Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 216(4): 1119-1129, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28833259

RESUMO

Coordination between stem photosynthesis and hydraulics in green-stemmed desert plants is important for understanding the physiology of stem photosynthesis and possible drought responses. Plants with photosynthetic stems have extra carbon gain that can help cope with the detrimental effects of drought. We studied photosynthetic, hydraulic and functional traits of 11 plant species with photosynthetic stems from three California desert locations. We compared relationships among traits between wet and dry seasons to test the effect of seasonality on these relationships. Finally, we compared stem trait relationships with analogous relationships in the leaf economics spectrum. We found that photosynthetic and hydraulic traits are coordinated in photosynthetic stems. The slope or intercept of all trait relationships was mediated by seasonality. The relationship between mass-based stem photosynthetic CO2 assimilation rate (Amass ) and specific stem area (SSA; stem surface area to dry mass ratio) was statistically indistinguishable from the leaf economics spectrum. Our results indicate that photosynthetic stems behave like leaves in the coordination of multiple traits related to carbon gain, water movement and water loss. Because of the similarity of the stem Amass -SSA relationship to the leaf Amass -specific leaf area relationship, we suggest the existence of a photosynthetic stem economic spectrum.


Assuntos
Clima Desértico , Magnoliopsida/metabolismo , Fotossíntese , Caules de Planta/metabolismo , Água/fisiologia
2.
Plant Cell Environ ; 38(3): 534-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25039813

RESUMO

A recent study found that cutting shoots under water while xylem was under tension (which has been the standard protocol for the past few decades) could produce artefactual embolisms inside the xylem, overestimating hydraulic vulnerability relative to shoots cut under water after relaxing xylem tension (Wheeler et al. 2013). That study also raised the possibility that such a 'Wheeler effect' might occur in studies of leaf hydraulic vulnerability. We tested for such an effect for four species by applying a modified vacuum pump method to leaves with minor veins severed, to construct leaf xylem hydraulic vulnerability curves. We tested for an impact on leaf xylem hydraulic conductance (Kx ) of cutting the petiole and minor veins under water for dehydrated leaves with xylem under tension compared with dehydrated leaves after previously relaxing xylem tension. Our results showed no significant 'cutting artefact' for leaf xylem. The lack of an effect for leaves could not be explained by narrower or shorter xylem conduits, and may be due to lesser mechanical stress imposed when cutting leaf petioles, and/or to rapid refilling of emboli in petioles. These findings provide the first validation of previous measurements of leaf hydraulic vulnerability against this potential artefact.


Assuntos
Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Xilema/fisiologia , Ericaceae/fisiologia , Hedera/fisiologia , Quercus/fisiologia , Salvia/fisiologia , Água/fisiologia
3.
Tree Physiol ; 36(6): 725-35, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26846979

RESUMO

The decrease of stomatal conductance (gs) is one of the prime responses to water shortage and the main determinant of yield limitation in fruit trees. Understanding the mechanisms related to stomatal closure in response to imposed water stress is crucial for correct irrigation management. The loss of leaf hydraulic functioning is considered as one of the major factors triggering stomatal closure. Thus, we conducted an experiment to quantify the dehydration response of leaf hydraulic conductance (Kleaf) and its impact on gs in two Mediterranean fruit tree species, one deciduous (almond) and one evergreen (olive). Our hypothesis was that a higher Kleaf would be associated with a higher gs and that the reduction in Kleaf would predict the reduction in gs in both species. We measured Kleaf in olive and almond during a cycle of irrigation withholding. We also compared the results of two methods to measure Kleaf: dynamic rehydration kinetics and evaporative flux methods. In addition, determined gs, leaf water potential (Ψleaf), vein density, photosynthetic capacity and turgor loss point. Results showed that gs was higher in almond than in olive and so was Kleaf (Kmax = 4.70 and 3.42 mmol s(-1) MPa(-1) m(-2), in almond and olive, respectively) for Ψleaf > -1.2 MPa. At greater water stress levels than -1.2 MPa, however, Kleaf decreased exponentially, being similar for both species, while gs was still higher in almond than in olive. We conclude that although the Kleaf decrease with increasing water stress does not drive unequivocally the gs response to water stress, Kleaf is the variable most strongly related to the gs response to water stress, especially in olive. Other variables such as the increase in abscisic acid (ABA) may be playing an important role in gs regulation, although in our study the gs-ABA relationship did not show a clear pattern.


Assuntos
Olea/metabolismo , Folhas de Planta/metabolismo , Transpiração Vegetal/fisiologia , Olea/fisiologia , Prunus dulcis/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa