Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Ecotoxicol Environ Saf ; 283: 116800, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096691

RESUMO

The exposure of organic UV filters has been increasingly confirmed to induce adverse effects on humans. However, the critical exposure pathway and the vulnerable population of organic UV filters are not clearly identified. This paper attempts to evaluate the health risk of commonly used organic UV filters from various exposure routes based on comprehensive analysis strategy. The estimated daily intakes (EDI) and hazard quotient (HQ) values of organic UV filters through four pathways (dermal exposure, indoor dust, indoor air, and drinking water) for various age groups were determined. Although the total HQ values (0.01-0.4) from comprehensive exposure of organic UV filters were below risk threshold (1.0), infants were identified as the most vulnerable population, with EDI (75.71 ng/kg-bw/day) of 2-3 times higher than that of adults. Additionally, the total EDI values of individual exposure pathways were estimated and ranked as follows: indoor air (138.44 ng/kg-bw/day) > sunscreen application (37.2 ng/kg-bw/day) > drinking water (21.87 ng/kg-bw/day) > indoor dust (9.24 ng/kg-bw/day). Moreover, we successfully tailored the Sankey diagram to depict the EDI proportion of individual organic UV filters from four exposure pathways. It was noted that EHMC (ethylhexyl methoxycinnamate) and EHS (ethylhexyl salicylate) dominated the contribution of EDI (72 %) via indoor air exposure routes. This study serves as a crucial reference for enhancing public health risk awareness concerning organic UV filters, with a special focus on the vulnerable populations such as infants and children.


Assuntos
Exposição Ambiental , Protetores Solares , Humanos , Medição de Risco , Protetores Solares/análise , Protetores Solares/toxicidade , Exposição Ambiental/estatística & dados numéricos , Lactente , Criança , Adulto , Pré-Escolar , Raios Ultravioleta , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Água Potável/química , Poeira/análise , Cinamatos/análise , Adolescente , Adulto Jovem , Salicilatos/análise , Pessoa de Meia-Idade
2.
Environ Sci Technol ; 57(49): 20678-20688, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019971

RESUMO

Models and laboratory studies suggest that everyday clothing influences the transdermal uptake of semivolatile organic compounds, including phthalate plasticizers, from indoor environments. However, this effect has not been documented in environmental exposure settings. In this pilot study, we quantified daily excretion of 17 urinary metabolites (µg/day) for phthalates and phthalate alternatives in nine participants during 5 days. On Day 0, baseline daily excretion was determined in participants' urine. Starting on Day 1, participants refrained from eating phthalate-heavy foods and using personal care products. On Days 3 and 4, participants wore precleaned clothing as an exposure intervention. We observed a reduction in the daily excretion of phthalates during the intervention; mono-n-butyl phthalate, monoisobutyl phthalate (MiBP), and monobenzyl phthalate were significantly reduced by 35, 38, and 56%, respectively. Summed metabolites of di(2-ethylhexyl)phthalate (DEHP) were also reduced (27%; not statistically significant). A similar reduction among phthalate alternatives was not observed. The daily excretion of MiBP during the nonintervention period strongly correlated with indoor air concentrations of diisobutyl phthalate (DiBP), suggesting that inhalation and transdermal uptake of DiBP from the air in homes are dominant exposure pathways. The results indicate that precleaned clothing can significantly reduce environmental exposure to phthalates and phthalate alternatives.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Humanos , Plastificantes , Poluentes Ambientais/análise , Projetos Piloto , Ácidos Ftálicos/metabolismo , Exposição Ambiental/análise , Vestuário
3.
Environ Res ; 239(Pt 1): 117216, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805179

RESUMO

INTRODUCTION: Non-occupational sources of pesticide exposure may include domestic pesticide usage, diet, occupational exposure of household members, and agricultural activities in the residential area. We conducted a study with the ambition to characterize pesticide mixture patterns in a sample of the adult population of the Netherlands and Switzerland, using a suspect screening approach and to identify related exposure determinants. METHODS: A total of 105 and 295 adults participated in the Dutch and Swiss studies, respectively. First morning void urine samples were collected and analyzed in the same laboratory. Harmonized questionnaires about personal characteristics, pesticide-related activities, and diet were administered. Detection rates and co-occurrence patterns were calculated to explore internal pesticide exposure patterns. Censored linear and logistic regression models were constructed to investigate the association between exposure and domestic pesticide usage, consumption of homegrown and organic foods, household members' exposure, and distance to agricultural and forest areas. RESULTS: From the 37 detected biomarkers, 3 (acetamiprid (-CH2), chlorpropham (4-HSA), and flonicamid (-C2HN)) were detected in ≥40% of samples. The most frequent combination of biomarkers (acetamiprid-flonicamid) was detected in 22 (5.5%) samples. Regression models revealed an inverse association between high organic vegetable and fruit consumption and exposure to acetamiprid, chlorpropham, propamocarb (+O), and pyrimethanil (+O + SO3). Within-individual correlations in repeated samples (summer/winter) from the Netherlands were low (≤0.3), and no seasonal differences in average exposures were observed in Switzerland. CONCLUSION: High consumption of organic fruit and vegetables was associated with lower pesticide exposure. In the two countries, detection rates and co-occurrence were typically low, and within-person variability was high. Our study results provide an indication for target biomarkers to include in future studies aimed at quantifying urinary exposure levels in European adult populations.


Assuntos
Praguicidas , Humanos , Adulto , Países Baixos , Clorprofam , Suíça , Biomarcadores
4.
Environ Sci Technol ; 56(23): 17080-17089, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36378808

RESUMO

Determining the major human exposure pathways is a prerequisite for the development of effective management strategies for environmental pollutants such as chlorinated paraffins (CPs). As a first step, the internal and external exposure to CPs were quantified for a well-defined human cohort. CPs in participants' plasma and diet samples were analyzed in the present study, and previous results on paired air, dust, and hand wipe samples were used for the total exposure assessment. Both one compartment pharmacokinetic modeling and forensic fingerprinting indicate that dietary intake contributed the most to body burden of CPs in this cohort, contributing a median of 60-88% of the total daily intakes. The contribution from dust ingestion and dermal exposure was greater for the intake of long-chain CPs (LCCPs) than short-chain CPs (SCCPs), while the contribution from inhalation was greater for the intake of SCCPs than medium-chain CPs (MCCPs) and LCCPs. Significantly higher concentrations of SCCPs and MCCPs were observed in diets containing butter and eggs, respectively (p < 0.05). Additionally, other exposure sources were correlated to plasma levels of CPs, including residence construction parameters such as the construction year (p < 0.05). This human exposure to CPs is not a local case. From a global perspective, there are major knowledge gaps in biomonitoring and exposure data for CPs from regions other than China and European countries.


Assuntos
Hidrocarbonetos Clorados , Parafina , Humanos , Parafina/análise , Carga Corporal (Radioterapia) , Monitoramento Ambiental/métodos , Poeira/análise , Ingestão de Alimentos , China
5.
Environ Monit Assess ; 194(4): 263, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35260925

RESUMO

Coal thermal power plants are the dominant factor in producing various hazardous elements in surrounding surface soil, resulting in a significant human health hazard. In the current study, the seasonal (pre- and post-monsoon) concentration of As, Cd, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Pb, and Zn in surface soil around coal power production unit was analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The possible health risks throughout multiple exposure routes, i.e., ingestion, dermal, and inhalation were estimated for adult and children. Furthermore, geo-accumulation index (Igeo), enrichment factor (EF), pollution factor (CF), ecological risk index, and pollution load index (PLI) were applied to interpret the environmental pollution in the study area. The geospatial distribution pattern was computed to understand the trace and hazardous element distribution in the surface soil. As a result, the concentration of Fe (mg/kg) in pre-monsoon (15,620) and post-monsoon (27,180), Ni (mg/kg) in pre-monsoon (19.8), and post-monsoon (81.7) was found above the standard limits of soil prescribed by the WHO and FAO. Enrichment factor was observed between 0.95-6948 (pre-monsoon) and 0.53-116.09 (post-monsoon). The ecological risk index was found moderate to considerable for As and Cd metals during both seasons. In addition, the average PLI value was observed high for both seasons indicating the contamination of the study area with heavy metals. Moreover, Igeo values for Fe, Mg, and As were found relatively high. Conversely, health risks to the human population were found within the USEPA acceptable limits.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Carvão Mineral/análise , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise
6.
Environ Sci Technol ; 55(10): 6773-6782, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33900727

RESUMO

Polychlorinated naphthalene (PCN) concentrations in the soil at an e-waste recycling area in Guiyu, China, were measured and the associated human cancer risk due to e-waste-related exposures was investigated. We quantified PCNs in the agricultural soil and used these concentrations with predictive equations to calculate theoretical concentrations in outdoor air. We then calculated theoretical concentrations in indoor air using an attenuation factor and in the local diet using previously published models for contaminant uptake in plants and fruits. Potential human cancer risks of PCNs were assessed for multiple exposure pathways, including soil ingestion, inhalation, dermal contact, and dietary ingestion. Our calculations indicated that local residents had a high cancer risk from exposure to PCNs and that the diet was the primary pathway of PCN exposure, followed by dermal contact as the secondary pathway. We next repeated the risk assessment using concentrations for other carcinogenic contaminants reported in the literature at the same site. We found that polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and PCNs caused the highest potential cancer risks to the residents, followed by polychlorinated biphenyls (PCBs). The relative importance of different exposure pathways depended on the physicochemical properties of specific chemicals.


Assuntos
Resíduo Eletrônico , Neoplasias , Bifenilos Policlorados , Dibenzodioxinas Policloradas , China , Dibenzofuranos , Dibenzofuranos Policlorados/análise , Detecção Precoce de Câncer , Monitoramento Ambiental , Humanos , Naftalenos/análise , Neoplasias/induzido quimicamente , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Medição de Risco , Solo
7.
Indoor Air ; 31(5): 1495-1508, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33751666

RESUMO

Phthalates are widely used in consumer products. Exposure to phthalates can lead to adverse health effects in humans, with early-life exposure being of particular concern. Phthalate exposure occurs mainly through ingestion, inhalation, and dermal absorption. However, our understanding of the relative importance of different exposure routes is incomplete. This study estimated the intake of five phthalates from the residential indoor environment for 455 Swedish pregnant women in the SELMA study using phthalate mass fraction in indoor dust and compares these to total daily phthalate intakes back-calculated from phthalate metabolite concentrations in the women's urine. Steady-state models were used to estimate indoor air phthalate concentrations from dust measurements. Intakes from residential dust and air made meaningful contributions to total daily intakes of more volatile di-ethyl phthalate (DEP), di-n-butyl phthalate (DnBP), and di-iso-butyl phthalate (DiBP) (11% of total DEP intake and 28% of total DnBP and DiBP intake combined). Dermal absorption from air was the dominant pathway contributing to the indoor environmental exposure. Residential exposure to less volatile phthalates made minor contributions to total intake. These results suggest that reducing the presence of low molecular weight phthalates in the residential indoor environment can meaningfully reduce phthalate intake among pregnant women.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Exposição Materna/estatística & dados numéricos , Ácidos Ftálicos , Gestantes , Adulto , Feminino , Humanos , Gravidez
8.
Environ Res ; 187: 109531, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32454306

RESUMO

Polybrominated diphenyl ethers (PBDEs) are extensively used as brominated flame retardants (BFRs) in different types of materials, which have been listed as Persistent Organic Pollutants (POPs) by the Stockholm Convention in 2009 and 2017. Due to their ubiquities in the environment and toxicities, PBDEs have posed great threat to both human health and ecosystems. The aim of this review is to offer a comprehensive understanding of the exposure pathways, levels and trends and associated health risks of PBDEs in human body in a global scale. We systematically reviewed and described the scientific data of PBDE researches worldwide from 2010 to March 2020, focusing on the following three areas: (1) sources and human external exposure pathways of PBDEs; (2) PBDE levels and trends in humans; (3) human data of PBDEs toxicity. Dietary intake and dust ingestion are dominant human exposure pathways. PBDEs were widely detected in human samples, especially in human serum and human milk. Data showed that PBDEs are generally declining in human samples worldwide as a result of their phasing out. Due to the common use of PBDEs, their levels in humans from the USA were generally higher than that in other countries. High concentrations of PBDEs have been detected in humans from PBDE production regions and e-waste recycling sites. BDE-47, -153 and -99 were proved to be the primary congeners in humans. Human toxicity data demonstrated that PBDEs have extensively endocrine disruption effects, developmental effects, and carcinogenic effects among different populations.


Assuntos
Retardadores de Chama , Éteres Difenil Halogenados , Carga Corporal (Radioterapia) , Ecossistema , Monitoramento Ambiental , Retardadores de Chama/análise , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/toxicidade , Humanos , Leite Humano/química
9.
Ecotoxicol Environ Saf ; 169: 178-184, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30448700

RESUMO

Herein, crop (vegetables and rice, n = 30), soil (n = 14), dust (n = 12), and PM10 (n = 25) samples were collected to assess the environmental quality of a former e-waste recycling area and evaluate the related health risks. In dust and PM10, the concentrations of heavy metals (Cd, Cu, Ni, Pb, and Zn) were lower than previously reported values, although the numbers for soil, vegetables, and rice remained high. The average accumulation factors of heavy metals in crops decreased in the order of Zn > Cd > Ni > Cu > Pb, and soil was identified as the largest contributor to crop pollution. Heavy metal ingestion largely occurred via rice consumption, which accounted for a significant fraction of the total average daily dose (ADD; 75.2-86.7% in children and 78.0-91.7% in adults), especially for Cd, Cu, Ni, and Zn. However, in the case of Pb, soil ingestion accounted for 48.9% of the ADD in adults, while in children, vegetable, rice, and dust ingestion accounted for 44.7%, 28.6%, and 23.7% of the ADD, respectively. The combined exposure hazard indices at the fifth, median, and 95th percentiles for all heavy metals were determined as 2.54, 9.40, and 40.1 for adults and as 3.75, 13.7, and 58.4 for children, respectively. In terms of health risk, crop consumption was identified as the major exposure pathway for both children and adults, featuring a contribution of 99.9%. In addition, the 95th percentile carcinogenic risks for Pb exceeded the acceptable level. Thus, this work shows that to reduce the health risk for local residents in the former e-waste area, more attention should be paid to soil repair.


Assuntos
Resíduo Eletrônico/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Metais Pesados/análise , Reciclagem , Poluentes do Solo/análise , Adulto , Criança , China , Produtos Agrícolas/química , Poeira/análise , Humanos , Medição de Risco , Solo/química
10.
Environ Health ; 17(1): 90, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30567579

RESUMO

BACKGROUND: The risk of mesothelioma has been shown to be associated with exposure to asbestos fibers. Most of the existing literature focuses on occupational exposure; however, non-occupational asbestos exposure has also been identified as an important risk factor. OBJECTIVE: To estimate the association between mesothelioma and non-occupational asbestos exposure, and evaluate control recruitment and exposure measurement methods. METHODS: A systematic literature review was conducted to identify case-control (CC) and cohort studies that examined the association between mesothelioma and non-occupational exposure to asbestos, including neighborhood, domestic, and household exposure. Meta-analysis was performed to estimate a summary relative risk estimate (SRRE) and 95% confidence interval using random-effects models. Subgroup analyses were also conducted by exposure type, gender, region, and fiber type. RESULTS: Twenty CC and 7 cohort studies were selected. Controls in CC studies were selected from the general population (55%), hospital records (18%), cancer registry (23%) and a combination of population and hospital records (5%). Multiple methods were used to measure neighborhood exposure (e.g., linear distance and direction of residence from an asbestos factory), domestic (e.g., whether living with an asbestos worker) and household exposure (e.g., whether involved in asbestos-containing home improvement projects). Primary meta-analyses suggested a SRRE of mesothelioma of 5.33 (95%CI: 2.53, 11.23) from neighborhood exposure, 4.31 (95%CI, 2.58, 7.20) from domestic exposure, and 2.41 (95%CI, 1.30, 4.48) from household exposure with large I2 statistics ranging from 83-99%. CONCLUSIONS: Non-occupational asbestos exposure is significantly associated with an elevated risk of mesothelioma. Funnel plots indicated a potential of publication bias. Some SRREs should be interpreted with cautions because of high between-studies heterogeneity.


Assuntos
Amianto/efeitos adversos , Exposição Ambiental/efeitos adversos , Mesotelioma/epidemiologia , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Fatores de Risco
11.
Int J Environ Health Res ; 25(2): 162-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24853090

RESUMO

The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland's CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are (1) water used for municipal purposes; (2) recreational water activities in rivers; (3) occupational exposures; (4) water extracted from contaminated aquifers; and (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.


Assuntos
Exposição Ambiental , Monitoramento Ambiental , Mineração , Poluentes Químicos da Água/análise , Carvão Mineral , Água Potável/análise , Cadeia Alimentar , Água Subterrânea/análise , Humanos , Exposição Ocupacional , Queensland , Recreação , Rios
12.
Ecotoxicol Environ Saf ; 100: 258-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24135422

RESUMO

The present study investigates the possible influence of human activities on metal loadings of topsoil in a typical small rural city in central Greece and the chemical quality of tap water in surrounding villages. Furthermore, the study aimed to examine potential health risks of naturally enriched heavy metals to exposed population taking into account the soil and drinking water as exposure pathways. The mean concentrations of Ni, Cr, Co, Mn, Pb, Cu, Zn and Cd in the soil were 1777, 285, 99, 946, 30, 26, 78 and 0.67 mg/kg respectively. Combination of pollution indexes based on local reference background soils and statistical analyses (correlation analysis, cluster analysis and principal component analysis) revealed that anthropogenic activities have not modified the natural soil chemistry at least in a large scale. High Hazard Quotient (HQ) values for children were estimated for Ni, Cr and Co based on total metal concentrations for the soil ingestion route (9.26E-01, 9.75E-01 and 3.45E+00 respectively). However, evaluation of HQs based on published bioaccessible concentrations suggested that the population groups would not likely experience potential health risks as a result of exposure to contaminated soils. Concentrations of Cr(VI) in tap waters were within the allowable limits. However, the risk assessment model revealed that local residents (adults) of Eleonas and Neochori villages are at some carcinogenic risks considering lifetime ingestion of water (potential cancer risks 2.05E-04 and 1.29E-04 respectively). Despite the uncertainties accompanying these procedures and the great deal of debate regarding the human carcinogenicity of Cr(VI) by the oral route, results of this study drive attention to remediation measures that should include epidemiological studies for the local population.


Assuntos
Água Potável/química , Monitoramento Ambiental , População Rural , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Adulto , Criança , Grécia , Humanos , Metais Pesados/análise , Medição de Risco , Solo/química
13.
Ecotoxicol Environ Saf ; 108: 42-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25038271

RESUMO

Contaminants in surface soil can directly pose significant human health risks through oral ingestion, dermal contact and particle inhalation, especially for children. Both non-cancer and cancer risks associated with selected metal levels (Cd, Cr, Cu, Fe, Mn, Pb and Zn) were evaluated in surface soil around Mangla Lake during summer and winter. The results based on average pseudo-total metal concentrations followed the decreasing order: Fe (4038mg/kg)>Mn (394mg/kg)>Zn (40mg/kg)>Pb (17mg/kg)>Cr (21mg/kg)>Cu (15mg/kg)>Cd (1.3mg/kg) during summer and Fe (3673mg/kg)>Mn (407mg/kg)>Zn (30mg/kg)>Cr (26mg/kg)>Pb (26mg/kg)>Cu (14mg/kg)>Cd (1.8mg/kg) during winter. Present metal levels in the soil were also compared with other studies and guideline values which showed significant increase in the metal concentrations in this study. The metal levels also showed considerable spatial variations around the lake. The correlation study and multivariate principal component analysis revealed significant anthropogenic contributions of the metals in soils. Aqua-regia extractable (pseudo-total) contents were used as the reference to establish the percentage of bioavailability. After considering the bioavailability (Cd>Pb>Cr>Zn>Cu>Fe>Mn during both seasons), the non-cancer and cancer risks posed by Cd, Pb and Cr was relatively higher than rest of the metals, though the overall hazard index (HI) and cancer risk levels were within the safe limits (1.0 and 1.0E-06, respectively). The overall cancer risk to the adults based on pseudo-total metal concentrations exceeded the target value (1.0E-06), mainly contributed by Cr. A method considering bioavailability is suggested to produce a more realistic estimation for human health risks of trace metals contamination in soil.


Assuntos
Metais Pesados/análise , Neoplasias/induzido quimicamente , Poluentes do Solo/análise , Solo/química , Adulto , Disponibilidade Biológica , Criança , Monitoramento Ambiental , Humanos , Lagos , Metais Pesados/toxicidade , Paquistão , Análise de Componente Principal , Medição de Risco , Estações do Ano , Poluentes do Solo/toxicidade
14.
Huan Jing Ke Xue ; 45(2): 1173-1184, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471954

RESUMO

The effect of microplastics on the ecological environment and human health has become a topical issue, and research on the risks and harmful effects of MPs on human health in particular has attracted widespread attention. Due to the characteristics of small size, low degradability, and easy migration, MPs continuously migrate from the environment to the human body, and their main exposure pathways are oral ingestion, inhalation, and dermal contact, with the main exposure media being food, drinking water, dust, personal care products, etc. MPs have been detected in organs, fluids, and excreta of digestive, respiratory, cardiovascular, reproductive systems, etc. The abundance range of MPs in the human body is 0-1 206.94 particles per gram. After entering the human body, MPs can cause cytotoxicity, mitochondrial toxicity, DNA damage, cell membrane damage, and other effects on human cells and organs, leading to serious consequences such as local inflammation, ecological imbalance, metabolic disorders, etc., in various systems. Owing to their small specific surface area, they can also adsorb pollutants such as heavy metals, organic pollutants, antibiotics, pathogens, and harmful microorganisms, causing combined toxicity and immunotoxicity. In the end, we highlighted general deficiencies in existing studies and provided directions for future research on the influence of MPs on human health.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
15.
Sci Total Environ ; 946: 174215, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38914339

RESUMO

Microplastics (MPs) are pervasive across ecosystems, presenting substantial risks to human health. Developing a comprehensive review of MPs is crucial due to the growing evidence of their widespread presence and potential harmful effects. Despite the growth in research, considerable uncertainties persist regarding their transport dynamics, prevalence, toxicological impacts, and the potential long-term health effects they may cause. This review thoroughly evaluates recent advancements in research on MPs and their implications for human health, including estimations of human exposure through ingestion, inhalation, and skin contact. It also quantifies the distribution and accumulation of MPs in various organs and tissues. The review discusses the mechanisms enabling MPs to cross biological barriers and the role of particle size in their translocation. To ensure methodological rigor, this review adheres to the PRISMA guidelines, explicitly detailing the literature search strategy, inclusion criteria, and the quality assessment of selected studies. The review concludes that MPs pose significant toxicological risks, identifies critical gaps in current knowledge, and recommends future research directions to elucidate the prolonged effects of MPs on human health. This work aims to offer a scientific framework for mitigating MP-related hazards and establishes a foundation for ongoing investigation.


Assuntos
Exposição Ambiental , Microplásticos , Microplásticos/toxicidade , Humanos , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental
16.
J Hazard Mater ; 465: 133353, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154186

RESUMO

To comprehensively characterize residents' exposure to major semi-volatile organic compounds (SVOCs), samples of indoor floor wipes, size-segregated airborne particles, gaseous air, food, and paired skin wipes were simultaneously collected from residential areas around a large non-ferrous metal smelting plant as compared with the control areas, and three typical SVOCs (including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and halogenated PAHs (HPAHs)) were determined. Comparison and correlation analysis among matrices indicated PAHs were the major contaminants emitted from metal smelting activities compared to HPAHs and PCBs, with naphthalene verified as the most important characteristic compound, and their accumulation on skin may be a comprehensive consequence of contact with floor dust and air. While patterns of human exposure pathways for the SVOCs were found to be clearly correlated to their vapor pressure, dermal absorption was the major contributor (51.1-76.3%) to total carcinogenic risk (TCR) of PAHs and HPAHs for surrounding residents, especially for low molecular weight PAHs, but dietary ingestion (98.6%) was the dominant exposure pathway to PCBs. The TCR of PAHs exceeded the acceptable level (1 × 10-4), implying smelting activities obviously elevated the health risk. This study will serve developing pertinent exposure and health risk prevention measures.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Bifenilos Policlorados/análise , Poluição do Ar em Ambientes Fechados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Carcinógenos/análise , Receptores de Antígenos de Linfócitos T/análise , Monitoramento Ambiental , Poluentes Atmosféricos/análise
17.
Toxicology ; 509: 153959, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341352

RESUMO

Polybrominated diphenyl ethers (PBDEs) are brominated compounds connected by ester bonds between two benzene rings. There are 209 congeners of PBDEs, classified according to the number and position of the bromine atoms. Due to their low cost and superior flame retardant properties, PBDEs have been extensively used as flame retardants in electronic products, plastics, textiles, and other materials since the 1970s. PBDEs are classified as persistent organic pollutants (POPs) under the Stockholm Convention because of their environmental persistence, bioaccumulation, and toxicity to both humans and wildlife. Due to their extensive use and significant quantities, PBDEs have been detected across a range of environments and biological organisms. These compounds are known to cause damage to the metabolic system, exhibit neurotoxicity, and pose reproductive hazards. This review investigates the environmental distribution and human exposure pathways of PBDEs. Using China-a country with significant PBDE use-as an example, it highlights substantial regional and temporal variations in PBDE concentrations and notes that certain environmental levels may pose risks to human health. The article then examines the toxic effects and mechanisms of PBDEs on several major target organs, summarizing recent research and the specific mechanisms underlying these toxic effects from multiple toxicological perspectives. This review enhances our understanding of PBDEs' environmental distribution, exposure pathways, and toxic mechanisms, offering valuable insights for further research and management strategies.

18.
J Hazard Mater ; 477: 135382, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088947

RESUMO

Pharmaceutical uptake involves processes that vary across aquatic systems and biota. However, single studies examining multiple environmental compartments, microhabitats, biota, and exposure pathways in mesoconsumer fish are sparse. We investigated the pharmaceutical burden in bonefish (Albula vulpes), pathways of exposure, and estimated exposure to a human daily dose. To evaluate exposure pathways, the number and composition of pharmaceuticals across compartments and the bioconcentration in prey and bonefish were assessed. To evaluate bioaccumulation, we proposed the use of a field-derived bioaccumulation factor (fBAF), due to variability inherent to natural systems. Exposure to a human daily dose was based on bonefish daily energetic requirements and consumption rates using pharmaceutical concentrations in prey. Pharmaceutical number and concentration were highest in prey, followed by bonefish, water and sediment. Fifteen pharmaceuticals were detected in common among bonefish, prey, and water; all of which bioconcentrated in prey and bonefish, and four bioaccumulated in bonefish. The composition of detected pharmaceuticals was compartment specific, and prey were most similar to bonefish. Bonefish were exposed to a maximum of 1.2 % of a human daily dose via prey consumption. Results highlight the need for multicompartment assessments of exposure and consideration of prey along with water as a pathway of exposure.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética , Preparações Farmacêuticas/metabolismo , Preparações Farmacêuticas/análise , Peixes/metabolismo , Bioacumulação , Cadeia Alimentar , Monitoramento Ambiental , Humanos
19.
Environ Pollut ; 357: 124418, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908673

RESUMO

Polystyrene nanoparticles (PS NPs) released from plastic products have been demonstrated to pose a threat to leaf litter decomposition in streams. Given the multitrophic systems of species interactions, the effects of PS NPs through different exposure routes on ecosystem functioning remain unclear. Especially dietary exposure, a frequently overlooked pathway leading to toxicity, deserves more attention. A microcosm experiment was conducted in this study to assess the effects of waterborne and dietary exposure to PS NPs on the litter-based food chain involving leaves, microbial decomposers, and detritivores (river snails). Compared to waterborne contamination, dietary contamination resulted in lower microbial enzyme activities and a significantly higher decrease in the lipid content of leaves. For river snails, their antioxidant activity was significantly increased by 20.21%-69.93%, and their leaf consumption rate was significantly reduced by 16.60% through the dietary route due to the lower lipid content of leaves. Besides, the significantly decreased nutritional quality of river snails would negatively influence their palatability to predators. The findings of this study indicate that dietary exposure to PS NPs significantly impacts microbial and detritivore activities, thus affecting their functions in the detritus food chain as well as nutrient cycling.


Assuntos
Cadeia Alimentar , Nanopartículas , Folhas de Planta , Rios , Caramujos , Poluentes Químicos da Água , Folhas de Planta/química , Animais , Rios/química , Poluentes Químicos da Água/análise , Caramujos/efeitos dos fármacos , Caramujos/fisiologia , Poliestirenos , Plásticos , Ecossistema
20.
Neurotoxicology ; 102: 29-36, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38453034

RESUMO

BACKGROUND: Organophosphorus pesticide (OP) exposure is known to have adverse effects on the nervous system. Children from agricultural communities are at risk of exposure to these chemicals from their indoor environments that can lead to neurological and developmental problems, including changes in behavior. OBJECTIVE: The aim of this study is to evaluate whether the take-home pathway exposure is associated with behavioral and emotional problems in Latino Orchid Community children. METHOD: The study was implemented over a period of two years (2008-2010) in an orchard farming community with a total of 324 parents who had children between the ages of 5-12 years old. Mothers of the children were asked to complete the Child Behavior Checklist (CBCL) and dust from their carpets was collected. Emotional and behavioral deficits were assessed based on the CBCL and house dust was assessed for OP concentrations. In this study, correlations between OPs in house dust and CBCL subscales were estimated using linear regression models with total OP concentrations classified by tertiles. This study also facilitated the comparison between the agricultural and non-agricultural families in terms of behavioral deficits and house dust concentrations of pesticides. RESULTS: The data from the study shows that there was a positive association between the concentration of OP residues in house dust and internalizing behavior (ß=2.06, p=0.05) whereas the association with externalizing behavior was not significant after accounting for sociocultural covariates. Significant positive associations of OP residues with somatic problems (p=0.02) and thought problems (p=0.05) were also found. CONCLUSION: The data support a potential role of OP exposure in childhood development, with a specific focus on internalizing behavior. Future work focused on longitudinal studies may uncover the long-term consequences of OP exposure and behavior.


Assuntos
Comportamento Infantil , Poeira , Exposição Ambiental , Hispânico ou Latino , Compostos Organofosforados , Praguicidas , Humanos , Poeira/análise , Criança , Feminino , Masculino , Hispânico ou Latino/psicologia , Pré-Escolar , Praguicidas/efeitos adversos , Exposição Ambiental/efeitos adversos , Comportamento Infantil/efeitos dos fármacos , Agricultura , Transtornos do Comportamento Infantil/induzido quimicamente , Transtornos do Comportamento Infantil/epidemiologia , Pais/psicologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa