Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(22): 15638-15649, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36302504

RESUMO

Understanding residence times of plastic in the ocean is a major knowledge gap in plastic pollution studies. Observations report a large mismatch between plastic load estimates from worldwide production and disposal and actual plastics floating at the sea surface. Surveys of the water column, from the surface to the deep sea, are rare. Most recent work, therefore, addressed the "missing plastic" question using modeling or laboratory approaches proposing biofouling and degradation as the main removal processes in the ocean. Through organic matrices, plastic can affect the biogeochemical and microbial cycling of carbon and nutrients. For the first time, we provide in situ measured vertical fluxes of microplastics deploying drifting sediment traps in the North Atlantic Gyre from 50 m down to 600 m depth, showing that through biogenic polymers plastic can be embedded into rapidly sinking particles also known as marine snow. We furthermore show that the carbon contained in plastic can represent up to 3.8% of the total downward flux of particulate organic carbon. Our results shed light on important pathways regulating the transport of microplastics in marine systems and on potential interactions with the marine carbon cycle, suggesting microplastic removal through the "biological plastic pump".


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Carbono , Proteínas de Membrana Transportadoras , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Oceano Atlântico
2.
Geophys Res Lett ; 48(7): e2020GL091746, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34219838

RESUMO

The ocean's "biological pump" significantly modulates atmospheric carbon dioxide levels. However, the complexity and variability of processes involved introduces uncertainty in interpretation of transient observations and future climate projections. Much research has focused on "parametric uncertainty," particularly determining the exponent(s) of a power-law relationship of sinking particle flux with depth. Varying this relationship's functional form introduces additional "structural uncertainty." We use an ocean biogeochemistry model substituting six alternative remineralization profiles fit to a reference power-law curve, to systematically characterize structural uncertainty, which, in atmospheric pCO2 terms, is roughly 50% of parametric uncertainty associated with varying the power-law exponent within its plausible global range, and similar to uncertainty associated with regional variation in power-law exponents. The substantial contribution of structural uncertainty to total uncertainty highlights the need to improve characterization of biological pump processes, and compare the performance of different profiles within Earth System Models to obtain better constrained climate projections.

3.
Chemosphere ; 286(Pt 1): 131662, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34346349

RESUMO

The intensification of anthropogenic nitrogen (N) and phosphorus (P) inputs profoundly affects water environmental quality. Hence it is pivotal to clarify the response relationship between riverine TN/TP export and anthropogenic N/P inputs to provide strategies guidance in N/P management. Based on the variation of net anthropogenic N and P inputs (NANI/NAPI) in the Raohe basin from 1990 to 2018, we constructed the response relationship between NANI/NAPI and total nitrogen and phosphorus (TN/TP) export fluxes in the riverine, which successfully predicted N and P export at the basin scale management. We found N export ratio (ratio of TN export to NANI) increased with slight fluctuation and was mainly affected by the combined effects of Nfer (fertilizer N inputs) and Ndep (atmospheric N deposition) etc., while the decrease of P export ratio (ratio of TP export to NAPI) was mainly due to intensive retention effect of the soil and sediment induced by anthropogenic influence to P transportation process. These results indicate that the downstream aquatic systems take a high risk of increasing N load pressure and the basin systems suffer a danger from rising P load pressure. Therefore, it is recommended to concentrate more on downstream aquatic systems during the N management strategy implementation and pay closer attention to the whereabouts of P in the basin system.


Assuntos
Fósforo , Poluentes Químicos da Água , China , Monitoramento Ambiental , Fertilizantes , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa