Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.519
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849372

RESUMO

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Assuntos
Desaminases APOBEC/genética , Neoplasias/genética , Desaminases APOBEC/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Análise Mutacional de DNA/métodos , Bases de Dados Genéticas , Exoma , Genoma Humano/genética , Xenoenxertos , Humanos , Mutagênese , Mutação/genética , Taxa de Mutação , Retroelementos , Sequenciamento do Exoma/métodos
2.
Cell ; 170(5): 1000-1012.e19, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28823555

RESUMO

The formation and retrieval of a memory is thought to be accomplished by activation and reactivation, respectively, of the memory-holding cells (engram cells) by a common set of neural circuits, but this hypothesis has not been established. The medial temporal-lobe system is essential for the formation and retrieval of episodic memory for which individual hippocampal subfields and entorhinal cortex layers contribute by carrying out specific functions. One subfield whose function is poorly known is the subiculum. Here, we show that dorsal subiculum and the circuit, CA1 to dorsal subiculum to medial entorhinal cortex layer 5, play a crucial role selectively in the retrieval of episodic memories. Conversely, the direct CA1 to medial entorhinal cortex layer 5 circuit is essential specifically for memory formation. Our data suggest that the subiculum-containing detour loop is dedicated to meet the requirements associated with recall such as rapid memory updating and retrieval-driven instinctive fear responses.


Assuntos
Córtex Entorrinal/metabolismo , Hipocampo/metabolismo , Memória Episódica , Vias Neurais , Animais , Corticosterona/metabolismo , Córtex Entorrinal/citologia , Expressão Gênica , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética
3.
Annu Rev Neurosci ; 43: 73-93, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31961765

RESUMO

Interval timing, which operates on timescales of seconds to minutes, is distributed across multiple brain regions and may use distinct circuit mechanisms as compared to millisecond timing and circadian rhythms. However, its study has proven difficult, as timing on this scale is deeply entangled with other behaviors. Several circuit and cellular mechanisms could generate sequential or ramping activity patterns that carry timing information. Here we propose that a productive approach is to draw parallels between interval timing and spatial navigation, where direct analogies can be made between the variables of interest and the mathematical operations necessitated. Along with designing experiments that isolate or disambiguate timing behavior from other variables, new techniques will facilitate studies that directly address the neural mechanisms that are responsible for interval timing.


Assuntos
Encéfalo/fisiologia , Ritmo Circadiano/fisiologia , Neurônios/fisiologia , Navegação Espacial/fisiologia , Tempo , Animais , Humanos , Modelos Neurológicos
4.
Proc Natl Acad Sci U S A ; 121(44): e2403015121, 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39436664

RESUMO

The hippocampus is functionally specialized along its longitudinal axis with intricate interactions with cortical systems, which is crucial for understanding development and cognition. Using a well-established connectopic mapping technique on two large resting-state functional MRI datasets, we systematically quantified topographic organization of the hippocampal functional connectivity (hippocampal gradient) and its cortical interaction in developing brains. We revealed hippocampal functional hierarchy within the large-scale cortical brain systems, with the anterior hippocampus preferentially connected to an anterior temporal (AT) pathway and the posterior hippocampus embedded in a posterior medial (PM) pathway. We examined the developmental effects of the primary gradient and its whole-brain functional interaction. We observed increased functional specialization along the hippocampal long axis and found a general whole-brain connectivity shift from the posterior to the anterior hippocampus during development. Using phenotypic predictive modeling, we further delineated how the hippocampus is differentially integrated into the whole-brain cortical hierarchy underlying episodic memory and identified several key nodes within PM/AT systems. Our results highlight the importance of hippocampal gradient and its cortical interaction in development and for supporting episodic memory.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Memória Episódica , Hipocampo/fisiologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/diagnóstico por imagem , Humanos , Masculino , Feminino , Adulto , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Conectoma , Adulto Jovem , Mapeamento Encefálico/métodos , Adolescente , Criança , Vias Neurais/fisiologia
5.
Proc Natl Acad Sci U S A ; 121(9): e2314423121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377208

RESUMO

Sleep supports the consolidation of episodic memory. It is, however, a matter of ongoing debate how this effect is established, because, so far, it has been demonstrated almost exclusively for simple associations, which lack the complex associative structure of real-life events, typically comprising multiple elements with different association strengths. Because of this associative structure interlinking the individual elements, a partial cue (e.g., a single element) can recover an entire multielement event. This process, referred to as pattern completion, is a fundamental property of episodic memory. Yet, it is currently unknown how sleep affects the associative structure within multielement events and subsequent processes of pattern completion. Here, we investigated the effects of post-encoding sleep, compared with a period of nocturnal wakefulness (followed by a recovery night), on multielement associative structures in healthy humans using a verbal associative learning task including strongly, weakly, and not directly encoded associations. We demonstrate that sleep selectively benefits memory for weakly associated elements as well as for associations that were not directly encoded but not for strongly associated elements within a multielement event structure. Crucially, these effects were accompanied by a beneficial effect of sleep on the ability to recall multiple elements of an event based on a single common cue. In addition, retrieval performance was predicted by sleep spindle activity during post-encoding sleep. Together, these results indicate that sleep plays a fundamental role in shaping associative structures, thereby supporting pattern completion in complex multielement events.


Assuntos
Consolidação da Memória , Memória Episódica , Distúrbios do Início e da Manutenção do Sono , Humanos , Sono , Rememoração Mental , Vigília
6.
Proc Natl Acad Sci U S A ; 120(35): e2308951120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603733

RESUMO

Individuals generally form their unique memories from shared experiences, yet the neural representational mechanisms underlying this subjectiveness of memory are poorly understood. The current study addressed this important question from the cross-subject neural representational perspective, leveraging a large functional magnetic resonance imaging dataset (n = 415) of a face-name associative memory task. We found that individuals' memory abilities were predicted by their synchronization to the group-averaged, canonical trial-by-trial activation level and, to a lesser degree, by their similarity to the group-averaged representational patterns during encoding. More importantly, the memory content shared between pairs of participants could be predicted by their shared local neural activation pattern, particularly in the angular gyrus and ventromedial prefrontal cortex, even after controlling for differences in memory abilities. These results uncover neural representational mechanisms for individualized memory and underscore the constructive nature of episodic memory.


Assuntos
Memória Episódica , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Parietal
7.
Proc Natl Acad Sci U S A ; 120(31): e2207978120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487086

RESUMO

Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.


Assuntos
Mioquimia , Animais , Camundongos , Drosophila melanogaster , Ataxia , Drosophila , Canal de Potássio Kv1.2
8.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527810

RESUMO

Episodic memory retrieval is associated with the holistic neocortical reinstatement of all event information, an effect driven by hippocampal pattern completion. However, whether holistic reinstatement occurs, and whether hippocampal pattern completion continues to drive reinstatement, after a period of consolidation is unclear. Theories of systems consolidation predict either a time-variant or time-invariant role of the hippocampus in the holistic retrieval of episodic events. Here, we assessed whether episodic events continue to be reinstated holistically and whether hippocampal pattern completion continues to facilitate holistic reinstatement following a period of consolidation. Female and male human participants learned "events" that comprised multiple overlapping pairs of event elements (e.g., person-location, object-location, location-person). Importantly, encoding occurred either immediately before or 24 h before retrieval. Using fMRI during the retrieval of events, we show evidence for holistic reinstatement, as well as a correlation between reinstatement and hippocampal pattern completion, regardless of whether retrieval occurred immediately or 24 h after encoding. Thus, hippocampal pattern completion continues to contribute to holistic reinstatement after a delay. However, our results also revealed that some holistic reinstatement can occur without evidence for a corresponding signature of hippocampal pattern completion after a delay (but not immediately after encoding). We therefore show that hippocampal pattern completion, in addition to a nonhippocampal process, has a role in holistic reinstatement following a period of consolidation. Our results point to a consolidation process where the hippocampus and neocortex may work in an additive, rather than compensatory, manner to support episodic memory retrieval.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Memória Episódica , Rememoração Mental , Humanos , Masculino , Feminino , Hipocampo/fisiologia , Hipocampo/diagnóstico por imagem , Adulto Jovem , Rememoração Mental/fisiologia , Adulto , Fatores de Tempo , Adolescente , Consolidação da Memória/fisiologia
9.
J Neurosci ; 44(21)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38569925

RESUMO

When we perceive a scene, our brain processes various types of visual information simultaneously, ranging from sensory features, such as line orientations and colors, to categorical features, such as objects and their arrangements. Whereas the role of sensory and categorical visual representations in predicting subsequent memory has been studied using isolated objects, their impact on memory for complex scenes remains largely unknown. To address this gap, we conducted an fMRI study in which female and male participants encoded pictures of familiar scenes (e.g., an airport picture) and later recalled them, while rating the vividness of their visual recall. Outside the scanner, participants had to distinguish each seen scene from three similar lures (e.g., three airport pictures). We modeled the sensory and categorical visual features of multiple scenes using both early and late layers of a deep convolutional neural network. Then, we applied representational similarity analysis to determine which brain regions represented stimuli in accordance with the sensory and categorical models. We found that categorical, but not sensory, representations predicted subsequent memory. In line with the previous result, only for the categorical model, the average recognition performance of each scene exhibited a positive correlation with the average visual dissimilarity between the item in question and its respective lures. These results strongly suggest that even in memory tests that ostensibly rely solely on visual cues (such as forced-choice visual recognition with similar distractors), memory decisions for scenes may be primarily influenced by categorical rather than sensory representations.


Assuntos
Imageamento por Ressonância Magnética , Reconhecimento Visual de Modelos , Reconhecimento Psicológico , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Reconhecimento Psicológico/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Percepção Visual/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Rememoração Mental/fisiologia , Mapeamento Encefálico
10.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38627090

RESUMO

Humans have the remarkable ability to vividly retrieve sensory details of past events. According to the theory of sensory reinstatement, during remembering, brain regions specialized for processing specific sensory stimuli are reactivated to support content-specific retrieval. Recently, several studies have emphasized transformations in the spatial organization of these reinstated activity patterns. Specifically, studies of scene stimuli suggest a clear anterior shift in the location of retrieval activations compared with the activity observed during perception. However, it is not clear that such transformations occur universally, with inconsistent evidence for other important stimulus categories, particularly faces. One challenge in addressing this question is the careful delineation of face-selective cortices, which are interdigitated with other selective regions, in configurations that spatially differ across individuals. Therefore, we conducted a multisession neuroimaging study to first carefully map individual participants' (nine males and seven females) face-selective regions within ventral temporal cortex (VTC), followed by a second session to examine the activity patterns within these regions during face memory encoding and retrieval. While face-selective regions were expectedly engaged during face perception at encoding, memory retrieval engagement exhibited a more selective and constricted reinstatement pattern within these regions, but did not show any consistent direction of spatial transformation (e.g., anteriorization). We also report on unique human intracranial recordings from VTC under the same experimental conditions. These findings highlight the importance of considering the complex configuration of category-selective cortex in elucidating principles shaping the neural transformations that occur from perception to memory.


Assuntos
Mapeamento Encefálico , Reconhecimento Facial , Imageamento por Ressonância Magnética , Lobo Temporal , Humanos , Masculino , Feminino , Lobo Temporal/fisiologia , Lobo Temporal/diagnóstico por imagem , Adulto , Reconhecimento Facial/fisiologia , Adulto Jovem , Memória/fisiologia , Estimulação Luminosa/métodos , Rememoração Mental/fisiologia
11.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38050089

RESUMO

The hippocampus plays a central role as a coordinate system or index of information stored in neocortical loci. Nonetheless, it remains unclear how hippocampal processes integrate with cortical information to facilitate successful memory encoding. Thus, the goal of the current study was to identify specific hippocampal-cortical interactions that support object encoding. We collected fMRI data while 19 human participants (7 female and 12 male) encoded images of real-world objects and tested their memory for object concepts and image exemplars (i.e., conceptual and perceptual memory). Representational similarity analysis revealed robust representations of visual and semantic information in canonical visual (e.g., occipital cortex) and semantic (e.g., angular gyrus) regions in the cortex, but not in the hippocampus. Critically, hippocampal functions modulated the mnemonic impact of cortical representations that are most pertinent to future memory demands, or transfer-appropriate representations Subsequent perceptual memory was best predicted by the strength of visual representations in ventromedial occipital cortex in coordination with hippocampal activity and pattern information during encoding. In parallel, subsequent conceptual memory was best predicted by the strength of semantic representations in left inferior frontal gyrus and angular gyrus in coordination with either hippocampal activity or semantic representational strength during encoding. We found no evidence for transfer-incongruent hippocampal-cortical interactions supporting subsequent memory (i.e., no hippocampal interactions with cortical visual/semantic representations supported conceptual/perceptual memory). Collectively, these results suggest that diverse hippocampal functions flexibly modulate cortical representations of object properties to satisfy distinct future memory demands.Significance Statement The hippocampus is theorized to index pieces of information stored throughout the cortex to support episodic memory. Yet how hippocampal processes integrate with cortical representation of stimulus information remains unclear. Using fMRI, we examined various forms of hippocampal-cortical interactions during object encoding in relation to subsequent performance on conceptual and perceptual memory tests. Our results revealed novel hippocampal-cortical interactions that utilize semantic and visual representations in transfer-appropriate manners: conceptual memory supported by hippocampal modulation of frontoparietal semantic representations, and perceptual memory supported by hippocampal modulation of occipital visual representations. These findings provide important insights into the neural mechanisms underlying the formation of information-rich episodic memory and underscore the value of studying the flexible interplay between brain regions for complex cognition.


Assuntos
Mapeamento Encefálico , Memória Episódica , Humanos , Masculino , Feminino , Hipocampo , Lobo Parietal , Córtex Pré-Frontal , Imageamento por Ressonância Magnética
12.
J Neurosci ; 44(8)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38233218

RESUMO

Direct human brain recordings have confirmed the presence of high-frequency oscillatory events, termed ripples, during awake behavior. While many prior studies have focused on medial temporal lobe (MTL) ripples during memory retrieval, here we investigate ripples during memory encoding. Specifically, we ask whether ripples during encoding predict whether and how memories are subsequently recalled. Detecting ripples from MTL electrodes implanted in 116 neurosurgical participants (n = 61 male) performing a verbal episodic memory task, we find that encoding ripples do not distinguish recalled from not recalled items in any MTL region, even as high-frequency activity during encoding predicts recall in these same regions. Instead, hippocampal ripples increase during encoding of items that subsequently lead to recall of temporally and semantically associated items during retrieval, a phenomenon known as clustering. This subsequent clustering effect arises specifically when hippocampal ripples co-occur during encoding and retrieval, suggesting that ripples mediate both encoding and reinstatement of episodic memories.


Assuntos
Memória Episódica , Humanos , Masculino , Hipocampo , Lobo Temporal , Rememoração Mental , Eletrodos , Imageamento por Ressonância Magnética , Mapeamento Encefálico
13.
Brain ; 147(7): 2400-2413, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38654513

RESUMO

Memory clinic patients are a heterogeneous population representing various aetiologies of pathological ageing. It is not known whether divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± standard deviation, age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (n = 342), mild cognitive impairment (n = 118) or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid Alzheimer's disease biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5) as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test whether baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and mild cognitive impairment conversion rates of cognitively unimpaired participants and those with subjective cognitive decline. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy initially affected the medial temporal lobes, followed by further temporal regions and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological Alzheimer's disease biomarker levels, APOE ε4 carriership and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe, with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive Alzheimer's disease biomarkers and was associated with more generalized cognitive impairment. Limbic-predominant atrophy, in all participants and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of mild cognitive impairment conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, at both the subject and the group level, was excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for Alzheimer's disease in applied settings. The implementation of atrophy subtype- and stage-specific end points might increase the statistical power of pharmacological trials targeting early Alzheimer's disease.


Assuntos
Doença de Alzheimer , Atrofia , Disfunção Cognitiva , Progressão da Doença , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Atrofia/patologia , Idoso , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/patologia , Pessoa de Meia-Idade , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Testes Neuropsicológicos , Estudos de Coortes , Idoso de 80 Anos ou mais , Memória Episódica , Transtornos da Memória/patologia
14.
Cereb Cortex ; 34(11)2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39503243

RESUMO

The levels-of-processing framework, proposing that deep encoding enhances retention, plays a crucial role in episodic memory research. Neuroimaging evidence highlights that increased activity of the left ventrolateral prefrontal cortex during deep encoding predicts subsequent memory success. However, cognitive mechanisms underlying this region's involvement in establishing and consolidating deep and shallow traces remain unclear. In this preregistered study, we investigated whether repetitive transcranial magnetic stimulation over the left ventrolateral prefrontal cortex versus the vertex differentially modulates the formation and maintenance of deep and shallow traces. Trains of 20 Hz online repetitive transcranial magnetic stimulation were delivered over the left ventrolateral prefrontal cortex or vertex during tasks involving pleasantness (deep) and alphabetical order (shallow) judgments of words. Following encoding, two recognition tests assessed immediate and 24-h delayed recognition of words. Compared to the vertex control, ventrolateral prefrontal stimulation selectively disrupted the formation of episodic memory under deep encoding conditions, evidenced by increased response time at encoding and reduced immediate recognition in the deep but not shallow condition. Notably, forgetting rates across the 24-h delay were similar for disrupted deep, intact deep, and shallow items, implying that the rate of trace decay is independent of the strength of trace formation. The constant trace decay indicates that distinct mechanisms are involved in establishing and maintaining episodic traces.


Assuntos
Memória Episódica , Córtex Pré-Frontal , Reconhecimento Psicológico , Estimulação Magnética Transcraniana , Humanos , Masculino , Estimulação Magnética Transcraniana/métodos , Córtex Pré-Frontal/fisiologia , Feminino , Adulto Jovem , Adulto , Reconhecimento Psicológico/fisiologia , Tempo de Reação/fisiologia , Lateralidade Funcional/fisiologia , Adolescente
15.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38041253

RESUMO

Closed-loop direct brain stimulation is a promising tool for modulating neural activity and behavior. However, it remains unclear how to optimally target stimulation to modulate brain activity in particular brain networks that underlie particular cognitive functions. Here, we test the hypothesis that stimulation's behavioral and physiological effects depend on the stimulation target's anatomical and functional network properties. We delivered closed-loop stimulation as 47 neurosurgical patients studied and recalled word lists. Multivariate classifiers, trained to predict momentary lapses in memory function, triggered the stimulation of the lateral temporal cortex (LTC) during the study phase of the task. We found that LTC stimulation specifically improved memory when delivered to targets near white matter pathways. Memory improvement was largest for targets near white matter that also showed high functional connectivity to the brain's memory network. These targets also reduced low-frequency activity in this network, an established marker of successful memory encoding. These data reveal how anatomical and functional networks mediate stimulation's behavioral and physiological effects, provide further evidence that closed-loop LTC stimulation can improve episodic memory, and suggest a method for optimizing neuromodulation through improved stimulation targeting.


Assuntos
Imageamento por Ressonância Magnética , Memória Episódica , Humanos , Encéfalo/fisiologia , Rememoração Mental/fisiologia , Mapeamento Encefálico
16.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39042030

RESUMO

Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial intracranial electroencephalography (iEEG) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.


Assuntos
Eletrocorticografia , Hipocampo , Memória Episódica , Lobo Parietal , Humanos , Hipocampo/fisiologia , Masculino , Lobo Parietal/fisiologia , Feminino , Adulto , Vias Neurais/fisiologia , Memória Espacial/fisiologia , Adulto Jovem , Rememoração Mental/fisiologia , Eletroencefalografia
17.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39077920

RESUMO

Contextual features are integral to episodic memories; yet, we know little about context effects on pattern separation, a hippocampal function promoting orthogonalization of overlapping memory representations. Recent studies suggested that various extrahippocampal brain regions support pattern separation; however, the specific role of the parahippocampal cortex-a region involved in context representation-in pattern separation has not yet been studied. Here, we investigated the contribution of the parahippocampal cortex (specifically, the parahippocampal place area) to context reinstatement effects on mnemonic discrimination, using functional magnetic resonance imaging. During scanning, participants saw object images on unique context scenes, followed by a recognition task involving the repetitions of encoded objects or visually similar lures on either their original context or a lure context. Context reinstatement at retrieval improved item recognition but hindered mnemonic discrimination. Crucially, our region of interest analyses of the parahippocampal place area and an object-selective visual area, the lateral occipital cortex indicated that while during successful mnemonic decisions parahippocampal place area activity decreased for old contexts compared to lure contexts irrespective of object novelty, lateral occipital cortex activity differentiated between old and lure objects exclusively. These results imply that pattern separation of contextual and item-specific memory features may be differentially aided by scene and object-selective cortical areas.


Assuntos
Imageamento por Ressonância Magnética , Lobo Occipital , Giro Para-Hipocampal , Reconhecimento Visual de Modelos , Reconhecimento Psicológico , Humanos , Feminino , Masculino , Giro Para-Hipocampal/fisiologia , Giro Para-Hipocampal/diagnóstico por imagem , Adulto Jovem , Adulto , Lobo Occipital/fisiologia , Lobo Occipital/diagnóstico por imagem , Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Mapeamento Encefálico/métodos , Estimulação Luminosa/métodos , Memória Episódica
18.
Cereb Cortex ; 34(10)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39390709

RESUMO

Impaired episodic memory is the primary feature of early Alzheimer's disease (AD), but not all memories are equally affected. Patients with AD and amnestic Mild Cognitive Impairment (aMCI) remember pictures better than words, to a greater extent than healthy elderly. We investigated neural mechanisms for visual object recognition in 30 patients (14 AD, 16 aMCI) and 36 cognitively unimpaired healthy (19 in the "preclinical" stage of AD). Event-related brain potentials (ERPs) were recorded while participants performed a visual object recognition task. Hippocampal occupancy (integrity), amyloid (florbetapir) PET, and neuropsychological measures of verbal & visual memory, executive function were also collected. A right-frontal ERP recognition effect (500-700 ms post-stimulus) was seen in cognitively unimpaired participants only, and significantly correlated with memory and executive function abilities. A later right-posterior negative ERP effect (700-900 ms) correlated with visual memory abilities across participants with low verbal memory ability, and may reflect a compensatory mechanism. A correlation of this retrieval-related negativity with right hippocampal occupancy (r = 0.55), implicates the hippocampus in the engagement of compensatory perceptual retrieval mechanisms. Our results suggest that early AD patients are impaired in goal-directed retrieval processing, but may engage compensatory perceptual mechanisms which rely on hippocampal function.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Potenciais Evocados , Humanos , Masculino , Feminino , Idoso , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Potenciais Evocados/fisiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/psicologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Reconhecimento Psicológico/fisiologia , Testes Neuropsicológicos , Idoso de 80 Anos ou mais , Tomografia por Emissão de Pósitrons , Função Executiva/fisiologia , Hipocampo/fisiopatologia , Hipocampo/diagnóstico por imagem , Estimulação Luminosa/métodos , Pessoa de Meia-Idade
19.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38300181

RESUMO

Humans are often tasked with determining the degree to which a given situation poses threat. Salient cues present during prior events help bring online memories for context, which plays an informative role in this process. However, it is relatively unknown whether and how individuals use features of the environment to retrieve context memories for threat, enabling accurate inferences about the current level of danger/threat (i.e. retrieve appropriate memory) when there is a degree of ambiguity surrounding the present context. We leveraged computational neuroscience approaches (i.e. independent component analysis and multivariate pattern analyses) to decode large-scale neural network activity patterns engaged during learning and inferring threat context during a novel functional magnetic resonance imaging task. Here, we report that individuals accurately infer threat contexts under ambiguous conditions through neural reinstatement of large-scale network activity patterns (specifically striatum, salience, and frontoparietal networks) that track the signal value of environmental cues, which, in turn, allows reinstatement of a mental representation, primarily within a ventral visual network, of the previously learned threat context. These results provide novel insight into distinct, but overlapping, neural mechanisms by which individuals may utilize prior learning to effectively make decisions about ambiguous threat-related contexts as they navigate the environment.


Assuntos
Sinais (Psicologia) , Aprendizagem , Humanos , Análise Multivariada , Imageamento por Ressonância Magnética , Redes Neurais de Computação
20.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165194

RESUMO

Humans remember less and less of what was encoded as more and more time passes. Selective retrieval can interrupt such time-dependent forgetting, enhancing recall not only of the retrieved but also of the nonretrieved information. The recall enhancement has been attributed to context retrieval and the idea that selective retrieval reactivates the retrieved item's temporal context during study, which can facilitate recall of other items that had a similar context at study. However, it is unclear whether context retrieval induces a transient discontinuity in the stream of temporal context only, or a more permanent updating of context that would entail a lasting interruption of time-dependent forgetting. In three experiments, we analyzed time-dependent forgetting of encoded information right after study and after time-lagged selective retrieval. Selective retrieval boosted recall of the nonretrieved information up to the levels observed directly after study. Intriguingly, it also created a restart of time-dependent forgetting that made forgetting after retrieval indistinguishable from forgetting after study and thus induced a reset of the recall process. The results suggest that selective retrieval can revive forgotten memories and cause lasting recall enhancement, effects likely mediated by context retrieval and a permanent updating of temporal context.


Assuntos
Memória de Longo Prazo/fisiologia , Memória/fisiologia , Rememoração Mental/fisiologia , Feminino , Alemanha , Humanos , Masculino , Memória Episódica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa