Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(6): 1739-1759, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38556794

RESUMO

Spinal cord injury (SCI) is a debilitating condition currently lacking treatment. Severe SCI causes the loss of most supraspinal inputs and neuronal activity caudal to the injury, which, coupled with the limited endogenous capacity for spontaneous regeneration, can lead to complete functional loss even in anatomically incomplete lesions. We hypothesized that transplantation of mature dorsal root ganglia (DRGs) genetically modified to express the NaChBac sodium channel could serve as a therapeutic option for functionally complete SCI. We found that NaChBac expression increased the intrinsic excitability of DRG neurons and promoted cell survival and neurotrophic factor secretion in vitro. Transplantation of NaChBac-expressing dissociated DRGs improved voluntary locomotion 7 weeks after injury compared to control groups. Animals transplanted with NaChBac-expressing DRGs also possessed higher tubulin-positive neuronal fiber and myelin preservation, although serotonergic descending fibers remained unaffected. We observed early preservation of the corticospinal tract 14 days after injury and transplantation, which was lost 7 weeks after injury. Nevertheless, transplantation of NaChBac-expressing DRGs increased the neuronal excitatory input by an increased number of VGLUT2 contacts immediately caudal to the injury. Our work suggests that the transplantation of NaChBac-expressing dissociated DRGs can rescue significant motor function, retaining an excitatory neuronal relay activity immediately caudal to injury.


Assuntos
Gânglios Espinais , Locomoção , Traumatismos da Medula Espinal , Gânglios Espinais/metabolismo , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/genética , Canais de Sódio/metabolismo , Canais de Sódio/genética , Ratos , Feminino , Recuperação de Função Fisiológica , Modelos Animais de Doenças , Neurônios/metabolismo , Camundongos , Expressão Gênica , Bainha de Mielina/metabolismo , Sobrevivência Celular
2.
J Neurosci ; 39(23): 4448-4460, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936241

RESUMO

Striatal output pathways are known to play a crucial role in the control of movement. One possible component for shaping the synaptic output of striatal neuron is the glutamatergic input that originates from cortex and thalamus. Although reports focusing on quantifying glutamatergic-induced morphological changes in striatum exist, the role of glutamatergic input in regulating striatal function remains poorly understood. Using primary neurons from newborn mice of either sex in a reduced two-neuron microcircuit culture system, we examined whether glutamatergic input modulates the output of striatal neurons. We found that glutamatergic input enhanced striatal inhibition in vitro With a glutamatergic partner from either cortex or thalamus, we attributed this potentiation to an increase in the size of quantal IPSC, suggesting a strengthening of the postsynaptic response to GABAergic signaling. Additionally, a differential effect of cortical and thalamic innervation onto striatal GABAergic neurons output was revealed. We observed that cortical, but not thalamic input, enhanced the number of releasable GABAergic synaptic vesicles and morphological synapses. Importantly, these alterations were reverted by blockade of neuronal activity and glutamate receptors, as well as disruption of BDNF-TrkB signaling. Together, our data indicate, for first time, that GABAergic synapse formation in corticostriatal pairs depends on two parallel, but potentially intersecting, signaling pathways that involve glutamate receptor activation in striatal neurons, as well as BDNF signaling. Understanding how cortical and thalamic inputs refine striatal output will pave the way toward dissecting basal ganglia activity in both physiological and pathological conditions.SIGNIFICANCE STATEMENT Striatal GABAergic microcircuits are critical for motor function. However, the mechanisms controlling striatal output, particularly at the level of synaptic strength, are unclear. Using two-neuron culture system, we quantified the synaptic output of individual striatal GABAergic neurons paired with a glutamatergic partner and studied the influence of the excitatory connections that are known to be interregionally formed in vivo We found that glutamatergic input potentiated striatal inhibitory output, potentially involving an increased feedback and/or feedforward inhibition. Moreover, distinct components of glutamatergic innervation, such as firing activity or release of neurotrophic factors were shown to be required for the glutamatergic-induced phenotype. Investigation, therefore, of two-neuron in vitro microcircuits could be a powerful tool to explore synaptic mechanisms or disease pathophysiology.


Assuntos
Corpo Estriado/fisiologia , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/fisiologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Anticorpos Neutralizantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Corpo Estriado/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Proteínas Tirosina Quinases/fisiologia , Quinoxalinas/farmacologia , Proteínas Recombinantes/farmacologia , Vesículas Sinápticas/fisiologia , Tetrodotoxina/farmacologia , Tálamo/citologia
3.
J Comp Neurol ; 532(2): e25588, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335050

RESUMO

Melanin-concentrating hormone (MCH) cells in the hypothalamus regulate fundamental physiological functions like energy balance, sleep, and reproduction. This diversity may be ascribed to the neurochemical heterogeneity among MCH cells. One prominent subpopulation of MCH cells coexpresses cocaine- and amphetamine-regulated transcript (CART), and as MCH and CART can have opposing actions, MCH/CART+ and MCH/CART- cells may differentially modulate behavioral outcomes. However, it is not known if there are differences in the cellular properties underlying their functional differences; thus, we compared the neuroanatomical, electrophysiological, and morphological properties of MCH cells in male and female Mch-cre;L10-Egfp reporter mice. Half of MCH cells expressed CART and were most prominent in the medial hypothalamus. Whole-cell patch-clamp recordings revealed differences in their passive and active membrane properties in a sex-dependent manner. Female MCH/CART+ cells had lower input resistances, but male cells largely differed in their firing properties. All MCH cells increased firing when stimulated, but their firing frequency decreases with sustained stimulation. MCH/CART+ cells showed stronger spike rate adaptation than MCH/CART- cells. The kinetics of excitatory events at MCH cells also differed by cell type, as the rising rate of excitatory events was slower at MCH/CART+ cells. By reconstructing the dendritic arborization of our recorded cells, we found no sex differences, but male MCH/CART+ cells had less dendritic length and fewer branch points. Overall, distinctions in topographical division and cellular properties between MCH cells add to their heterogeneity and help elucidate their response to stimuli or effect on modulating their respective neural networks.


Assuntos
Cocaína , Hormônios Hipotalâmicos , Animais , Feminino , Masculino , Camundongos , Anfetaminas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo
4.
Mol Brain ; 14(1): 88, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082805

RESUMO

The ACC is an important brain area for the processing of pain-related information. Studies of synaptic connections within the ACC provide an understanding of basic cellular and molecular mechanisms for brain functions such as pain, emotion and related cognitive functions. Previous study of ACC synaptic transmission mainly focused on presumably thalamic inputs into pyramidal cells. In the present study, we developed a new mapping technique by combining single neuron whole-cell patch-clamp recording with 64 multi-channel field potential recording (MED64) to examine the properties of excitatory inputs into a single neuron in the ACC. We found that a single patched pyramidal neuron or interneuron simultaneously received heterogeneous excitatory synaptic innervations from different subregions (ventral, dorsal, deep, and superficial layers) in the ACC. Conduction velocity is faster as stimulation distance increases in pyramidal neurons. Fast-spiking interneurons (FS-IN) show slower inactivation when compared to pyramidal neurons and regular-spiking interneurons (RS-IN) while pyramidal neurons displayed the most rapid activation. Bath application of non-competitive AMPA receptor antagonist GYKI 53655 followed by CNQX revealed that both FS-INs and RS-INs have AMPA and KA mediated components. Our studies provide a new strategy and technique for studying the network of synaptic connections.


Assuntos
Envelhecimento/fisiologia , Giro do Cíngulo/fisiologia , Interneurônios/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Animais , Ácido Glutâmico/farmacologia , Cinética , Masculino , Camundongos Endogâmicos C57BL , Condução Nervosa , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Transmissão Sináptica/fisiologia
5.
eNeuro ; 6(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30937358

RESUMO

Hilar mossy cells in the dentate gyrus (DG) shape the firing and function of the hippocampal circuit. However, the neural circuitry providing afferent input to mossy cells is incompletely understood, and little is known about the development of these inputs. Thus, we used whole-cell recording and laser scanning photostimulation (LSPS) to characterize the developmental trajectory of local excitatory and inhibitory synaptic inputs to mossy cells in the mouse hippocampus. Hilar mossy cells were targeted by visualizing non-red fluorescent cells in the dentate hilus of GAD2-Cre; Ai9 mice that expressed tdTomato in GAD+ neurons, and were confirmed by post hoc morphological characterization. Our results show that at postnatal day (P)6-P7, mossy cells received more excitatory input from neurons in the proximal CA3 versus those in the DG. In contrast, at P13-P14 and P21-P28, the largest source of excitatory input originated in DG cells, while the strength of CA3 and hilar inputs declined. A developmental trend was also evident for inhibitory inputs. Overall inhibitory input at P6-P7 was weak, while inhibitory inputs from the DG cell layer and the hilus predominated at P13-P14 and P21-P28. The strength of local DG excitation and inhibition to mossy cells peaked at P13-P14 and decreased slightly in older P21-P28 mice. Together, these data provide new detailed information on the development of local synaptic connectivity of mossy cells, and suggests mechanisms through which developmental changes in local circuit inputs to hilar mossy cells shape their physiology and vulnerability to injury during postnatal periods.


Assuntos
Fibras Musgosas Hipocampais/fisiologia , Fibras Musgosas Hipocampais/ultraestrutura , Vias Neurais/fisiologia , Vias Neurais/ultraestrutura , Neurogênese/fisiologia , Animais , Feminino , Masculino , Camundongos , Sinapses/fisiologia , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia
6.
Front Cell Neurosci ; 13: 267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249513

RESUMO

In hippocampal CA1, muscarinic acetylcholine (ACh) receptor (mAChR) activation via exogenous application of cholinergic agonists has been shown to presynaptically inhibit Schaffer collateral (SC) glutamatergic inputs in stratum radiatum (SR), and temporoammonic (TA) and thalamic nucleus reuniens (RE) glutamatergic inputs in stratum lacunosum-moleculare (SLM). However, steady-state uniform mAChR activation may not mimic the effect of ACh release in an intact hippocampal network. To more accurately examine the effect of ACh release on glutamatergic synaptic efficacy, we measured electrically evoked synaptic responses in CA1 pyramidal cells (PCs) following the optogenetic release of ACh in genetically modified mouse brain slices. The ratio of synaptic amplitudes in response to paired-pulse SR stimulation (stimulus 2/stimulus 1) was significantly reduced by the optogenetic release of ACh, consistent with a postsynaptic decrease in synaptic efficacy. The effect of ACh release was blocked by the M3 receptor antagonist 4-DAMP, the GABAB receptor antagonist CGP 52432, inclusion of GDP-ß-S, cesium, QX314 in the intracellular patch clamp solution, or extracellular barium. These observations suggest that ACh release decreased SC synaptic transmission through an M3 muscarinic receptor-mediated increase in inhibitory interneuron excitability, which activate GABAB receptors and inwardly rectifying potassium channels on CA1 pyramidal cells. In contrast, the ratio of synaptic amplitudes in response to paired-pulse stimulation in the SLM was increased by ACh release, consistent with presynaptic inhibition. ACh-mediated effects in SLM were blocked by the M2 receptor antagonist AF-DX 116, presumably located on presynaptic terminals. Therefore, our data indicate that ACh release differentially modulates excitatory inputs in SR and SLM of CA1 through different cellular and network mechanisms.

7.
Front Cell Neurosci ; 12: 149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899690

RESUMO

The neural extracellular matrix (ECM) is enriched with hyaluronic acid, chondroitin sulfate proteoglycans (CSPGs) and the glycoprotein tenascin-R, which play important roles in synaptic plasticity, as shown by studies of the CA1 region of the hippocampus. However, ECM molecules are strongly expressed in the CA2 region, which harbors a high number of fast-spiking interneurons (FSIs) surrounded by a particularly condensed form of ECM, perineuronal nets. Despite this intriguing peculiarity, the functional role of ECM in the CA2 region is mostly unknown. Here, we investigate the acute and delayed effects of chondroitinase ABC (ChABC), an enzyme that digests chondroitin sulfate side chains of CSPGs and greatly attenuates neural ECM, on neuronal excitability and excitatory transmission in the CA2 region. Whole-cell patch clamp recordings of CA2 pyramidal cells (PCs) and FSIs in hippocampal slices revealed that 7 days after injection of ChABC into the CA2 region in vivo, there are alterations in excitability of FSIs and PCs. FSIs generated action potentials with larger amplitudes and longer durations in response to less depolarizing currents compared to controls. PCs were excited at less depolarized membrane potentials, resulted in lower latency of spike generation. The frequency of excitatory postsynaptic currents in FSIs was selectively reduced, while the frequency of inhibitory postsynaptic currents was selectively increased. Acute treatment of hippocampal slices with ChABC did not result in any of these effects. This increase in excitability and changes in synaptic inputs to FSIs after attenuation of ECM suggests a crucial role for perineuronal nets associated with FSIs in regulation of synaptic and electrical properties of these cells.

8.
Neuron ; 98(5): 918-925.e3, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29754751

RESUMO

Cholinergic interneurons (ChIs) of the striatum pause their firing in response to salient stimuli and conditioned stimuli after learning. Several different mechanisms for pause generation have been proposed, but a unifying basis has not previously emerged. Here, using in vivo and ex vivo recordings in rat and mouse brain and a computational model, we show that ChI pauses are driven by withdrawal of excitatory inputs to striatum and result from a delayed rectifier potassium current (IKr) in concert with local neuromodulation. The IKr is sensitive to Kv7.2/7.3 blocker XE-991 and enables ChIs to report changes in input, to pause on excitatory input recession, and to scale pauses with input strength, in keeping with pause acquisition during learning. We also show that although dopamine can hyperpolarize ChIs directly, its augmentation of pauses is best explained by strengthening excitatory inputs. These findings provide a basis to understand pause generation in striatal ChIs. VIDEO ABSTRACT.


Assuntos
Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Interneurônios/metabolismo , Aprendizagem , Animais , Antracenos/farmacologia , Neurônios Colinérgicos/efeitos dos fármacos , Simulação por Computador , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Canal de Potássio KCNQ2/antagonistas & inibidores , Canal de Potássio KCNQ3/antagonistas & inibidores , Camundongos , Modelos Neurológicos , Bloqueadores dos Canais de Potássio/farmacologia , Ratos
9.
eNeuro ; 4(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28451637

RESUMO

Hilar mossy cells are the prominent glutamatergic cell type in the dentate hilus of the dentate gyrus (DG); they have been proposed to have critical roles in the DG network. To better understand how mossy cells contribute to DG function, we have applied new viral genetic and functional circuit mapping approaches to quantitatively map and compare local and long-range circuit connections of mossy cells and dentate granule cells in the mouse. The great majority of inputs to mossy cells consist of two parallel inputs from within the DG: an excitatory input pathway from dentate granule cells and an inhibitory input pathway from local DG inhibitory neurons. Mossy cells also receive a moderate degree of excitatory and inhibitory CA3 input from proximal CA3 subfields. Long range inputs to mossy cells are numerically sparse, and they are only identified readily from the medial septum and the septofimbrial nucleus. In comparison, dentate granule cells receive most of their inputs from the entorhinal cortex. The granule cells receive significant synaptic inputs from the hilus and the medial septum, and they also receive direct inputs from both distal and proximal CA3 subfields, which has been underdescribed in the existing literature. Our slice-based physiological mapping studies further supported the identified circuit connections of mossy cells and granule cells. Together, our data suggest that hilar mossy cells are major local circuit integrators and they exert modulation of the activity of dentate granule cells as well as the CA3 region through "back-projection" pathways.


Assuntos
Hipocampo/citologia , Fibras Musgosas Hipocampais/anatomia & histologia , Potenciais de Ação , Animais , Neurônios Colinérgicos/citologia , Feminino , Neurônios GABAérgicos/citologia , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/fisiologia , Inibição Neural , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Núcleos Septais/citologia , Sinapses
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa