically active in signaling, despite their limited structural functions. Ceramides are generally pro-apoptotic, while sphingosine and sphingosine-1-phosphate (S1P) exert proliferative and pro-oncogenic effects. Ceramidases are important regulators of ceramide levels that hydrolyze ceramide to sphingosine. Thus, ceramidase inhibition significantly increases the quantities of ceramide and its associated signaling. To better understand the function of ceramide, biochemical and cellular assays for enzymatic activity were developed and validated to identify inhibitors of human neutral ceramidase (nCDase). Here we review the measurement of nCDase activity both in vitro and in vivo.


Assuntos
Ceramidase Neutra/análise , Humanos , Ceramidase Neutra/genética , Ceramidase Neutra/metabolismo , Pseudomonas aeruginosa/enzimologia
8.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077100

RESUMO

The enantioselective preparation of the two isomers of 4-hydroxy-2-cyclohexanone derivatives 1a,b was achieved, starting from a common cyclohexenone, through asymmetric transfer hydrogenation (ATH) reactions using bifunctional ruthenium catalysts. From these versatile intermediates, a stereoselective route to a cytosine analogue built on a bicyclo [4.1.0]heptane scaffold is described. Nucleoside kinase activity assays with this cyclopropyl-fused cyclohexane nucleoside, together with other related nucleosides (2a-e), were performed, showing that thymine- and guanine- containing compounds have affinity for herpes simplex virus Type 1 (HSV-1) thymidine kinase (TK) but not for human cytosolic TK-1, thus pointing to their selectivity for herpetic TKs but not cellular TKs.


Assuntos
Herpesvirus Humano 1 , Nucleosídeos , Antivirais , Cicloexanos , Humanos , Timidina Quinase
9.
Bioorg Med Chem ; 30: 115882, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33376017

RESUMO

N-Acetyl neuraminic acid (sialic acid) is a monosaccharide generally found as the terminating unit on glycans, which in turn are found on the surface of cells and glycoproteins. These glycans aid in a variety of biological functions such as cell interactions and immune response. Sialic acid has been identified as a biomarker for cardiovascular disease, diabetes and a range of other inflammatory and degenerative conditions. It has also been identified as a marker for different types of cancer. Sialic acid levels vary depending on the level of inflammation present during the course of an inflammatory disease and it is overexpressed by tumours as a shield against the immune system. Since the discovery of sialic acid, numerous assays have been developed for the identification and quantification of different sialic acid derivative monosaccharides and these assays fall into four main groups: colorimetric, fluorometric, enzymatic and chromatographic/mass spectrometric, with much overlap between these. Given the importance of sialic acids in biological pathways, this review article critically appraises assays that are used to detect and quantify sialic acid and its derivatives. Thus it details the method, sensitivity, specificity and wider scope of a range of assays, and concludes by suggesting some future directions for assay development and application. In this way, insight is provided into assays that allow for the accurate quantitation of sialic acid in biological samples, which may facilitate identification of the roles of sialic acid in healthy and disease pathways.


Assuntos
Ácidos Siálicos/análise , Fluorometria , Humanos , Estrutura Molecular
10.
Anal Bioanal Chem ; 413(14): 3667-3681, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33797603

RESUMO

The evaluation of binding affinities between large biomolecules and small ligands is challenging and requires highly sensitive techniques. Microscale thermophoresis (MST) is an emerging biophysical technique used to overcome this limitation. This work describes the first MST binding method to evaluate binding affinities of small ligands to lipases from crude porcine pancreatic extracts. The conditions of the MST assay were thoroughly optimized to successfully evaluate the dissociation constant (Kd) between pancreatic lipases (PL) and triterpenoid compounds purified from oakwood. More precisely, the fluorescent labeling of PL (PL*) using RED-NHS dye was achieved via a buffer exchange procedure. The MST buffer was composed of 20 mM NaH2PO4 + 77 mM NaCl (pH 6.6) with 0.05% Triton-X added to efficiently prevent protein aggregation and adsorption, even when using only standard, uncoated MST capillaries. Storage at -20 °C ensured stability of PL* and its fluorescent signal. MST results showed that crude pancreatic extracts were suitable as a source of PL for the evaluation of binding affinities of small ligands. Quercotriterpenoside-I (QTT-I) demonstrated high PL* binding affinity (31 nM) followed by 3-O-galloylbarrinic acid (3-GBA) (500 nM) and bartogenic acid (BA) (1327 nM). To enrich the 50 kDa lipase responsible for the majority of hydrolysis activity in the crude pancreatic extracts, ammonium sulfate precipitation was attempted and its efficiency confirmed using capillary electrophoresis (CE)-based activity assays and HRMS. Moreover, to accurately explain enzyme modulation mechanism, it is imperative to complement binding assays with catalytic activity ones.


Assuntos
Lipase/metabolismo , Extratos Pancreáticos/metabolismo , Animais , Hidrólise , Ligantes , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Suínos
11.
Molecules ; 26(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34577189

RESUMO

Tacle® is a citrus fruit obtained from the crossbreeding of Clementine and Tarocco cultivars. This fruit retains a promising nutraceutical potential most likely due to a high content in polyphenols, among which the main constituents are the two glycosides naringin and hesperidin. Herein, we evaluated, through an in vitro assay, the capability of Tacle extracts to inhibit the hydroxymethylglutaryl-CoA reductase enzyme, which plays a key role in cholesterol biosynthesis. The results obtained spurred us to investigate whether the anti-enzymatic activity observed may be due to a direct interaction of aglycones naringenin and hesperetin with the enzyme catalytic site. Molecular docking simulations indicated that these two compounds are able to anchor to the protein with binding modes and affinities similar to those found for statins, which represent mainstream medications against hypercholesterolemia. The overall results showed an interesting nutraceutical potential of Tacle, suggesting that its extract could be used for dietary supplementation in the treatment of moderate hypercholesterolemia.


Assuntos
Citrus/química , Inibidores Enzimáticos/química , Hidroximetilglutaril-CoA Redutases/metabolismo , Hipercolesterolemia/tratamento farmacológico , Extratos Vegetais/química , Polifenóis/química , Suplementos Nutricionais , Flavanonas/química , Flavonoides/química , Flavonoides/farmacologia , Frutas/química , Hesperidina/química , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Ligação Proteica , Conformação Proteica
12.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203324

RESUMO

The antitumor activity of certain anti-inflammatory drugs is often attributed to an indirect effect based on the inhibition of COX enzymes. In the case of anti-inflammatory prodrugs, this property could be attributed to the parent molecules with mechanism other than COX inhibition, particularly through formulations capable of slowing down their metabolic conversion. In this work, a pilot docking study aimed at comparing the interaction of two prodrugs, nabumetone (NB) and its tricyclic analog 7-methoxy-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-one (MC), and their common active metabolite 6-methoxy-2-naphthylacetic acid (MNA) with the COX binding site, was carried out. Cytotoxicity, cytofluorimetry, and protein expression assays on prodrugs were also performed to assess their potential as antiproliferative agents that could help hypothesize an effective use as anticancer therapeutics. Encouraging results suggest that the studied compounds could act not only as precursors of the anti-inflammatory metabolite, but also as direct antiproliferative agents.


Assuntos
Anti-Inflamatórios não Esteroides , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase , Nabumetona , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Células MCF-7 , Nabumetona/síntese química , Nabumetona/química , Nabumetona/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia
13.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32928738

RESUMO

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has spread to more than 60 countries worldwide. CHIKV infection leads to a febrile illness known as chikungunya fever (CHIKF), which is characterized by long-lasting and debilitating joint and muscle pain. CHIKV can cause large-scale epidemics with high attack rates, which substantiates the need for development of effective therapeutics suitable for outbreak containment. In this review, we highlight the different strategies used for developing CHIKV small-molecule inhibitors, ranging from high-throughput cell-based screening to in silico screens and enzymatic assays with purified viral proteins. We further discuss the current status of the most promising molecules, including in vitro and in vivo findings. In particular, we focus on describing host and/or viral targets, mode of action, and mechanisms of antiviral drug resistance and associated mutations. Knowledge of the key molecular determinants of drug resistance will aid selection of the most promising antiviral agent(s) for clinical use. For these reasons, we also summarize the available information about drug-resistant phenotypes in Aedes mosquito vectors. From this review, it is evident that more of the active molecules need to be evaluated in preclinical and clinical models to address the current lack of antiviral treatment for CHIKF.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/genética , Farmacorresistência Viral/genética , Replicação Viral
14.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33008826

RESUMO

Environmental fluctuations in the availability of nutrients lead to intricate metabolic strategies. "Candidatus Accumulibacter phosphatis," a polyphosphate-accumulating organism (PAO) responsible for enhanced biological phosphorus removal (EBPR) from wastewater treatment systems, is prevalent in aerobic/anaerobic environments. While the overall metabolic traits of these bacteria are well described, the nonavailability of isolates has led to controversial conclusions on the metabolic pathways used. In this study, we experimentally determined the redox cofactor preferences of different oxidoreductases in the central carbon metabolism of a highly enriched "Ca Accumulibacter phosphatis" culture. Remarkably, we observed that the acetoacetyl coenzyme A reductase engaged in polyhydroxyalkanoate (PHA) synthesis is NADH preferring instead of showing the generally assumed NADPH dependency. This allows rethinking of the ecological role of PHA accumulation as a fermentation product under anaerobic conditions and not just a stress response. Based on previously published metaomics data and the results of enzymatic assays, a reduced central carbon metabolic network was constructed and used for simulating different metabolic operating modes. In particular, scenarios with different acetate-to-glycogen consumption ratios were simulated, which demonstrated optima using different combinations of glycolysis, glyoxylate shunt, or branches of the tricarboxylic acid (TCA) cycle. Thus, optimal metabolic flux strategies will depend on the environment (acetate uptake) and on intracellular storage compound availability (polyphosphate/glycogen). This NADH-related metabolic flexibility is enabled by the NADH-driven PHA synthesis. It allows for maintaining metabolic activity under various environmental substrate conditions, with high carbon conservation and lower energetic costs than for NADPH-dependent PHA synthesis. Such (flexible) metabolic redox coupling can explain the competitiveness of PAOs under oxygen-fluctuating environments.IMPORTANCE Here, we demonstrate how microbial storage metabolism can adjust to a wide range of environmental conditions. Such flexibility generates a selective advantage under fluctuating environmental conditions. It can also explain the different observations reported in PAO literature, including the capacity of "Ca Accumulibacter phosphatis" to act like glycogen-accumulating organisms (GAOs). These observations stem from slightly different experimental conditions, and controversy arises only when one assumes that metabolism can operate only in a single mode. Furthermore, we also show how the study of metabolic strategies is possible when combining omics data with functional cofactor assays and modeling. Genomic information can only provide the potential of a microorganism. The environmental context and other complementary approaches are still needed to study and predict the functional expression of such metabolic potential.


Assuntos
Acil Coenzima A/metabolismo , Betaproteobacteria/metabolismo , Redes e Vias Metabólicas , Betaproteobacteria/enzimologia , Análise do Fluxo Metabólico , Modelos Biológicos , NAD/metabolismo , NADP/metabolismo , Oxirredução
15.
Int J Mol Sci ; 20(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30979096

RESUMO

A class of gold(I) phosphane complexes have been identified as inhibitors of dihydrofolate reductase (DHFR) from E. coli, an enzyme that catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF), using NADPH as a coenzyme. In this work, to comprehend the nature of the interaction at the basis of these inhibitory effects, the binding properties of bis- and tris-phosphane gold(I) chloride compounds in regards to DHFR have been studied by emission spectroscopy and spectrophotometric assays. The lack of cysteine and seleno-cysteine residues in the enzyme active site, the most favorable sites of attack of Au(I) moieties, makes this work noteworthy. The interaction with the gold compounds results into the quenching of the DHFR tryptophan's emissions and in an enhancement of their intrinsic emission intensities. Moreover, a modulating action of NADPH is highlighted by means of an increase of the gold compound affinity toward the enzyme; in fact, the dissociation constants calculated for the interactions between DHFR and each gold compound in the presence of saturating NADPH were lower than the ones observed for the apo-enzyme. The fluorimetric data afforded to Kd values ranged from 2.22 ± 0.25 µM for (PPh3)2AuCl in the presence of NADPH to 21.4 ± 3.85 µM for 4L3AuTf in the absence of NADPH. By elucidating the energetic aspects of the binding events, we have attempted to dissect the role played by the gold phosphane/protein interactions in the inhibitory activity, resulting in an exothermic enthalpy change and a positive entropic contribution (ΔH° = -5.04 ± 0.08 kcal/mol and ΔS° = 7.34 ± 0.005 cal/mol·K).


Assuntos
Escherichia coli/enzimologia , Antagonistas do Ácido Fólico/farmacologia , NAD/metabolismo , Compostos Organoáuricos/farmacologia , Fosfinas/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Antagonistas do Ácido Fólico/química , Ouro/química , Ouro/farmacologia , Humanos , Compostos Organoáuricos/química , Fosfinas/química
16.
Molecules ; 24(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615123

RESUMO

Nucleic acids and proteins are two major classes of biopolymers in living systems. Whereas nucleic acids are characterized by robust molecular recognition properties, essential for the reliable storage and transmission of the genetic information, the variability of structures displayed by proteins and their adaptability to the environment make them ideal functional materials. One of the major goals of DNA nanotechnology-and indeed its initial motivation-is to bridge these two worlds in a rational fashion. Combining the predictable base-pairing rule of DNA with chemical conjugation strategies and modern protein engineering methods has enabled the realization of complex DNA-protein architectures with programmable structural features and intriguing functionalities. In this review, we will focus on a special class of biohybrid structures, characterized by one or many enzyme molecules linked to a DNA scaffold with nanometer-scale precision. After an initial survey of the most important methods for coupling DNA oligomers to proteins, we will report the strategies adopted until now for organizing these conjugates in a predictable spatial arrangement. The major focus of this review will be on the consequences of such manipulations on the binding and kinetic properties of single enzymes and enzyme complexes: an interesting aspect of artificial DNA-enzyme hybrids, often reported in the literature, however, not yet entirely understood and whose full comprehension may open the way to new opportunities in protein science.


Assuntos
DNA/química , Enzimas/química , Nanoestruturas/química , Proteínas/química , Pareamento de Bases , Nanotecnologia/tendências , Conformação de Ácido Nucleico
17.
Angew Chem Int Ed Engl ; 58(31): 10612-10615, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31168957

RESUMO

A new dicationic diboronic acid structure, DBA2+, was designed to exhibit good affinity (Kd ≈1 mm) and selectivity toward glucose. Binding of DBA2+ to glucose changes the pKa of DBA2+ from 9.4 to 6.3, enabling opportunities for detection of glucose at physiological pH. Proton release from DBA2+ is firmly related to glucose concentrations within the physiologically relevant range (0-30 mm), as verified by conductimetric monitoring. Negligible interference from other sugars (for example, maltose, fructose, sucrose, lactose, and galactose) was observed. These results demonstrate the potential of DBA2+ for selective, quantitative glucose sensing. The nonenzymatic strategy based on electrohydrodynamic effects may enable the development of stable, accurate, and continuous glucose monitoring platforms.


Assuntos
Técnicas Biossensoriais , Ácidos Borônicos/química , Técnicas Eletroquímicas , Glucose/análise , Hidrodinâmica , Ácidos Borônicos/síntese química , Eletrodos , Estrutura Molecular
18.
Biomed Microdevices ; 20(4): 92, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30370472

RESUMO

Here a micromachined flow cell with enhanced optical sensitivity is presented that allows high-throughput analysis of microdroplets. As a droplet flows through multiple concatenated measurement points, the rate of enzymatic reaction in the droplet can be fully characterized without stopping the flow. Since there is no cross-talk between the droplets, the flow cell is capable of continuously measuring biochemical assays in a droplet flow and thus is suitable to be used for continuous point-of-care diagnostics monitoring. This paper describes the design and operation of the device and its validation by application to the accurate and continuous quantification of glucose concentrations using an oxidase enzymatic assay. The flow cell forms an important component in the miniaturization of chemical and bio analyzers into portable or wearable devices.


Assuntos
Microtecnologia/instrumentação , Fenômenos Ópticos , Técnicas Biossensoriais , Glucose/análise , Limite de Detecção , Impressão Tridimensional
19.
Molecules ; 23(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060466

RESUMO

Promiscuous inhibition due to aggregate formation has been recognized as a major concern in drug discovery campaigns. Here, we report some aggregators identified in a virtual screening (VS) protocol to search for inhibitors of human ecto-5'-nucleotidase (ecto-5'-NT/CD73), a promising target for several diseases and pathophysiological events, including cancer, inflammation and autoimmune diseases. Four compounds (A, B, C and D), selected from the ZINC-11 database, showed IC50 values in the micromolar range, being at the same time computationally predicted as potential aggregators. To confirm if they inhibit human ecto-5'-NT via promiscuous mechanism, forming aggregates, enzymatic assays were done in the presence of 0.01% (v/v) Triton X-100 and an increase in the enzyme concentration by 10-fold. Under both experimental conditions, these four compounds showed a significant decrease in their inhibitory activities. To corroborate these findings, turbidimetric assays were performed, confirming that they form aggregate species. Additionally, aggregation kinetic studies were done by dynamic light scattering (DLS) for compound C. None of the identified aggregators has been previously reported in the literature. For the first time, aggregation and promiscuous inhibition issues were systematically studied and evaluated for compounds selected by VS as potential inhibitors for human ecto-5'-NT. Together, our results reinforce the importance of accounting for potential false-positive hits acting by aggregation in drug discovery campaigns to avoid misleading assay results.


Assuntos
Inibidores Enzimáticos/farmacologia , Agregados Proteicos/efeitos dos fármacos , 5'-Nucleotidase/química , Simulação por Computador , Bases de Dados de Compostos Químicos , Avaliação Pré-Clínica de Medicamentos , Difusão Dinâmica da Luz , Inibidores Enzimáticos/química , Reações Falso-Positivas , Proteínas Ligadas por GPI/química , Humanos , Concentração Inibidora 50 , Nefelometria e Turbidimetria
20.
Crit Rev Biochem Mol Biol ; 49(6): 473-97, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25418535

RESUMO

Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.


Assuntos
Nucleosídeos/metabolismo , Nucleotídeos/metabolismo , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Ensaios Enzimáticos/métodos , Humanos , Núcleosídeo-Difosfato Quinase/metabolismo , Nucleotidases/metabolismo , Pirofosfatases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa