Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
J Biol Chem ; 300(3): 105680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272230

RESUMO

Migration and invasion enhancer 1 (MIEN1) overexpression characterizes several cancers and facilitates cancer cell migration and invasion. Leveraging conserved immunoreceptor tyrosine-based activation motif and prenylation motifs within MIEN1, we identified potent anticancer peptides. Among them, bioactive peptides LA3IK and RP-7 induced pronounced transcriptomic and protein expression changes at sub-IC50 concentrations. The peptides effectively inhibited genes and proteins driving cancer cell migration, invasion, and epithelial-mesenchymal transition pathways, concurrently suppressing epidermal growth factor-induced nuclear factor kappa B nuclear translocation in metastatic breast cancer cells. Specifically, peptides targeted the same signal transduction pathway initiated by MIEN1. Molecular docking and CD spectra indicated the formation of MIEN1-peptide complexes. The third-positioned isoleucine in LA3IK and CVIL motif in RP-7 were crucial for inhibiting breast cancer cell migration. This is evident from the limited migration inhibition observed when MDA-MB-231 cells were treated with scrambled peptides LA3IK SCR and RP-7 SCR. Additionally, LA3IK and RP-7 effectively suppressed tumor growth in an orthotopic breast cancer model. Notably, mice tolerated high intraperitoneal (ip) peptide doses of 90 mg/Kg well, surpassing significantly lower doses of 5 mg/Kg intravenously (iv) and 30 mg/Kg intraperitoneally (ip) used in both in vivo pharmacokinetic studies and orthotopic mouse model assays. D-isomers of LA3IK and RP-7 showed enhanced anticancer activity compared to their L-isomers. D-LA3IK remained stable in mouse plasma for 24 h with 75% remaining, exhibiting superior pharmacokinetic properties over D/L-RP-7. In summary, our findings mark the first report of short peptides based on MIEN1 protein sequence capable of inhibiting cancer signaling pathways, effectively impeding cancer progression both in vitro and in vivo.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias , Animais , Camundongos , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Humanos , Linhagem Celular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
2.
Exp Eye Res ; 238: 109715, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951338

RESUMO

This study aimed to examine the intraocular tolerability of the epidermal growth factor receptor antibody cetuximab, when applied intravitreally, and its effect on axial elongation. Guinea pigs aged 2-3 weeks were subjected to bilateral plano glasses and bilateral lens-induced myopization (LIM) as a single procedure for group I (n = 8) and group II (n = 8), respectively. In the animals of group III (n = 8), group IV (n = 8), and group V (n = 8), the right eyes of the animals, in addition to LIM, received four weekly intravitreal injections of cetuximab (Erbitux®) in doses of 6.25 µg, 12.5 µg, and 25 µg, respectively. As controls, the left eyes, in addition to LIM, received corresponding intraocular injections of phosphate-buffered saline. The animals underwent regular ophthalmoscopic examinations and biometry for axial length measurements. With increasing doses of cetuximab, the inter-eye difference in axial elongation (at study end, left eyes minus right eyes) were significantly the smallest in group I (0.00 ± 0.02 mm) and group II (-0.01 ± 0.02 mm), they were larger in group III (0.04 ± 0.04 mm) and group IV (0.10 ± 0.03 mm), and they were the largest in group V (0.11 ± 0.01 mm). The inter-eye difference in axial elongation enlarged (P < 0.001) with the number of injections applied. Retinal thickness at the posterior pole (right eyes) was significantly thicker in group V than in group II (P < 0.01). The density of apoptotic cells (visualized by TUNEL-staining) did not vary significantly between any of the groups (all P > 0.05). The results suggest that intravitreal injections of cetuximab in young guinea pigs with LIM resulted in a reduction in axial elongation in a dose-dependent and number of treatment-dependent manner. Intraocular toxic effects, such as intraocular inflammation, retinal thinning, or an increased density of apoptotic cells in the retina, were not observed in association with the intravitreally applied cetuximab.


Assuntos
Cristalino , Miopia , Cobaias , Animais , Miopia/metabolismo , Cetuximab/toxicidade , Cetuximab/metabolismo , Retina/metabolismo , Cristalino/metabolismo , Injeções Intraoculares , Modelos Animais de Doenças
3.
J Biol Chem ; 298(3): 101675, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122791

RESUMO

A multienzyme metabolic assembly for human glucose metabolism, namely the glucosome, has been previously demonstrated to partition glucose flux between glycolysis and building block biosynthesis in an assembly size-dependent manner. Among three different sizes of glucosome assemblies, we have shown that large-sized glucosomes are functionally associated with the promotion of serine biosynthesis in the presence of epidermal growth factor (EGF). However, due to multifunctional roles of EGF in signaling pathways, it is unclear which EGF-mediated signaling pathways promote these large glucosome assemblies in cancer cells. In this study, we used Luminex multiplexing assays and high-content single-cell imaging to demonstrate that EGF triggers temporal activation of extracellular signal-regulated kinases 1/2 (ERK1/2) in Hs578T cells. Subsequently, we found that treatments with a pharmacological inhibitor of ERK1/2, SCH772984, or short-hairpin RNAs targeting ERK1/2 promote the dissociation of large-sized assemblies to medium-sized assemblies in Hs578T cells. In addition, our Western blot analyses revealed that EGF treatment does not increase the expression levels of enzymes that are involved in both glucose metabolism and serine biosynthesis. The observed spatial transition of glucosome assemblies between large and medium sizes appears to be mediated by the degree of dynamic partitioning of glucosome enzymes without changing their expression levels. Collectively, our study demonstrates that EGF-ERK1/2 signaling pathways play an important role in the upregulation of large-sized glucosomes in cancer cells, thus functionally governing the promotion of glycolysis-derived serine biosynthesis.


Assuntos
Fator de Crescimento Epidérmico , Glucose , Sistema de Sinalização das MAP Quinases , Complexos Multienzimáticos , Fator de Crescimento Epidérmico/metabolismo , Glucose/metabolismo , Humanos , Complexos Multienzimáticos/metabolismo , Fosforilação , Serina/metabolismo , Frações Subcelulares/metabolismo
4.
Biochem Biophys Res Commun ; 681: 120-126, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774569

RESUMO

Mechanisms underlying the growth and survival of non-small cell lung cancer (NSCLC) cells positive for activating mutations of the epidermal growth factor receptor gene (EGFR) have remained unclear. We here examined the functional relation between such mutant forms of EGFR and Yes-associated protein (YAP), a transcriptional coactivator of the Hippo signaling pathway that regulates cell proliferation and survival. Under the condition of serum deprivation, epidermal growth factor (EGF) induced activation of YAP in NSCLC cell lines positive for mutated EGFR but not in those wild type (WT) for EGFR. Similar EGF-induced activation of YAP was apparent in A549 lung cancer cells forcibly expressing mutant EGFR but not in those overexpressing the WT receptor. Furthermore, EGF induced apoptotic cell death in serum-deprived A549 cells overexpressing the WT form of EGFR but not in those expressing mutant EGFR, and knockdown of YAP rendered the latter cells sensitive to this effect of EGF. Our results thus suggest that activation of YAP mediates resistance of EGFR-mutated NSCLC cells to EGF-induced apoptosis and thereby contributes specifically to the survival of such cells.

5.
J Biol Chem ; 297(1): 100872, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34126069

RESUMO

The epidermal growth factor receptor (EGFR) is a membrane-anchored tyrosine kinase that is able to selectively respond to multiple extracellular stimuli. Previous studies have indicated that the modularity of this system may be caused by ligand-induced differences in the stability of the receptor dimer. However, this hypothesis has not been explored using single-mutant ligands thus far. Herein, we developed a new approach to identify residues responsible for functional divergence by selecting residues in the epidermal growth factor (EGF) ligand that are conserved among orthologs yet divergent between paralogs. Then, we mutated these residues and assessed the mutants' effects on the receptor using a combination of molecular dynamics (MD) and biochemical techniques. Although the EGF mutants had binding affinities for the EGFR comparable with the WT ligand, the EGF mutants showed differential patterns of receptor phosphorylation and cell growth in multiple cell lines. The MD simulations of the EGF mutants indicated that mutations had long-range effects on the receptor dimer interface. This study shows for the first time that a single mutation in the EGF is sufficient to alter the activation of the EGFR signaling pathway at the cellular level. These results also support that biased ligand-receptor signaling in the tyrosine kinase receptor system can lead to differential downstream outcomes and demonstrate a promising new method to study ligand-receptor interactions.


Assuntos
Fator de Crescimento Epidérmico/genética , Receptores ErbB/metabolismo , Mutação , Transdução de Sinais , Células 3T3 , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Estabilidade Proteica
6.
Gastroenterology ; 161(2): 623-636.e16, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33957136

RESUMO

BACKGROUND & AIMS: The homeostasis of the gastrointestinal epithelium relies on cell regeneration and differentiation into distinct lineages organized inside glands and crypts. Regeneration depends on Wnt/ß-catenin pathway activation, but to understand homeostasis and its dysregulation in disease, we need to identify the signaling microenvironment governing cell differentiation. By using gastric glands as a model, we have identified the signals inducing differentiation of surface mucus-, zymogen-, and gastric acid-producing cells. METHODS: We generated mucosoid cultures from the human stomach and exposed them to different growth factors to obtain cells with features of differentiated foveolar, chief, and parietal cells. We localized the source of the growth factors in the tissue of origin. RESULTS: We show that epidermal growth factor is the major fate determinant distinguishing the surface and inner part of human gastric glands. In combination with bone morphogenetic factor/Noggin signals, epidermal growth factor controls the differentiation of foveolar cells vs parietal or chief cells. We also show that epidermal growth factor is likely to underlie alteration of the gastric mucosa in the precancerous condition atrophic gastritis. CONCLUSIONS: Use of our recently established mucosoid cultures in combination with analysis of the tissue of origin provided a robust strategy to understand differentiation and patterning of human tissue and allowed us to draw a new, detailed map of the signaling microenvironment in the human gastric glands.


Assuntos
Padronização Corporal/efeitos dos fármacos , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Linhagem da Célula , Células Cultivadas , Microambiente Celular , Celulas Principais Gástricas/efeitos dos fármacos , Celulas Principais Gástricas/metabolismo , Celulas Principais Gástricas/ultraestrutura , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Mucosa Gástrica/metabolismo , Mucosa Gástrica/ultraestrutura , Gastrite Atrófica/metabolismo , Gastrite Atrófica/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Organoides , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/ultraestrutura , Via de Sinalização Wnt
7.
Am J Kidney Dis ; 79(2): 257-267.e1, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34710516

RESUMO

RATIONALE & OBJECTIVE: Acute kidney injury (AKI) is common in patients with coronavirus disease 2019 (COVID-19) and associated with poor outcomes. Urinary biomarkers have been associated with adverse kidney outcomes in other settings and may provide additional prognostic information in patients with COVID-19. We investigated the association between urinary biomarkers and adverse kidney outcomes among patients hospitalized with COVID-19. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: Patients hospitalized with COVID-19 (n=153) at 2 academic medical centers between April and June 2020. EXPOSURE: 19 urinary biomarkers of injury, inflammation, and repair. OUTCOME: Composite of KDIGO (Kidney Disease: Improving Global Outcomes) stage 3 AKI, requirement for dialysis, or death within 60 days of hospital admission. We also compared various kidney biomarker levels in the setting of COVID-19 versus other common AKI settings. ANALYTICAL APPROACH: Time-varying Cox proportional hazards regression to associate biomarker level with composite outcome. RESULTS: Out of 153 patients, 24 (15.7%) experienced the primary outcome. Twofold higher levels of neutrophil gelatinase-associated lipocalin (NGAL) (HR, 1.34 [95% CI, 1.14-1.57]), monocyte chemoattractant protein (MCP-1) (HR, 1.42 [95% CI, 1.09-1.84]), and kidney injury molecule 1 (KIM-1) (HR, 2.03 [95% CI, 1.38-2.99]) were associated with highest risk of sustaining primary composite outcome. Higher epidermal growth factor (EGF) levels were associated with a lower risk of the primary outcome (HR, 0.61 [95% CI, 0.47-0.79]). Individual biomarkers provided moderate discrimination and biomarker combinations improved discrimination for the primary outcome. The degree of kidney injury by biomarker level in COVID-19 was comparable to other settings of clinical AKI. There was evidence of subclinical AKI in COVID-19 patients based on elevated injury biomarker level in patients without clinical AKI defined by serum creatinine. LIMITATIONS: Small sample size with low number of composite outcome events. CONCLUSIONS: Urinary biomarkers are associated with adverse kidney outcomes in patients hospitalized with COVID-19 and may provide valuable information to monitor kidney disease progression and recovery.


Assuntos
Injúria Renal Aguda , COVID-19 , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Biomarcadores , Creatinina , Humanos , Lipocalina-2 , Prognóstico , Estudos Prospectivos , SARS-CoV-2
8.
J Reprod Dev ; 68(3): 209-215, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35228409

RESUMO

Factors associated with high milk production levels have been linked to alterations in the endometrial epidermal growth factor (EGF) profile, a cause of reduced fertility in dairy cows. Therefore, we examined the leptin system that connects nutritional status and reproduction in dairy cattle related to reduced fertility in repeat breeder cows. Plasma leptin concentrations were measured in 18 heifers, 20 high-yielding control cows, and 26 repeat breeder cows, showing an altered EGF profile. Then, all repeat breeder cows were infused with seminal plasma (SP) into the vagina at the next estrus to normalize the EGF profile, while heifers and control cows were infused with vehicle alone. All animals were examined for EGF profiles. Eighteen repeat breeder cows, nine heifers, and nine control cows were also determined for leptin receptor (Ob-R) expression levels in the estrous cycle before and after the infusion. SP normalized the EGF profile in 53.8% of the repeat breeder cows. Leptin concentrations were similar in all groups, regardless of the treatment results for the EGF profile. In contrast, Ob-R levels in repeat breeder and control cows were similar and higher than those in heifers before SP treatment. Ob-R in repeat breeders showing a normal EGF profile after treatment decreased to an intermediate level between heifers and control cows and may provide a clue to take measures against repeat breeding in dairy cows.


Assuntos
Fator de Crescimento Epidérmico , Sêmen , Animais , Bovinos , Endométrio/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Feminino , Fertilidade , Leptina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Sêmen/metabolismo
9.
Am J Kidney Dis ; 78(5): 719-727, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34051308

RESUMO

For over 70 years, serum creatinine has remained the primary index for detection and monitoring of kidney disease. Tubulointerstitial damage and fibrosis are highly prognostic for subsequent kidney failure in biopsy studies, yet this pathology is invisible to the clinician in the absence of a biopsy. Recent discovery of biomarkers that reflect distinct aspects of kidney tubule disease have led to investigations of whether these markers can provide additional information on risk of chronic kidney disease (CKD) progression and associated adverse clinical end points, above and beyond estimated glomerular filtration rate and albuminuria. These biomarkers can be loosely grouped into those that mark tubule cell injury (eg, kidney injury molecule 1, monocyte chemoattractant protein 1) and those that mark tubule cell dysfunction (eg, α1-microglobulin, uromodulin). These kidney tubule biomarkers provide new opportunities to monitor response to therapeutics used to treat CKD patients. In this review, we describe results from some unique contributions in this area and discuss the current challenges and requirements in the field to bring these markers to clinical practice. We advocate for a broader assessment of kidney health that moves beyond a focus on the glomerulus, and we highlight how such tools can improve diagnostic accuracy and earlier assessment of therapeutic efficacy or harm in CKD patients.


Assuntos
Insuficiência Renal Crônica , Albuminúria , Biomarcadores , Taxa de Filtração Glomerular , Humanos , Túbulos Renais , Insuficiência Renal Crônica/diagnóstico
10.
Cytokine ; 138: 155357, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33153894

RESUMO

IL-23 is an inflammatory cytokine that plays an essential role in Th17 immunity by enhancing Th17 cell proliferation and survival, and Th17 cytokine production. IL-23 has pathogenic roles in the development of Th17-mediated inflammatory diseases including psoriasis. Despite successful treatment of psoriasis by blocking IL-23, the regulation of IL-23 expression in psoriasis patients is largely unknown. Dendritic cells are generally considered to be the primary source of IL-23 in psoriasis. While high levels of IL-23 are found in psoriatic epidermis, IL-23 expression in psoriatic keratinoctyes remains a controversial issue. In this study, we demonstrated that IL-23 production is induced by a combination of TNFα and IL-17A in human keratinocytes. Additionally, this IL-23 induction by TNFα and IL-17A is further increased in psoriatic keratinocytes and is enhanced by EGFR signaling. Although IL-23 is also robustly induced by toll-like receptor agonists in dendritic cells and macrophages, IL-23 expression in these cell types is not regulated by TNFα, IL-17A, and EGFR signaling. Given that IL-23 is essential for maintaining Th17 activation, IL-23 induction by TNFα, IL-17A, and EGF in keratinocytes could play an important pathological role in psoriasis pathogenesis as well as the cutaneous rash associated with EGFR inhibition therapy.


Assuntos
Fator de Crescimento Epidérmico/biossíntese , Regulação da Expressão Gênica , Interleucina-17/biossíntese , Subunidade p19 da Interleucina-23/biossíntese , Queratinócitos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Biópsia , Proliferação de Células , Citocinas/metabolismo , Células Dendríticas/metabolismo , Epiderme/metabolismo , Humanos , Interleucina-1/metabolismo , Monócitos/metabolismo , Psoríase/metabolismo , Transdução de Sinais , Pele/patologia , Células THP-1/metabolismo , Células Th17/imunologia
11.
Int J Mol Sci ; 22(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34884959

RESUMO

Thoracic pair of mammary glands from steroid hormone-pretreated mice respond to hormones structurally and functionally in organ culture. A short exposure of glands for 24 h to 7,12 Dimethylbenz(a)anthracene (DMBA) during a 24-day culture period induced alveolar or ductal lesions. Methods: To differentiate the functional significance of ERα and ERß, we employed estrogen receptor (ER) knockout mice. We compared the effects of DMBA on the development of preneoplastic lesions in the glands in the absence of ERα (αERKO) and ERß (ßERKO) using an MMOC protocol. Glands were also subjected to microarray analyses. We showed that estradiol can be replaced by EGF for pretreatment of mice. The carcinogen-induced lesions developed under both steroids and EGF pretreatment protocols. The glands from αERKO did not develop any lesions, whereas in ßERKO mice in which ERα is intact, mammary alveolar lesions developed. Comparison of microarrays of control, αERKO and ßERKO mice showed that ERα was largely responsible for proliferation and the MAP kinase pathways, whereas ERß regulated steroid metabolism-related genes. The results indicate that ERα is essential for the development of precancerous lesions. Both subtypes, ERα and Erß, differentially regulated gene expression in mammary glands in organ cultures.


Assuntos
Antracenos/efeitos adversos , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Glândulas Mamárias Animais/citologia , Técnicas de Cultura de Órgãos/métodos , Piperidinas/efeitos adversos , Lesões Pré-Cancerosas/patologia , Animais , Fator de Crescimento Epidérmico/administração & dosagem , Fator de Crescimento Epidérmico/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/genética , Transdução de Sinais/efeitos dos fármacos
12.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204341

RESUMO

Regular physical activity in cyclic sports can influence the so-called "angiogenic switch", which is considered as an imbalance between proangiogenic and anti-angiogenic molecules. Disruption of the synthesis of angiogenic molecules can be caused by local changes in tissues under the influence of excessive physical exertion and its consequences, such as chronic oxidative stress and associated hypoxia, metabolic acidosis, sports injuries, etc. A review of publications on signaling pathways that activate and inhibit angiogenesis in skeletal muscles, myocardium, lung, and nervous tissue under the influence of intense physical activity in cyclic sports. Materials: We searched PubMed, SCOPUS, Web of Science, Google Scholar, Clinical keys, and e-LIBRARY databases for full-text articles published from 2000 to 2020, using keywords and their combinations. Results: An important aspect of adaptation to training loads in cyclic sports is an increase in the number of capillaries in muscle fibers, which improves the metabolism of skeletal muscles and myocardium, as well as nervous and lung tissue. Recent studies have shown that myocardial endothelial cells not only respond to hemodynamic forces and paracrine signals from neighboring cells, but also take an active part in heart remodeling processes, stimulating the growth and contractility of cardiomyocytes or the production of extracellular matrix proteins in myofibroblasts. As myocardial vascularization plays a central role in the transition from adaptive heart hypertrophy to heart failure, further study of the signaling mechanisms involved in the regulation of angiogenesis in the myocardium is important in sports practice. The study of the "angiogenic switch" problem in the cerebrovascular and cardiovascular systems allows us to claim that the formation of new vessels is mediated by a complex interaction of all growth factors. Although the lungs are one of the limiting systems of the body in cyclic sports, their response to high-intensity loads and other environmental stresses is often overlooked. Airway epithelial cells are the predominant source of several growth factors throughout lung organogenesis and appear to be critical for normal alveolarization, rapid alveolar proliferation, and normal vascular development. There are many controversial questions about the role of growth factors in the physiology and pathology of the lungs. The presented review has demonstrated that when doing sports, it is necessary to give a careful consideration to the possible positive and negative effects of growth factors on muscles, myocardium, lung tissue, and brain. Primarily, the "angiogenic switch" is important in aerobic sports (long distance running). Conclusions: Angiogenesis is a physiological process of the formation of new blood capillaries, which play an important role in the functioning of skeletal muscles, myocardium, lung, and nervous tissue in athletes. Violation of the "angiogenic switch" as a balance between proangiogenic and anti-angiogenic molecules can lead to a decrease in the functional resources of the nervous, musculoskeletal, cardiovascular, and respiratory systems in athletes and, as a consequence, to a decrease in sports performance.


Assuntos
Atletas , Neovascularização Fisiológica , Esportes/fisiologia , Biomarcadores , Suscetibilidade a Doenças , Exercício Físico , Regulação da Expressão Gênica , Hemodinâmica , Humanos , Modelos Biológicos , Especificidade de Órgãos/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445562

RESUMO

Synaptonemal complex protein 3 (SCP3), a member of the Cor1 family, has been implicated in cancer progression, and therapeutic resistance, as well as cancer stem cell (CSC)-like properties. Previously, we demonstrated that SCP3 promotes these aggressive phenotypes via hyperactivation of the AKT signaling pathway; however, the underlying mechanisms responsible for SCP3-induced AKT activation remain to be elucidated. In this study, we demonstrated that the EGF-EGFR axis is the primary route through which SCP3 acts to activate AKT signaling. SCP3 triggers the EGFR-AKT pathway through transcriptional activation of EGF. Notably, neutralization of secreted EGF by its specific monoclonal antibody reversed SCP3-mediated aggressive phenotypes with a concomitant reversal of EGFR-AKT activation. In an effort to elucidate the molecular mechanisms underlying SCP3-induced transcriptional activation of EGF, we identified Jun activation domain-binding protein 1 (JAB1) as a binding partner of SCP3 using a yeast two-hybrid (Y2H) assay system, and we demonstrated that SCP3 induces EGF transcription through physical interaction with JAB1. Thus, our findings establish a firm molecular link among SCP3, EGFR, and AKT by identifying the novel roles of SCP3 in transcriptional regulation. We believe that these findings hold important implications for controlling SCP3high therapeutic-refractory cancer.


Assuntos
Complexo do Signalossomo COP9/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fator de Crescimento Epidérmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Complexo do Signalossomo COP9/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptídeo Hidrolases/genética , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
14.
J Biol Chem ; 294(34): 12826-12835, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31292195

RESUMO

During their lifecycle, many marine organisms rely on natural adhesives to attach to wet surfaces for movement and self-defense in aqueous tidal environments. Adhesive proteins from mussels are biocompatible and elicit only minimal immune responses in humans. Therefore these proteins have received increased attention for their potential applications in medicine, biomaterials, and biotechnology. The Asian green mussel Perna viridis secretes several byssal plaque proteins, molecules that help anchoring the mussel to surfaces. Among these proteins, protein-5ß (Pvfp-5ß) initiates interactions with the substrate, displacing interfacial water molecules before binding to the surface. Here, we established the first recombinant expression in Escherichia coli of Pvfp-5ß. We characterized recombinant Pvfp-5ß, finding that despite displaying a CD spectrum consistent with features of a random coil, the protein is correctly folded as indicated by MS and NMR analyses. Pvfp-5ß folds as a ß-sheet-rich protein as expected for an epidermal growth factor-like module. We examined the effects of Pvfp-5ß on cell viability and adhesion capacity in NIH-3T3 and HeLa cell lines, revealing that Pvfp-5ß has no cytotoxic effects at the protein concentrations used and provides good cell-adhesion strength on both glass and plastic plates. Our findings suggest that the adhesive properties of recombinant Pvfp-5ß make it an efficient surface-coating material, potentially suitable for biomedical applications including regeneration of damaged tissues.


Assuntos
Proteínas/química , Adesivos Teciduais , Animais , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Perna (Organismo) , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Propriedades de Superfície , Engenharia Tecidual
15.
J Biol Chem ; 294(27): 10530-10543, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31126985

RESUMO

Constitutive activation of the epidermal growth factor receptor (EGFR) because of somatic mutations of the EGFR gene is commonly observed in tumors of non-small cell lung cancer (NSCLC) patients. Consequently, tyrosine kinase inhibitors (TKI) targeting the EGFR are among the most effective therapies for patients with sensitizing EGFR mutations. Clinical responses to the EGFR-targeting TKIs are evaluated through 2-[18F]fluoro-2-deoxy-glucose (18FDG)-PET uptake, which is decreased in patients responding favorably to therapy and is positively correlated with survival. Recent studies have reported that EGFR signaling drives glucose metabolism in NSCLC cells; however, the precise downstream effectors required for this EGFR-driven metabolic effect are largely unknown. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is an essential glycolytic regulator that is consistently overexpressed in lung cancer. Here, we found that PFKFB3 is an essential target of EGFR signaling and that PFKFB3 activation is required for glycolysis stimulation upon EGFR activation. We demonstrate that exposing NSCLC cells harboring either WT or mutated EGFR to EGF rapidly increases PFKFB3 phosphorylation, expression, and activity and that PFKFB3 inhibition markedly reduces the EGF-mediated increase in glycolysis. Furthermore, we found that prolonged NSCLC cell exposure to the TKI erlotinib drives PFKFB3 expression and that chemical PFKFB3 inhibition synergizes with erlotinib in increasing erlotinib's anti-proliferative activity in NSCLC cells. We conclude that PFKFB3 has a key role in mediating glucose metabolism and survival of NSCLC cells in response to EGFR signaling. These results support the potential clinical utility of using PFKFB3 inhibitors in combination with EGFR-TKIs to manage NSCLC.


Assuntos
Fosfofrutoquinase-2/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mutação , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Transgenic Res ; 29(3): 295-305, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32318934

RESUMO

Chloroplast transformation has many potential advantages for the production of recombinant proteins in plants. However, it has been reported that chloroplast expression of many proteins, such as human epidermal growth factor (hEGF), results hindered by post-transcriptional mechanisms. hEGF degradation has been related to the redox potential of the stroma and protein misfolding. To solve this problem, we proposed the redirection of hEGF into the thylakoid lumen where the environment could improve disulfide bonds formation stabilizing the functional conformation of the protein. We generated transplastomic tobacco plants targeting hEGF protein to the thylakoid lumen by adding a transit peptide (Str). Following this approach, we could detect thylakoid lumen-targeted hEGF by western blotting while stromal accumulation of hEGF remained undetectable. Southern blot analysis confirmed the integration of the transgene through homologous recombination into the plastome. Northern blot analysis showed similar levels of egf transcripts in the EGF and StrEGF lines. These results suggest that higher stability of the hEGF peptide in the thylakoid lumen is the primary cause of the increased accumulation of the recombinant protein observed in StrEGF lines. They also highlight the necessity of exploring different sub-organellar destinations to improve the accumulation levels of a specific recombinant protein in plastids.


Assuntos
Cloroplastos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Tilacoides/metabolismo , Transgenes , Cloroplastos/genética , Fator de Crescimento Epidérmico/genética , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plastídeos/genética , Plastídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Tilacoides/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
17.
Reprod Biomed Online ; 41(5): 782-789, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32883565

RESUMO

RESEARCH QUESTION: Endometriosis, an inflammatory disease, is assumed to be associated with an increased production of growth-related cytokines. Based on the emerging immunomodulatory role of vitamin D3 in different inflammatory conditions, this study aimed to examine its modulatory effect on the expression levels of the genes for platelet-derived growth factor-B (PDGFB), monocyte/macrophage-derived growth factor (MDGF, also known as PPBP) and epidermal growth factor (EGF) in peritoneal fluid mononuclear cells (PFMC) in women with and without endometriosis. DESIGN: PFMC from 10 women with endometriosis and 10 control participants were treated with vitamin D3.The gene expression levels of PDGFB, MDGF and EGF were measured 6, 24 and 48 h following vitamin D3 administration using real-time PCR. RESULTS: Gene expression levels of EGF and PDGFB were higher in the PFMC of women with endometriosis than the control group (P = 0.006, P < 0.001, respectively). Although MDGF expression showed an increase in the endometriosis group compared with non-endometriotic controls, no significant difference was found. Vitamin D3 significantly decreased EGF expression at 6, 24 and 48 h (P < 0.001, P < 0.001 and P = 0.007, respectively), MDGF at 24 and 48 h (P < 0.001 and P = 0.009, respectively) and PDGFB at 6 h (P = 0.047) in the endometriosis group. Vitamin D3 treatment had no significant effect on expression of the genes in the PFMC of non-endometriotic women. CONCLUSIONS: The study concluded that PDGFB and EGF gene expression increases in endometriosis, and vitamin D3 could markedly decrease this expression, suggesting its therapeutic potential in endometriosis.


Assuntos
Colecalciferol/farmacologia , Endometriose/genética , Fator de Crescimento Epidérmico/genética , Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leucócitos Mononucleares/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/genética , Adulto , Líquido Ascítico/efeitos dos fármacos , Líquido Ascítico/metabolismo , Endometriose/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Leucócitos Mononucleares/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Adulto Jovem
18.
J Reprod Dev ; 66(2): 149-154, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31996487

RESUMO

Epidermal growth factor (EGF) concentrations in the uterus show two peaks on days 2-4 and 13-14 during the estrous cycle in fertile cows. Loss of the two peaks has been linked to reduced fertility in repeat breeder cows. This study aimed to examine the effect of seminal plasma (SP) on normalizing endometrial EGF concentrations and restoring fertility in repeat breeder cows with low EGF concentrations on day 3. In study 1, we examined the effect of the deposition sites (the vagina and uterus) of SP on the endometrial EGF concentrations in repeat breeder cows. SP infusion into the vagina, but not uterus, on the first day of the estrus cycle (day 0) normalized the endometrial EGF concentrations (≥ 4.7 ng/g tissue weight) on day 3. In study 2, the effect of SP volume (0.5 and 10 ml of SP and 0.5 ml of SP diluted to 10 ml) on EGF concentrations was examined. All groups with SP infusion had increased EGF concentrations on day 3, and cows with 10 ml of SP and 0.5 ml of SP diluted to 10 ml showed the highest levels of EGF concentrations. In study 3, we examined the effect of SP infusion on fertility. SP infusion normalized two peaks of endometrial EGF concentrations in about 60% of repeat breeder cows and produced more pregnancies than the controls (44.4 vs. 19.4%). Therefore, we concluded that SP may contain an activity to normalize the EGF profile and restore fertility in repeat breeder cows with altered EGF profiles.


Assuntos
Endométrio/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fertilidade/fisiologia , Sêmen/metabolismo , Vagina/metabolismo , Animais , Bovinos , Indústria de Laticínios , Ciclo Estral/metabolismo , Feminino
19.
Adv Exp Med Biol ; 1277: 33-52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119863

RESUMO

Tumor immune escape is now a hallmark of cancer development, and therapies targeting these pathways have emerged as standard of care. Specifically, immune checkpoint signal blockade offers durable responses and increased overall survival. However, the majority of cancer patients still do not respond to checkpoint blockade immune therapy leading to an unmet need in tumor immunology research. Sex-based differences have been noted in the use of cancer immunotherapy suggesting that sex hormones such as estrogen may play an important role in tumor immune regulation. Estrogen signaling already has a known role in autoimmunity, and the estrogen receptor can be expressed across multiple immune cell populations and effect their regulation. While it has been well established that tumor cells such as ovarian carcinoma, breast carcinoma, and even lung carcinoma can be regulated by estrogen, research into the role of estrogen in the regulation of tumor-associated immune cells is still emerging. In this chapter, we discuss the role of estrogen in the tumor immune microenvironment and the possible immunotherapeutic implications of targeting estrogen in cancer patients.


Assuntos
Estrogênios/fisiologia , Imunoterapia , Neoplasias/terapia , Evasão Tumoral , Microambiente Tumoral , Humanos , Transdução de Sinais
20.
J Biol Chem ; 293(35): 13401-13414, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29997256

RESUMO

The epidermal growth factor (EGF) receptor is a classical receptor tyrosine kinase with an extracellular ligand-binding domain and an intracellular kinase domain. Mutations in the EGF receptor have been shown to drive uncontrolled cell growth and are associated with a number of different tumors. Two different types of ATP-competitive EGF receptor tyrosine kinase inhibitors have been identified that bind to either the active (type I) or inactive (type II) conformation of the kinase domain. Despite the fact that both types of inhibitors block tyrosine kinase activity, they exhibit differential efficacies in different tumor types. Here, we show that in addition to inhibiting kinase activity, these inhibitors allosterically modulate ligand binding. Our data suggest that the conformations of the EGF receptor extracellular domain and intracellular kinase domain are coupled and that these conformations exist in equilibrium. Allosteric regulators, such as the small-molecule tyrosine kinase inhibitors, as well as mutations in the EGF receptor itself, shift the conformational equilibrium among the active and inactive species, leading to changes in EGF receptor-binding affinity. Our studies also reveal unexpected positive cooperativity between EGF receptor subunits in dimers formed in the presence of type II inhibitors. These findings indicate that there is strong functional coupling between the intracellular and extracellular domains of this receptor. Such coupling may impact the therapeutic synergy between small-molecule tyrosine kinase inhibitors and monoclonal antibodies in vivo.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Lapatinib/farmacologia , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Células CHO , Cricetulus , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Domínios Proteicos/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa