Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38152981

RESUMO

Alternative splicing (AS) is a crucial mechanism for regulating gene expression and isoform diversity in eukaryotes. However, the analysis and visualization of AS events from RNA sequencing data remains challenging. Most tools require a certain level of computer literacy and the available means of visualizing AS events, such as coverage and sashimi plots, have limitations and can be misleading. To address these issues, we present SpliceWiz, an R package with an interactive Shiny interface that allows easy and efficient AS analysis and visualization at scale. A novel normalization algorithm is implemented to aggregate splicing levels within sample groups, thereby allowing group differences in splicing levels to be accurately visualized. The tool also offers downstream gene ontology enrichment analysis, highlighting ASEs belonging to functional pathways of interest. SpliceWiz is optimized for speed and efficiency and introduces a new file format for coverage data storage that is more efficient than BigWig. Alignment files are processed orders of magnitude faster than other R-based AS analysis tools and on par with command-line tools. Overall, SpliceWiz streamlines AS analysis, enabling reliable identification of functionally relevant AS events for further characterization. SpliceWiz is a Bioconductor package and is also available on GitHub (https://github.com/alexchwong/SpliceWiz).


Assuntos
Processamento Alternativo , Software , Splicing de RNA , Análise de Sequência de RNA , Algoritmos
2.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34263910

RESUMO

Epigenomics and transcriptomics data from high-throughput sequencing techniques such as RNA-seq and ChIP-seq have been successfully applied in predicting gene transcript expression. However, the locations of chromatin loops in the genome identified by techniques such as Chromatin Interaction Analysis with Paired End Tag sequencing (ChIA-PET) have never been used for prediction tasks. Here, we developed machine learning models to investigate if ChIA-PET could contribute to transcript and exon usage prediction. In doing so, we used a large set of transcription factors as well as ChIA-PET data. We developed different Gradient Boosting Trees models according to the different tasks with the integrated datasets from three cell lines, including GM12878, HeLaS3 and K562. We validated the models via 10-fold cross validation, chromosome-split validation and cross-cell validation. Our results show that both transcript and splicing-derived exon usage can be effectively predicted with at least 0.7512 and 0.7459 of accuracy, respectively, on all cell lines from all kinds of validations. Examining the predictive features, we found that RNA Polymerase II ChIA-PET was one of the most important features in both transcript and exon usage prediction, suggesting that chromatin loop anchors are predictive of both transcript and exon usage.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Biologia Computacional/métodos , Éxons , Transcrição Gênica , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Regulação da Expressão Gênica , Histonas/metabolismo , Modelos Biológicos , Reprodutibilidade dos Testes
3.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35673877

RESUMO

Transcriptomic research provides a mechanistic understanding of an organism's response to environmental challenges such as increasing temperatures, which can provide key insights into the threats posed by thermal challenges associated with urbanization and climate change. Differential gene expression and alternative splicing are two elements of the transcriptomic stress response that may work in tandem, but relatively few studies have investigated these interactions in fishes of conservation concern. We studied the imperilled redside dace (Clinostomus elongatus) as thermal stress is hypothesized to be an important cause of population declines. We tested the hypothesis that gene expression-splicing interactions contribute to the thermal stress response. Wild fish exposed to acute thermal stress were compared with both handling controls and fish sampled directly from a river. Liver tissue was sampled to study the transcriptomic stress response. With a gene set enrichment analysis, we found that thermally stressed fish showed a transcriptional response related to transcription regulation and responses to unfolded proteins, and alternatively spliced genes related to gene expression regulation and metabolism. One splicing factor, prpf38b, was upregulated in the thermally stressed group compared with the other treatments. This splicing factor may have a role in the Jun/AP-1 cellular stress response, a pathway with wide-ranging and context-dependent effects. Given large gene interaction networks and the context-dependent nature of transcriptional responses, our results highlight the importance of understanding interactions between gene expression and splicing for understanding transcriptomic responses to thermal stress. Our results also reveal transcriptional pathways that can inform conservation breeding, translocation and reintroduction programs for redside dace and other imperilled species by identifying appropriate source populations.


Assuntos
Processamento Alternativo , Cyprinidae , Animais , Cyprinidae/fisiologia , Fatores de Processamento de RNA , Temperatura , Transcriptoma
4.
BMC Bioinformatics ; 22(1): 189, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849458

RESUMO

BACKGROUND: Despite the importance of alternative poly-adenylation and 3' UTR length for a variety of biological phenomena, there are limited means of detecting UTR changes from standard transcriptomic data. RESULTS: We present the diffUTR Bioconductor package which streamlines and improves upon differential exon usage (DEU) analyses, and leverages existing DEU tools and alternative poly-adenylation site databases to enable differential 3' UTR usage analysis. We demonstrate the diffUTR features and show that it is more flexible and more accurate than state-of-the-art alternatives, both in simulations and in real data. CONCLUSIONS: diffUTR enables differential 3' UTR analysis and more generally facilitates DEU and the exploration of their results.


Assuntos
Biologia Computacional , Poli A , Regiões 3' não Traduzidas , Processamento Alternativo , Éxons/genética , Transcriptoma
5.
BMC Genomics ; 22(1): 780, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717556

RESUMO

BACKGROUND: The evaluation of alternative splicing, including differential isoform expression and differential exon usage, can provide some insights on the transcriptional changes that occur in response to environmental perturbations. Maternal nutrition is considered a major intrauterine regulator of fetal developmental programming. The objective of this study was to assess potential changes in splicing events in the longissimus dorsi muscle of beef calves gestated under control or methionine-rich diets. RNA sequencing and whole-genome bisulfite sequencing were used to evaluate muscle transcriptome and methylome, respectively. RESULTS: Alternative splicing patterns were significantly altered by maternal methionine supplementation. Most of the altered genes were directly implicated in muscle development, muscle physiology, ATP activities, RNA splicing and DNA methylation, among other functions. Interestingly, there was a significant association between DNA methylation and differential exon usage. Indeed, among the set of genes that showed differential exon usage, significant differences in methylation level were detected between significant and non-significant exons, and between contiguous and non-contiguous introns to significant exons. CONCLUSIONS: Overall, our findings provide evidence that a prenatal diet rich in methyl donors can significantly alter the offspring transcriptome, including changes in isoform expression and exon usage, and some of these changes are mediated by changes in DNA methylation.


Assuntos
Metilação de DNA , Metionina , Processamento Alternativo , Animais , Bovinos , Suplementos Nutricionais , Feminino , Metionina/metabolismo , Músculo Esquelético/metabolismo , Gravidez
6.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804860

RESUMO

The transcriptional regulator peroxisome proliferator activated receptor gamma coactivator 1A (PGC-1α), encoded by PPARGC1A, has been linked to neurodegenerative diseases. Recently discovered CNS-specific PPARGC1A transcripts are initiated far upstream of the reference promoter, spliced to exon 2 of the reference gene, and are more abundant than reference gene transcripts in post-mortem human brain samples. The proteins translated from the CNS and reference transcripts differ only at their N-terminal regions. To dissect functional differences between CNS-specific isoforms and reference proteins, we used clustered regularly interspaced short palindromic repeats transcriptional activation (CRISPRa) for selective endogenous activation of the CNS or the reference promoters in SH-SY5Y cells. Expression and/or exon usage of the targets was ascertained by RNA sequencing. Compared to controls, more differentially expressed genes were observed after activation of the CNS than the reference gene promoter, while the magnitude of alternative exon usage was comparable between activation of the two promoters. Promoter-selective associations were observed with canonical signaling pathways, mitochondrial and nervous system functions and neurological diseases. The distinct N-terminal as well as the shared downstream regions of PGC-1α isoforms affect the exon usage of numerous genes. Furthermore, associations of risk genes of amyotrophic lateral sclerosis and Parkinson's disease were noted with differentially expressed genes resulting from the activation of the CNS and reference gene promoter, respectively. Thus, CNS-specific isoforms markedly amplify the biological functions of PPARGC1A and CNS-specific isoforms and reference proteins have common, complementary and selective functions relevant for neurodegenerative diseases.


Assuntos
Redes Reguladoras de Genes , Doenças Neurodegenerativas/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Regiões Promotoras Genéticas , Ativação Transcricional , Linhagem Celular Tumoral , Éxons , Células HEK293 , Humanos , Neurônios/metabolismo , Motivos de Nucleotídeos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transcriptoma
7.
J Exp Biol ; 222(Pt 5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30692167

RESUMO

Phenotypic plasticity is an important aspect of an organism's response to environmental change that often requires the modulation of gene expression. These changes in gene expression can be quantitative, as a result of increases or decreases in the amounts of specific transcripts, or qualitative, as a result of the expression of alternative transcripts from the same gene (e.g. via alternative splicing of pre-mRNAs). Although the role of quantitative changes in gene expression in phenotypic plasticity is well known, relatively few studies have examined the role of qualitative changes. Here, we use skeletal muscle RNA-seq data from Atlantic killifish (Fundulus heteroclitus), threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio) to investigate the extent of qualitative changes in gene expression in response to cold acclimation. Fewer genes demonstrated alternative splicing than differential expression as a result of cold acclimation; however, differences in splicing were detected for 426 to 866 genes depending on species, indicating that large numbers of qualitative changes in gene expression are associated with cold acclimation. Many of these alternatively spliced genes were also differentially expressed, and there was functional enrichment for involvement in muscle contraction among the genes demonstrating qualitative changes in response to cold acclimation. Additionally, there was a common group of 29 genes with cold-acclimation-mediated changes in splicing in all three species, suggesting that there may be a set of genes with expression patterns that respond qualitatively to prolonged exposure to cold temperatures across fishes.


Assuntos
Aclimatação , Processamento Alternativo , Temperatura Baixa , Fundulidae/fisiologia , Smegmamorpha/fisiologia , Peixe-Zebra/fisiologia , Animais , Fundulidae/genética , Smegmamorpha/genética , Peixe-Zebra/genética
8.
BMC Genomics ; 18(1): 443, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587590

RESUMO

BACKGROUND: RNA sequencing (RNA-seq) and microarrays are two transcriptomics techniques aimed at the quantification of transcribed genes and their isoforms. Here we compare the latest Affymetrix HTA 2.0 microarray with Illumina 2000 RNA-seq for the analysis of patient samples - normal lung epithelium tissue and squamous cell carcinoma lung tumours. Protein coding mRNAs and long non-coding RNAs (lncRNAs) were included in the study. RESULTS: Both platforms performed equally well for protein-coding RNAs, however the stochastic variability was higher for the sequencing data than for microarrays. This reduced the number of differentially expressed genes and genes with predictive potential for RNA-seq compared to microarray data. Analysis of this variability revealed a lack of reads for short and low abundant genes; lncRNAs, being shorter and less abundant RNAs, were found especially susceptible to this issue. A major difference between the two platforms was uncovered by analysis of alternatively spliced genes. Investigation of differential exon abundance showed insufficient reads for many exons and exon junctions in RNA-seq while the detection on the array platform was more stable. Nevertheless, we identified 207 genes which undergo alternative splicing and were consistently detected by both techniques. CONCLUSIONS: Despite the fact that the results of gene expression analysis were highly consistent between Human Transcriptome Arrays and RNA-seq platforms, the analysis of alternative splicing produced discordant results. We concluded that modern microarrays can still outperform sequencing for standard analysis of gene expression in terms of reproducibility and cost.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Éxons/genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Anotação de Sequência Molecular
9.
Am J Physiol Regul Integr Comp Physiol ; 307(12): R1471-87, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25354728

RESUMO

Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20-60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3-65.3 µM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes.


Assuntos
Cafeína/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Animais , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Coração/embriologia , Exposição Materna , Camundongos , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Gravidez , RNA Mensageiro/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Elife ; 132024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597390

RESUMO

Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.


Assuntos
Processamento Alternativo , Éxons , Neurônios , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Éxons/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosforilação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
11.
Bioinform Biol Insights ; 16: 11779322221088725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462874

RESUMO

Background: Rheumatoid arthritis (RA) is an autoimmune disease characterised by systemic inflammation of joints. The observed complexity of RA pathogenesis and studies that have been carried out so far indicate that RA pathogenesis is regulated at multiple levels. Given the role of RNA editing in autoimmune disease, we hypothesised that RNA editing could contribute to RA pathogenesis by regulating gene expression through post-transcriptional mechanisms. Methods: We identified RNA editing events in synovial tissues from early and established RA compared with normal subjects from an available transcriptome data set using REDItools. To investigate the potential effect of these RNA editing events on gene expression, we carried out an analysis of differential exon usage in the vicinity of the differentially edited sites using DEXSeq. We then used STRING to identify putative interactions between differentially edited genes identified from REDItools analysis. We also investigated the possible effects of these RNA editing events on miRNA-target mRNA interactions as predicted by miRanda. Results: Our analysis revealed that there is extensive RNA editing in RA, with 304 and 273 differentially edited events in early RA and established RA, respectively. Of these, 25 sites were within 11 genes in early RA, and 34 sites were within 7 genes in established RA. DEXSeq analysis revealed that RNA editing correlated with differential exon usage in 4 differentially edited genes that have previously also been associated with RA in some measure: ATM, ZEB1, ANXA4, and TIMP3. DEXSeq analysis also revealed enrichment of some non-functional isoforms of these genes, perhaps at the expense of their full-length counterparts. Network analysis using STRING showed that several edited genes were part of the p53 protein-protein interaction network. We also identified several putative miRNA binding sites in the differentially edited genes that were lost upon editing. Conclusions: Our results suggested that the expression of genes involved in DNA repair and cell cycle, including ATM and ZEB1 which are well-known functional regulators of the DNA damage response pathway, could be regulated by RNA editing in RA synovia. This may contribute to an impaired DNA damage response in synovial tissues.

12.
Open Biol ; 12(9): 220206, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36168804

RESUMO

Alternative splicing produces various mRNAs, and thereby various protein products, from one gene, impacting a wide range of cellular activities. However, accurate reconstruction and quantification of full-length transcripts using short-reads is limited, due to their length. Long-reads sequencing technologies may provide a solution by sequencing full-length transcripts. We explored the use of both Illumina short-reads and two long Oxford Nanopore Technology (cDNA and Direct RNA) RNA-Seq reads for detecting global differential splicing during mouse embryonic stem cell differentiation, applying several bioinformatics strategies: gene-based, isoform-based and exon-based. We detected the strongest similarity among the sequencing platforms at the gene level compared to exon-based and isoform-based. Furthermore, the exon-based strategy discovered many differential exon usage (DEU) events, mostly in a platform-dependent manner and in non-differentially expressed genes. Thus, the platforms complemented each other in the ability to detect DEUs (i.e. long-reads exhibited an advantage in detecting DEUs at the UTRs, and short-reads detected more DEUs). Exons within 20 genes, detected in one or more platforms, were here validated by PCR, including key differentiation genes, such as Mdb3 and Aplp1. We provide an important analysis resource for discovering transcriptome changes during stem cell differentiation and insights for analysing such data.


Assuntos
Processamento Alternativo , Sequenciamento de Nucleotídeos em Larga Escala , Animais , DNA Complementar/genética , Éxons , Perfilação da Expressão Gênica , Camundongos , Isoformas de Proteínas/genética , RNA/genética , Análise de Sequência de RNA , Transcriptoma , Regiões não Traduzidas
13.
Dis Model Mech ; 15(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946434

RESUMO

TDP-43 proteinopathy is the major pathology in amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal dementia (FTD). Mounting evidence implicates loss of normal TDP-43 RNA-processing function as a key pathomechanism. However, the RNA targets of TDP-43 differ by report, and have never been formally collated or compared between models and disease, hampering understanding of TDP-43 function. Here, we conducted re-analysis and meta-analysis of publicly available RNA-sequencing datasets from six TDP-43-knockdown models, and TDP-43-immunonegative neuronal nuclei from ALS/FTD brain, to identify differentially expressed genes (DEGs) and differential exon usage (DEU) events. There was little overlap in DEGs between knockdown models, but PFKP, STMN2, CFP, KIAA1324 and TRHDE were common targets and were also differentially expressed in TDP-43-immunonegative neurons. DEG enrichment analysis revealed diverse biological pathways including immune and synaptic functions. Common DEU events in human datasets included well-known targets POLDIP3 and STMN2, and novel targets EXD3, MMAB, DLG5 and GOSR2. Our interactive database (https://www.scotterlab.auckland.ac.nz/research-themes/tdp43-lof-db/) allows further exploration of TDP-43 DEG and DEU targets. Together, these data identify TDP-43 targets that can be exploited therapeutically or used to validate loss-of-function processes. This article has an associated First Person interview with the first author of the paper.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , RNA
14.
Front Genet ; 12: 683408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335690

RESUMO

Rainbow trout is an important model organism that has received concerted international efforts to study the transcriptome. For this purpose, short-read sequencing has been primarily used over the past decade. However, these sequences are too short of resolving the transcriptome complexity. This study reported a first full-length transcriptome assembly of the rainbow trout using single-molecule long-read isoform sequencing (Iso-Seq). Extensive computational approaches were used to refine and validate the reconstructed transcriptome. The study identified 10,640 high-confidence transcripts not previously annotated, in addition to 1,479 isoforms not mapped to the current Swanson reference genome. Most of the identified lncRNAs were non-coding variants of coding transcripts. The majority of genes had multiple transcript isoforms (average ∼3 isoforms/locus). Intron retention (IR) and exon skipping (ES) accounted for 56% of alternative splicing (AS) events. Iso-Seq improved the reference genome annotation, which allowed identification of characteristic AS associated with fish growth, muscle accretion, disease resistance, stress response, and fish migration. For instance, an ES in GVIN1 gene existed in fish susceptible to bacterial cold-water disease (BCWD). Besides, under five stress conditions, there was a commonly regulated exon in prolyl 4-hydroxylase subunit alpha-2 (P4HA2) gene. The reconstructed gene models and their posttranscriptional processing in rainbow trout provide invaluable resources that could be further used for future genetics and genomics studies. Additionally, the study identified characteristic transcription events associated with economically important phenotypes, which could be applied in selective breeding.

15.
Genes (Basel) ; 11(10)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023248

RESUMO

Over the past decade, a large amount of RNA sequencing (RNA-seq) data were deposited in public repositories, and more are being produced at an unprecedented rate. However, there are few open source tools with point-and-click interfaces that are versatile and offer streamlined comprehensive analysis of RNA-seq datasets. To maximize the capitalization of these vast public resources and facilitate the analysis of RNA-seq data by biologists, we developed a web application called OneStopRNAseq for the one-stop analysis of RNA-seq data. OneStopRNAseq has user-friendly interfaces and offers workflows for common types of RNA-seq data analyses, such as comprehensive data-quality control, differential analysis of gene expression, exon usage, alternative splicing, transposable element expression, allele-specific gene expression quantification, and gene set enrichment analysis. Users only need to select the desired analyses and genome build, and provide a Gene Expression Omnibus (GEO) accession number or Dropbox links to sequence files, alignment files, gene-expression-count tables, or rank files with the corresponding metadata. Our pipeline facilitates the comprehensive and efficient analysis of private and public RNA-seq data.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica , RNA-Seq/métodos , RNA/análise , Análise de Sequência de RNA/métodos , Software , Transcriptoma , Humanos , Anotação de Sequência Molecular , RNA/genética , Fluxo de Trabalho
16.
Neuropharmacology ; 146: 289-299, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419244

RESUMO

Alcohol use disorder (AUD) and major depressive disorder (MDD) are prevalent, debilitating, and highly comorbid disorders. The molecular changes that underlie their comorbidity are beginning to emerge. For example, recent evidence showed that acute ethanol exposure produces rapid antidepressant-like biochemical and behavioral responses. Both ethanol and fast-acting antidepressants block N-methyl-D-aspartate receptor (NMDAR) activity, leading to synaptic changes and long-lasting antidepressant-like behavioral effects. We used RNA sequencing to analyze changes in the synaptic transcriptome after acute treatment with ethanol or the NMDAR antagonist, Ro 25-6981. Ethanol and Ro 25-6981 induced differential, independent changes in gene expression. In contrast with gene-level expression, ethanol and Ro 25-6981 produced overlapping changes in exons, as measured by analysis of differentially expressed exons (DEEs). A prominent overlap in genes with DEEs indicated that changes in exon usage were important for both ethanol and Ro 25-6981 action. Structural modeling provided evidence that ethanol-induced exon expression in the NMDAR1 amino-terminal domain could induce conformational changes and thus alter NMDAR function. These findings suggest that the rapid antidepressant effects of ethanol and NMDAR antagonists reported previously may depend on synaptic exon usage rather than gene expression.


Assuntos
Alcoolismo/genética , Transtorno Depressivo Maior/genética , Éxons/efeitos dos fármacos , Éxons/genética , Expressão Gênica/efeitos dos fármacos , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Antidepressivos/farmacologia , Comorbidade , Etanol/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Fenóis/farmacologia , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de Neurotransmissores , Transcriptoma
17.
Skelet Muscle ; 8(1): 11, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29598826

RESUMO

BACKGROUND: Mutations in the titin gene (TTN) cause a large spectrum of diseases affecting skeletal and/or cardiac muscle. TTN includes 363 coding exons, a repeated region with a high degree of complexity, isoform-specific elements, and metatranscript-only exons thought to be expressed only during fetal development. Although three main classes of isoforms have been described so far, alternative splicing events (ASEs) in different tissues or in different developmental and physiological states have been reported. METHODS: To achieve a comprehensive view of titin ASEs in adult human skeletal muscles, we performed a RNA-Sequencing experiment on 42 human biopsies collected from 12 anatomically different skeletal muscles of 11 individuals without any skeletal-muscle disorders. RESULTS: We confirmed that the skeletal muscle N2A isoforms are highly prevalent, but we found an elevated number of alternative splicing events, some at a very high level. These include previously unknown exon skipping events and alternative 5' and 3' splice sites. Our data suggests the partial inclusion in the TTN transcript of some metatranscript-only exons and the partial exclusion of canonical N2A exons. CONCLUSIONS: This study provides an extensive picture of the complex TTN splicing pattern in human adult skeletal muscle, which is crucial for a proper clinical interpretation of TTN variants.


Assuntos
Processamento Alternativo , Conectina/genética , Músculo Esquelético/metabolismo , Adulto , Éxons/genética , Humanos , Miocárdio/metabolismo , Isoformas de Proteínas/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos
18.
Bayesian Anal ; 13(2): 411-436, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33868546

RESUMO

The analysis of RNA-Seq data has been focused on three main categories, including gene expression, relative exon usage and transcript expression. Methods have been proposed independently for each category using a negative binomial (NB) model. However, counts following a NB distribution on one feature (e.g., exon) do not guarantee a NB distribution for the other two features (e.g., gene/transcript). In this paper we propose a family of Negative Binomial models, which integrates the gene, exon and transcript analysis under a coherent NB model. The proposed model easily incorporates the uncertainty of assigning reads to transcripts and simplifies substantially the estimation for the relative usage. We developed simple Gibbs sampling algorithms for the posterior inference by exploiting fully tractable closed-forms of computation via suitable conjugate priors. The proposed models were investigated under extensive simulations. Finally, we applied our model to a real data set.

19.
Genome Biol ; 19(1): 117, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111345

RESUMO

BACKGROUND: Alternative RNA processing plays an essential role in shaping cell identity and connectivity in the central nervous system. This is believed to involve differential regulation of RNA processing in various cell types. However, in vivo study of cell type-specific post-transcriptional regulation has been a challenge. Here, we describe a sensitive and stringent method combining genetics and CLIP (crosslinking and immunoprecipitation) to globally identify regulatory interactions between NOVA and RNA in the mouse spinal cord motoneurons. RESULTS: We developed a means of undertaking motoneuron-specific CLIP to explore motoneuron-specific protein-RNA interactions relative to studies of the whole spinal cord in mouse. This allowed us to pinpoint differential RNA regulation specific to motoneurons, revealing a major role for NOVA in regulating cytoskeleton interactions in motoneurons. In particular, NOVA specifically promotes the palmitoylated isoform of the cytoskeleton protein Septin 8 in motoneurons, which enhances dendritic arborization. CONCLUSIONS: Our study demonstrates that cell type-specific RNA regulation is important for fine tuning motoneuron physiology and highlights the value of defining RNA processing regulation at single cell type resolution.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Citoesqueleto/metabolismo , Imunoprecipitação , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Cromossomos Artificiais Bacterianos/metabolismo , Dendritos/metabolismo , Éxons/genética , Lipoilação , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Proteínas do Tecido Nervoso/química , Antígeno Neuro-Oncológico Ventral , Pseudópodes/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/química , Septinas/metabolismo , Transcriptoma/genética
20.
BMC Med Genomics ; 10(1): 58, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28985737

RESUMO

BACKGROUND: Cigarette smoking is the leading modifiable risk factor for disease and death worldwide. Previous studies quantifying gene-level expression have documented the effect of smoking on mRNA levels. Using RNA sequencing, it is possible to analyze the impact of smoking on complex regulatory phenomena (e.g. alternative splicing, differential isoform usage) leading to a more detailed understanding of the biology underlying smoking-related disease. METHODS: We used whole-blood RNA sequencing to describe gene and exon-level expression differences between 229 current and 286 former smokers in the COPDGene study. We performed differential gene expression and differential exon usage analyses using the voom/limma and DEXseq R packages. Samples from current and former smokers were compared while controlling for age, gender, race, lifetime smoke exposure, cell counts, and technical covariates. RESULTS: At an adjusted p-value <0.05, 171 genes were differentially expressed between current and former smokers. Differentially expressed genes included 7 long non-coding RNAs that have not been previously associated with smoking: LINC00599, LINC01362, LINC00824, LINC01624, RP11-563D10.1, RP11-98G13.1, AC004791.2. Secondary analysis of acute smoking (having smoked within 2-h) revealed 5 of the 171 smoking genes demonstrated an acute response above the baseline effect of chronic smoking. Exon-level analyses identified 9 exons from 8 genes with significant differential usage by smoking status, suggesting smoking-induced changes in isoform expression. CONCLUSIONS: Transcriptomic changes at the gene and exon levels from whole blood can refine our understanding of the molecular mechanisms underlying the response to smoking.


Assuntos
Fumar Cigarros/genética , Éxons/genética , Perfilação da Expressão Gênica , RNA não Traduzido/genética , Análise de Sequência de RNA , Idoso , Idoso de 80 Anos ou mais , Fumar Cigarros/sangue , Feminino , Ontologia Genética , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa