Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071997

RESUMO

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Criança , Feminino , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/complicações , Haploinsuficiência/genética , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Humanos
2.
Genet Med ; 26(1): 101007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37860968

RESUMO

PURPOSE: BCL11B-related disorder (BCL11B-RD) arises from rare genetic variants within the BCL11B gene, resulting in a distinctive clinical spectrum encompassing syndromic neurodevelopmental disorder, with or without intellectual disability, associated with facial features and impaired immune function. This study presents an in-depth clinico-biological analysis of 20 newly reported individuals with BCL11B-RD, coupled with a characterization of genome-wide DNA methylation patterns of this genetic condition. METHODS: Through an international collaboration, clinical and molecular data from 20 individuals were systematically gathered, and a comparative analysis was conducted between this series and existing literature. We further scrutinized peripheral blood DNA methylation profile of individuals with BCL11B-RD, contrasting them with healthy controls and other neurodevelopmental disorders marked by established episignature. RESULTS: Our findings unveil rarely documented clinical manifestations, notably including Rubinstein-Taybi-like facial features, craniosynostosis, and autoimmune disorders, all manifesting within the realm of BCL11B-RD. We refine the intricacies of T cell compartment alterations of BCL11B-RD, revealing decreased levels naive CD4+ T cells and recent thymic emigrants while concurrently observing an elevated proportion of effector-memory expressing CD45RA CD8+ T cells (TEMRA). Finally, a distinct DNA methylation episignature exclusive to BCL11B-RD is unveiled. CONCLUSION: This study serves to enrich our comprehension of the clinico-biological landscape of BCL11B-RD, potentially furnishing a more precise framework for diagnosis and follow-up of individuals carrying pathogenic BCL11B variant. Moreover, the identification of a unique DNA methylation episignature offers a valuable diagnosis tool for BCL11B-RD, thereby facilitating routine clinical practice by empowering physicians to reevaluate variants of uncertain significance within the BCL11B gene.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Linfócitos T CD8-Positivos/metabolismo , Fatores de Transcrição/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Metilação de DNA/genética , Proteínas Supressoras de Tumor/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
3.
Genet Med ; 26(8): 101167, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38770750

RESUMO

PURPOSE: Rare genetic variants in the PURA gene cause the PURA-related neurodevelopmental disorder (PURA-NDD), characterized by neonatal abnormalities and developmental delay. Using genome-wide DNA methylation analysis on patients with PURA variants, we aim to establish a PURA-NDD-specific methylation profile and provide further insights on the molecular basis of the PURA-NDD. METHODS: Twenty three individuals (including 12 unpublished) carrying PURA variants were enrolled. We conducted the Illumina Infinium EPIC microarray analysis in 17 PURA-NDD individuals. In vitro experiments were performed to examine how PURA variants affect Pur-a expression. RESULTS: Additional phenotypes in 12 newly identified patients were described in this study. Genome-wide DNA methylation analysis unveiled distinctive methylation profiles to PURA-NDD, and the established classifier can reclassify PURA variants of uncertain significance. Patients bearing PURA hapoloinsufficient and missense variants have comparable DNA methylation profiles, and cells expressing these PURA variants showed consistent Pur-a downregulation, suggesting a haploinsufficiency mechanism. CONCLUSION: Patients with PURA-NDD exhibit a specific episignature, which has potential to aid identification and diagnosis of PURA-NDD patients and offer implications for further functional investigations.


Assuntos
Metilação de DNA , Epigênese Genética , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Metilação de DNA/genética , Feminino , Epigênese Genética/genética , Masculino , Criança , Pré-Escolar , Estudo de Associação Genômica Ampla , Fenótipo , Haploinsuficiência/genética , Lactente
4.
Semin Cancer Biol ; 83: 261-268, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33785448

RESUMO

Thyroid cancer is not among the top cancers in terms of diagnosis or mortality but it still ranks fifth among the cancers diagnosed in women. Infact, women are more likely to be diagnosed with thyroid cancer than the males. The burden of thyroid cancer has dramatically increased in last two decades in China and, in the United States, it is the most diagnosed cancer in young adults under the age of twenty-nine. All these factors make it worthwhile to fully understand the pathogenesis of thyroid cancer. Towards this end, microRNAs (miRNAs) have constantly emerged as the non-coding RNAs of interest in various thyroid cancer subtypes on which there have been numerous investigations over the last decade and half. This comprehensive review takes a look at the current knowledge on the topic with cataloging of miRNAs known so far, particularly related to their utility as epigenetic signatures of thyroid cancer progression and metastasis. Such information could be of immense use for the eventual development of miRNAs as therapeutic targets or even therapeutic agents for thyroid cancer therapy.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Epigênese Genética , Epigenômica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
5.
Am J Hum Genet ; 107(3): 555-563, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32758449

RESUMO

Helsmoortel-Van der Aa syndrome (HVDAS) is a neurodevelopmental condition associated with intellectual disability/developmental delay, autism spectrum disorder, and multiple medical comorbidities. HVDAS is caused by mutations in activity-dependent neuroprotective protein (ADNP). A recent study identified genome-wide DNA methylation changes in 22 individuals with HVDAS, adding to the group of neurodevelopmental disorders with an epigenetic signature. This methylation signature segregated those with HVDAS into two groups based on the location of the mutations. Here, we conducted an independent study on 24 individuals with HVDAS and replicated the existence of the two mutation-dependent episignatures. To probe whether the two distinct episignatures correlate with clinical outcomes, we used deep behavioral and neurobiological data from two prospective cohorts of individuals with a genetic diagnosis of HVDAS. We found limited phenotypic differences between the two HVDAS-affected groups and no evidence that individuals with more widespread methylation changes are more severely affected. Moreover, in spite of the methylation changes, we observed no profound alterations in the blood transcriptome of individuals with HVDAS. Our data warrant caution in harnessing methylation signatures in HVDAS as a tool for clinical stratification, at least with regard to behavioral phenotypes.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Transtorno do Espectro Autista/patologia , Criança , Metilação de DNA/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Epigênese Genética/genética , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Mutação/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Transcriptoma/genética
6.
Eur J Immunol ; 52(5): 737-752, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35245389

RESUMO

Resident memory T lymphocytes (TRM ) of epithelial tissues and the Bm protect their host tissue. To what extent these cells are mobilized and contribute to systemic immune reactions is less clear. Here, we show that in secondary immune reactions to the measles-mumps-rubella (MMR) vaccine, CD4+ TRM are mobilized into the blood within 16 to 48 h after immunization in humans. This mobilization of TRM is cognate: TRM recognizing other antigens are not mobilized, unless they cross-react with the vaccine. We also demonstrate through methylome analyses that TRM are mobilized from the Bm. These mobilized cells make significant contribution to the systemic immune reaction, as evidenced by their T-cell receptor Vß clonotypes represented among the newly generated circulating memory T-cells, 14 days after vaccination. Thus, TRM of the Bm confer not only local, but also systemic immune memory.


Assuntos
Memória Imunológica , Vacinas , Medula Óssea , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Humanos
7.
Cancer Metastasis Rev ; 40(1): 245-272, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33423164

RESUMO

Pancreatic cancer (PC) is assumed to be an intimidating and deadly malignancy due to being the leading cause of cancer-led mortality, predominantly affecting males of older age. The overall (5 years) survival rate of PC is less than 9% and is anticipated to be aggravated in the future due to the lack of molecular acquaintance and diagnostic tools for its early detection. Multiple factors are involved in the course of PC development, including genetics, cigarette smoking, alcohol, family history, and aberrant epigenetic signatures of the epigenome. In this review, we will mainly focus on the genetic mutations and epigenetic signature of PC. Multiple tumor suppressor and oncogene mutations are involved in PC initiation, including K-RAS, p53, CDKN2A, and SMAD4. The mutational frequency of these genes ranges from 50 to 98% in PC. The nature of mutation diagnosis is mostly homozygous deletion, point mutation, and aberrant methylation. In addition to genetic modification, epigenetic alterations particularly aberrant hypermethylation and hypomethylation also predispose patients to PC. Hypermethylation is mostly involved in the downregulation of tumor suppressor genes and leads to PC, while multiple genes also represent a hypomethylation status in PC. Several renewable drugs and detection tools have been developed to cope with this aggressive malady, but all are futile, and surgical resection remains the only choice for prolonged survival if diagnosed before metastasis. However, the available therapeutic development is insufficient to cure PC. Therefore, novel approaches are a prerequisite to elucidating the genetic and epigenetic mechanisms underlying PC progression for healthier lifelong survival.


Assuntos
Epigênese Genética , Mutação , Neoplasias Pancreáticas , Homozigoto , Humanos , Neoplasias Pancreáticas/genética , Deleção de Sequência
8.
Clin Immunol ; 243: 109105, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055572

RESUMO

Epigenetic modifications contribute to lymphomagenesis. Here, we performed an expression clustering analysis and identified two epigenetic-related clusters (EC1 and EC2). EC1 presented abundant TP53, MYD88, HIST1H1D, HIST1H1C, KMT2D and EZH2 mutations and an inferior prognosis. Pathways involved in the regulation of DNA methylation/demethylation, histone methyltransferase activity, and protein methyltransferase activity were significantly enriched in EC1. However, EC2 was frequently accompanied by B2M, CD70 and MEF2B mutations, which presented with enrichments in DNA damage repair, cytokine-mediated and B-cell activated immune signaling, increased levels of CD8+ T-, γδT- and T helper-cells, as well as immune scores and immunogenic cell death (ICD) modulators. According to the prediction, EC1 was more sensitive to vorinostat, serdemetan and navitoclax. However, ruxolitinib, cytarabine and CP466722 were more suitable treatments for EC2. The novel immune-related epigenetic signature exhibits promising clinical predictive value for diffuse large B-cell lymphoma (DLBCL), particularly for guiding epigenetic therapeutic regimens. R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) based combination treatment regimens are suggested.


Assuntos
Epigênese Genética , Linfoma Difuso de Grandes Células B , Transcriptoma , Anticorpos Monoclonais Murinos/genética , Anticorpos Monoclonais Murinos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Citarabina/uso terapêutico , Citocinas/genética , Doxorrubicina/uso terapêutico , Epigênese Genética/imunologia , Histona Metiltransferases/genética , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Fator 88 de Diferenciação Mieloide/genética , Prednisona/uso terapêutico , Prognóstico , Proteínas Metiltransferases/genética , Rituximab/uso terapêutico , Vincristina/uso terapêutico , Vorinostat/uso terapêutico
9.
Genomics ; 113(3): 1114-1126, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705885

RESUMO

In the study, Methylated DNA immunoprecipitation sequencing, RNA sequencing, and whole-exome sequencing were employed to clinical small cell lung cancer (SCLC) patients. Then, we verified the therapeutic predictive effects of differentially methylated genes (DMGs) in 62 SCLC cell lines. Of 4552 DMGs between chemo-sensitive and chemo-insensitive group, coding genes constituted the largest percentage (85.08%), followed by lncRNAs (10.52%) and miRNAs (3.56%). Both two groups demonstrated two methylation peaks near transcription start site and transcription end site. Two lncRNA-miRNA-mRNA networks suggested the extensive genome connection between chemotherapy efficacy-related non-coding RNAs (ncRNAs) and mRNAs. Combing miRNAs and lncRNAs could effectively predict chemotherapy response in SCLC. In addition, we also verified the predictive values of mutated genes in SCLC cell lines. This study was the first to evaluate multiple drugs efficacy-related ncRNAs and mRNAs which were modified by methylation in SCLC. DMGs identified in our research might serve as promising therapeutic targets to reverse drugs-insensitivity by complex lncRNA-miRNA-mRNA mechanisms in SCLC.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Carcinoma de Pequenas Células do Pulmão , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética
10.
Cancer Cell Int ; 20(1): 564, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33292239

RESUMO

BACKGROUND: Recently, increasing study have found that DNA methylation plays an important role in tumor, including clear cell renal cell carcinoma (ccRCC). METHODS: We used the DNA methylation dataset of The Cancer Genome Atlas (TCGA) database to construct a 31-CpG-based signature which could accurately predict the overall survival of ccRCC. Meanwhile, we constructed a nomogram to predict the prognosis of patients with ccRCC. RESULT: Through LASSO Cox regression analysis, we obtained the 31-CpG-based epigenetic signature which were significantly related to the prognosis of ccRCC. According to the epigenetic signature, patients were divided into two groups with high and low risk, and the predictive value of the epigenetic signature was verified by other two sets. In the training set, hazard ratio (HR) = 13.0, 95% confidence interval (CI) 8.0-21.2, P < 0.0001; testing set: HR = 4.1, CI 2.2-7.7, P < 0.0001; entire set: HR = 7.2, CI 4.9-10.6, P < 0.0001, Moreover, combined with clinical indicators, the prediction of 5-year survival of ccRCC reached an AUC of 0.871. CONCLUSIONS: Our study constructed a 31-CpG-based epigenetic signature that could accurately predicted overall survival of ccRCC and staging progression of ccRCC. At the same time, we constructed a nomogram, which may facilitate the prediction of prognosis for patients with ccRCC.

11.
BMC Cancer ; 18(1): 574, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776342

RESUMO

BACKGROUND: Immune surveillance acts as a defense mechanism in cancer, and its disruption is involved in cancer progression. DNA methylation reflects the phenotypic identity of cells and recent data suggested that DNA methylation profiles of T cells and peripheral blood mononuclear cells (PBMC) are altered in cancer progression. METHODS: We enrolled 19 females with stage 1 and 2, nine with stage 3 and 4 and 9 age matched healthy women. T cells were isolated from peripheral blood and extracted DNA was subjected to Illumina 450 K DNA methylation array analysis. Raw data was analyzed by BMIQ, ChAMP and ComBat followed by validation of identified genes by pyrosequencing. RESULTS: Analysis of data revealed ~ 10,000 sites that correlated with breast cancer progression and established a list of 89 CG sites that were highly correlated (p < 0.01, r > 0.7, r < - 0.7) with breast cancer progression. The vast majority of these sites were hypomethylated and enriched in genes with functions in the immune system. CONCLUSIONS: The study points to the possibility of using DNA methylation signatures as a noninvasive method for early detection of breast cancer and its progression which need to be tested in clinical studies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Metilação de DNA/imunologia , Vigilância Imunológica/genética , Linfócitos T/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Progressão da Doença , Epigênese Genética , Feminino , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Linfócitos T/imunologia
12.
Biometals ; 30(4): 505-515, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28516305

RESUMO

Global methylation pattern regulates the normal functioning of a cell. Research have shown arsenic alter these methylation landscapes within the genome leading to aberrant gene expression and inducts various pathophysiological outcomes. Long interspersed nuclear elements (LINE-1) normally remains inert due to heavy methylation of it's promoters, time and various environmental insults, they lose these methylation signatures and begin retro-transposition that has been associated with genomic instability and cancerous outcomes. Of the various high throughput technologies available to detect global methylation profile, development of LINE-1 methylation index shall provide a cost effect-screening tool to detect epimutagenic events in the wake of toxic exposure in a large number of individuals. In the present review, we tried to discuss the state of research and whether LINE-1 methylation can be considered as a potent epigenetic signature for arsenic toxicity.


Assuntos
Intoxicação por Arsênico/genética , Arsênio/toxicidade , Exposição Ambiental/efeitos adversos , Epigênese Genética , Elementos Nucleotídeos Longos e Dispersos , Neoplasias/genética , Intoxicação por Arsênico/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ilhas de CpG , Metilação de DNA , Ácido Fólico/metabolismo , Genoma Humano , Humanos , Neoplasias/induzido quimicamente , Neoplasias/metabolismo , Neoplasias/patologia , Regiões Promotoras Genéticas , S-Adenosilmetionina/metabolismo
13.
Am J Respir Crit Care Med ; 193(4): 376-85, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26474238

RESUMO

RATIONALE: Epigenetic changes to airway cells have been proposed as important modulators of the effects of environmental exposures on airway diseases, yet no study to date has shown epigenetic responses to exposures in the airway that correlate with disease state. The type 2 cytokine IL-13 is a key mediator of allergic airway diseases, such as asthma, and is up-regulated in response to many asthma-promoting exposures. OBJECTIVES: To directly study the epigenetic response of airway epithelial cells (AECs) to IL-13 and test whether IL-13-induced epigenetic changes differ between individuals with and without asthma. METHODS: Genome-wide DNA methylation and gene expression patterns were studied in 58 IL-13-treated and untreated primary AEC cultures and validated in freshly isolated cells of subjects with and without asthma using the Illumina Human Methylation 450K and HumanHT-12 BeadChips. IL-13-mediated comethylation modules were identified and correlated with clinical phenotypes using weighted gene coexpression network analysis. MEASUREMENTS AND MAIN RESULTS: IL-13 altered global DNA methylation patterns in cultured AECs and were significantly enriched near genes associated with asthma. Importantly, a significant proportion of this IL-13 epigenetic signature was validated in freshly isolated AECs from subjects with asthma and clustered into two distinct modules, with module 1 correlated with asthma severity and lung function and module 2 with eosinophilia. CONCLUSIONS: These results suggest that a single exposure of IL-13 may selectively induce long-lasting DNA methylation changes in asthmatic airways that alter specific AEC pathways and contribute to asthma phenotypes.


Assuntos
Asma/genética , Metilação de DNA/genética , Epigênese Genética/genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Interleucina-13/genética , Adulto , Células Cultivadas , Feminino , Humanos , Masculino
14.
Adv Exp Med Biol ; 879: 39-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26659263

RESUMO

Latent Epstein-Bar virus genomes undergo epigenetic modifications which are dependent on the respective tissue type and cellular phenotype. These define distinct viral epigenotypes corresponding with latent viral gene expression profiles. Viral Latent Membrane Proteins 1 and 2A can induce cellular DNA methyltransferases, thereby influencing the methylation status of the viral and cellular genomes. Therefore, not only the viral genomes carry epigenetic modifications, but also the cellular genomes adopt major epigenetic alterations upon EBV infection. The distinct cellular epigenotypes of EBV-infected cells differ from the epigenotypes of their normal counterparts. In Burkitt lymphoma (BL), nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (EBVaGC) significant changes in the host cell methylome with a strong tendency towards CpG island hypermethylation are observed. Hypermethylated genes unique for EBVaGC suggest the existence of an EBV-specific "epigenetic signature". Contrary to the primary malignancies carrying latent EBV genomes, lymphoblastoid cells (LCs) established by EBV infection of peripheral B cells in vitro are characterized by a massive genome-wide demethylation and a significant decrease and redistribution of heterochromatic histone marks. Establishing complete epigenomes of the diverse EBV-associated malignancies shall clarify their similarities and differences and further clarify the contribution of EBV to the pathogenesis, especially for the epithelial malignancies, NPC and EBVaGC.


Assuntos
Transformação Celular Viral , Epigênese Genética , Infecções por Vírus Epstein-Barr/metabolismo , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/metabolismo , Animais , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
J Pers Med ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38248751

RESUMO

High-grade serous tubo-ovarian cancer (HGSTOC) is the most lethal tumor of the female genital tract. The foregoing therapy consists of cytoreduction followed by standard platinum/taxane chemotherapy; alternatively, for primary unresectable tumors, neo-adjuvant platinum/taxane chemotherapy followed by delayed interval cytoreduction. In patients with suboptimal surgery or advanced disease, different forms of targeted therapy have been accepted or tested in clinical trials. Studies on HGSTOC discovered its genetic and proteomic heterogeneity, epigenetic regulation, and the role of the tumor microenvironment. These findings turned attention to the fact that there are several distinct primary tumor subtypes of HGSTOC and the unique biology of primary, metastatic, and recurrent tumors may result in a differential drug response. This results in both chemo-refractoriness of some primary tumors and, what is significantly more frequent and destructive, secondary chemo-resistance of metastatic and recurrent HGSTOC tumors. Treatment possibilities for platinum-resistant disease include several chemotherapeutics with moderate activity and different targeted drugs with difficult tolerable effects. Therefore, the question appears as to why different subtypes of ovarian cancer are predominantly treated based on the same therapeutic schemes and not in an individualized way, adjusted to the biology of a specific tumor subtype and temporal moment of the disease. The paper reviews the genomic, mutational, and epigenetic signatures of HGSTOC subtypes and the tumor microenvironment. The clinical trials on personalized therapy and the overall results of a new, comprehensive approach to personalized therapy for ovarian cancer have been presented and discussed.

16.
Epigenomics ; 15(21): 1101-1119, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37990886

RESUMO

Aim: Conservative treatment approaches for thyroid carcinoma (TC) patients with wild-type B-type Raf kinase (BRAF) pose risks of long-term recurrence. The association of DNA methylation with TC metastasis is unclear. Patients & methods: Here we analyzed data from 179 BRAF wild-type TC patients in the The Cancer Genome Atlas database, identifying significant metastasis-associated CpGs. A logistic regression model was developed and validated for discriminating lymphatic metastasis in BRAF wild-type TC. Results: The model showed high accuracy (AUC: 0.924 training set; 0.812 and 0.773 external cohorts). TAGLN, MRPL4, CLDN10 and GRIK2 emerged as diagnostic markers. GRIK2, downregulated due to promoter hypermethylation, acted as a TC suppressor. Conclusion: Our 5-CpG epigenetic signature effectively discriminates lymphatic metastasis in BRAF wild-type TC, highlighting GRIK2's tumor-suppressive role influenced by promoter hypermethylation.


Assuntos
Proteínas Proto-Oncogênicas B-raf , Neoplasias da Glândula Tireoide , Humanos , Metilação de DNA , Epigênese Genética , Metástase Linfática , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Receptor de GluK2 Cainato
17.
Clin Epigenetics ; 14(1): 155, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443762

RESUMO

BACKGROUND: Smoking and alcohol consumption may compromise health by way of epigenetic modifications. Epigenetic signatures of alcohol and tobacco consumption could provide insights into the reversibility of phenotypic changes incurred with differing levels of lifestyle exposures. This study describes and validates two novel epigenetic signatures of tobacco (EpiTob) and alcohol (EpiAlc) consumption and investigates their association with disease outcomes. METHODS: The epigenetic signatures, EpiTob and EpiAlc, were developed using data from the Swiss Kidney Project on Genes in Hypertension (SKIPOGH) (N = 689). Epigenetic and phenotypic data available from the 1921 (N = 550) and 1936 (N = 1091) Lothian Birth Cohort (LBC) studies, and two publicly available datasets on GEO Accession (GSE50660, N = 464; and GSE110043, N = 94) were used to validate the signatures. A multivariable logistic regression model, adjusting for age and sex, was used to assess the association between self-reported tobacco or alcohol consumption and the respective epigenetic signature, as well as to estimate the association between CVD and epigenetic signatures. A Cox proportional hazard model was used to estimate the risk of mortality in association with the EpiTob and EpiAlc signatures. RESULTS: The EpiTob signature was positively associated with self-reported tobacco consumption for current or never smokers with explained variance ranging from 0.49 (LBC1921) to 0.72 (LBC1936) (pseudo-R2). In the SKIPOGH, LBC1921 and LBC1936 cohorts, the epigenetic signature for alcohol consumption explained limited variance in association with self-reported alcohol status [i.e., non-drinker, moderate drinker, and heavy drinker] (pseudo-R2 = 0.05, 0.03 and 0.03, respectively), although this improved considerably when measuring self-reported alcohol consumption with standardized units consumed per week (SKIPOGH R2 = 0.21; LBC1921 R2 = 0.31; LBC1936 R2 = 0.41). Both signatures were associated with history of CVD in SKIPOGH and LBC1936, but not in LBC1921. The EpiTob signature was associated with increased risk of all-cause and lung-cancer specific mortality in the 1936 and 1921 LBC cohorts. CONCLUSIONS: This study found the EpiTob and EpiAlc signatures to be well-correlated with self-reported exposure status and associated with long-term health outcomes. Epigenetic signatures of lifestyle exposures may reduce measurement issues and biases and could aid in risk stratification for informing early-stage targeted interventions.


Assuntos
Doenças Cardiovasculares , Nicotiana , Humanos , Metilação de DNA , Uso de Tabaco/efeitos adversos , Uso de Tabaco/genética , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/genética , Estilo de Vida , Etanol
18.
Genes (Basel) ; 13(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36553533

RESUMO

As a consequence of the implementation of NGS technologies, the diagnostic yield of neurodevelopmental disorders has dramatically increased during the past two decades. Among neurodevelopmental genes, transcription-related genes and chromatin remodeling genes are the most represented category of disease-causing genes. Indeed, the term "chromatinopathies" is now widely used to describe epigenetic disorders caused by mutations in these genes. We hereby describe a twenty-seven-year-old female patient diagnosed with moderate intellectual disability comorbid with other neuropsychiatric and behavioral issues carrying a de novo heterozygous stop variant in the KDM5C gene (NM_004187.5: c. 3847G>T, p.Glu1283*), encoding a histone demethylase that specifically acts on the H3K4 lysines. The gene is located on the X chromosome and has been associated with Claes-Jensen-type intellectual disability, an X-linked syndromic disorder. We discuss our case in relation to previously reported affected females harboring pathogenic mutations in the KDM5C gene with the objective of delineating genotype-phenotype correlations and further defining a common recognizable phenotype. We also highlight the importance of reverse phenotyping in relation to whole-exome sequencing results.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Histona Desmetilases/genética , Mutação , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Estudos de Associação Genética
19.
Theranostics ; 12(8): 3794-3817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664067

RESUMO

Background: High emotional or psychophysical stress levels have been correlated with an increased risk and progression of various diseases. How stress impacts the gut microbiota to influence metabolism and subsequent cancer progression is unclear. Methods: Feces and serum samples from BALB/c ANXA1+/+ and ANXA1-/- mice with or without chronic restraint stress were used for 16S rRNA gene sequencing and GC-MS metabolomics analysis to investigate the effect of stress on microbiome and metabolomics during stress and breast tumorigenesis. Breast tumors samples from stressed and non-stressed mice were used to perform Whole-Genome Bisulfite Sequencing (WGBS) and RNAseq analysis to construct the potential network from candidate hub genes. Finally, machine learning and integrated analysis were used to map the axis from chronic restraint stress to breast cancer development. Results: We report that chronic stress promotes breast tumor growth via a stress-microbiome-metabolite-epigenetic-oncology (SMMEO) axis. Chronic restraint stress in mice alters the microbiome composition and fatty acids metabolism and induces an epigenetic signature in tumors xenografted after stress. Subsequent machine learning and systemic modeling analyses identified a significant correlation among microbiome composition, metabolites, and differentially methylated regions in stressed tumors. Moreover, silencing Annexin-A1 inhibits the changes in the gut microbiome and fatty acid metabolism after stress as well as basal and stress-induced tumor growth. Conclusions: These data support a physiological axis linking the microbiome and metabolites to cancer epigenetics and inflammation. The identification of this axis could propel the next phase of experimental discovery in further understanding the underlying molecular mechanism of tumorigenesis caused by physiological stress.


Assuntos
Anexina A1 , Microbiota , Neoplasias , Animais , Carcinogênese/genética , Epigênese Genética , Ácidos Graxos/farmacologia , Metaboloma , Metabolômica , Camundongos , Neoplasias/genética , RNA Ribossômico 16S/genética
20.
Front Cell Dev Biol ; 9: 670854, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136486

RESUMO

Glioma is the most common primary brain tumor with poor prognosis and high mortality. The purpose of this study was to use the epigenetic signature to predict prognosis and evaluate the degree of immune infiltration in gliomas. We integrated gene expression profiles and DNA methylation data of lower-grade glioma and glioblastoma to explore epigenetic differences and associated differences in biological function. Cox regression and lasso analysis were used to develop an epigenetic signature based on eight DNA methylation sites to predict prognosis of glioma patients. Kaplan-Meier analysis showed that the overall survival time of high- and low-risk groups was significantly separated, and ROC analysis verified that the model had great predictive ability. In addition, we constructed a nomogram based on age, sex, 1p/19q status, glioma type, and risk score. The epigenetic signature was obviously associated with tumor purity, immune checkpoints, and tumor-immune infiltrating cells (CD8+ T cells, gamma delta T cells, M0 macrophages, M1 macrophages, M2 macrophages, activated NK cells, monocytes, and activated mast cells) and thus, it may find application as a guide for the evaluation of immune infiltration or in treatment decisions in immunotherapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa