RESUMO
BACKGROUND: Ready-to-eat snacks are very popular. However, they have a high glycemic index and lack proteins & micronutrients. This study prepared protein-enriched corn extrudates by adding chickpea grit supplements at varying concentrations (0-100 g kg-1). RESULTS: The protein contents of 100 g kg-1 supplemented extrudates increased by 66.66% and dietary fiber contents increased by 48.02% in comparison with the control. Bulk density increased by 1.46 times. However, the expansion ratio, porosity, and water absorption index decreased significantly (P < 0.05). The health-promoting characteristics of the extrudates increased in comparison with the control sample, i.e., total phenolic content increasing by 17.84%, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) contents by 11.38%, and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) content by 9.59%. Likewise, the potassium contents increased by 24.63% with the inclusion of 10% chickpea in corn extrudates. Sensory evaluation revealed that corn extrudates with up to 60 g kg-1 added chickpea achieved the highest acceptability among panelists. CONCLUSION: The addition of chickpea produced corn extrudates with higher protein and mineral content, which could mitigate malnutrition. © 2024 Society of Chemical Industry.
RESUMO
Extrusion cooking is receiving increasing attention as technology applied for the production of protein-based products. Researchers in this field showed that proteins from several sources are barely consumed because of their poor functionality and lack of acceptability related to the presence of some antinutritional factors. In this regard, extrusion is becoming of key importance thanks to its ability to improve protein functional properties. Based on this remarkable advantage, several studies have been published so far providing evidence of the enhanced functional, physicochemical and sensory properties of protein-based extruded products. The objective of the present review is to give a detailed overview of the potential of extrusion for the production of protein-based products. More specifically, the work describes all the studies published so far on vegetable and animal proteins including those recently released applying the technology on insect proteins. The aspects related to the functional properties of the extrudates together with the quality changes occurring during the process are also described to highlight the potential of the technology for future applications.
Assuntos
Culinária , VerdurasRESUMO
The rosehip (Rosa canina L.) fruit has gained researchers' attention due to its rich chemical composition in vitamin C, phenols, carotenoids, and high antioxidant activity; meanwhile, polymers such as pea protein are generally recognized as exhibiting a protection role against the extrusion process. Corn snacks extrudates obtained by replacing corn flour with 10% R. canina powder (R) and 10% R. canina with pea protein (RPP) were evaluated for the physicochemical, textural, optical, and nutritional characteristics. A sample manufactured without R. canina powder was used as a control. Hardness, crispiness, chewiness, and solubility index (WSI) of the final extrudates were improved by addition of R. canina and pea protein powder (PP); meanwhile, b* (yellow/blue coordinate), C (chroma), and h* (tone) optical parameters were significantly different from the control sample (p < 0.05). Extrusion highlighted a negative impact on total phenols, carotenoids, vitamin C, and antioxidant activity extrudates, while PP exhibited a good protection against the extrusion process. In vitro digestion increased the bioaccessibility of vitamin C, folate, antioxidant activity, total phenols, and total carotenoids mainly on RPP extrudates.
Assuntos
Rosa , Antioxidantes , Ácido Ascórbico , Fenóis/química , Rosa/química , Zea mays/químicaRESUMO
Among the different factors thought to affect dental wear, dietary consistency is possibly the least investigated. To understand tooth wear of herbivorous animals consuming different dietary consistencies with different abrasive potential, we fed 14 rabbits (Oryctolagus cuniculus) exclusively with a timothy grassmeal-based diet in either pelleted or extruded form, or the same diets with an addition of 5% fine sand abrasives (mean size 130 µm). First, we offered the rabbits the pelleted and extruded diets as well as the pelleted control and pelleted abrasive diet in a two-stage preference experiment. Then, the rabbits received each diet for 2 weeks in a randomised serial feeding experiment, where each animal served as its own control. Tooth measurements for wear, growth and height were achieved using a manual calliper, endoscopic examination and CT scans. The analysis of the diets as fed showed almost identical mean particle size, but the extruded diet had a lower density (volume/mass) and softer consistency compared to the pelleted one and was favoured by most rabbits. The rabbits selected against the diet with sand during the preference experiment, possibly because it caused more tooth wear, especially on the teeth most exposed to wear along the upper tooth row (upper P4 and M1). The maxillary teeth also showed evidence of an increased chewing laterality by the end of the experiment. The extruded diet led to a significantly lower cheek teeth height than the pelleted diet, potentially due to the higher chewing effort needed for a similar dry matter intake. The results suggest that dietary hardness alone is a poor predictor of dental wear. The regrowth of the teeth matched wear consistently.
Assuntos
Desgaste dos Dentes , Dente , Ração Animal/análise , Animais , Dieta/veterinária , Coelhos , Areia , Desgaste dos Dentes/etiologia , Desgaste dos Dentes/veterináriaRESUMO
The objective of the study was to explore the potential of a novel nicotinamide extrudate as an anti-aging platform compared to the conventional gel. Nicotinamide extrudates were prepared by hot melt extrusion and characterized pharmaceutically for their thermal behavior, mositure uptake, skin adhesion, and deposition in different skin layers. The pharmacological potential of the extrudates was explored in terms of induction of skin amino acids, cellular energy estimation, 8-hydroxy-2-deoxyguanosine content, Nitrate + nitrite content and histological chacaterization of collagen area percent. Results revealed that the extrusion technique managed to amorphize nicotinamide and enhance its skin deposition (46%) compared to the gel form which only showed about 10% deposition, owing to the mucoadhesive nature of the former. Extrudates were also found superior to the gel form as demonstrated by the increased amino acids level (glycine, proline, hydroxyproline), increased cellular energy, decreased oxidative stress and increased collagen formation. Nictotinamide extrudates were proven to be a scalable promising anti-aging platform which are worthy of entering the cosmeceutical market as products.
Assuntos
Envelhecimento/efeitos dos fármacos , Colágeno/farmacologia , Cosmecêuticos/farmacologia , Géis/farmacologia , Niacinamida/farmacologia , Envelhecimento/metabolismo , Aminoácidos/metabolismo , Animais , Colágeno/química , Cosmecêuticos/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Feminino , Géis/química , Masculino , Niacinamida/química , Estresse Oxidativo/efeitos dos fármacos , Polímeros/química , Ratos , Ratos Wistar , Pele/efeitos dos fármacos , Pele/metabolismo , Solubilidade/efeitos dos fármacosRESUMO
A general strategy for preparing shaped toluene methylation catalysts with enhanced para-selectivity and stability is developed by extruding ZSM-5 zeolite with attapulgite as a binder. The novel attapulgite/ZSM-5 extrudate exhibited significantly higher para-selectivity and stability in comparison to the conventional alumina-bound ZSM-5 extrudate. The catalyst samples have been characterized by in situ X-ray diffraction, scanning electron microscope (SEM), NH3 temperature programmed desorption (TPD), thermogravimetric analysis (TGA) as well as n-hexane/cyclohexane physical adsorption. The enhanced catalytic performance of attapulgite/ZSM-5 extrudate is correlated with the in-situ modification of acid sites in the catalyst by mobile alkaline species, which is introduced via extrusion with attapulgite. Moreover, a higher para-selectivity was obtained over attapulgite-bound modified ZSM-5 extrudate. Such facile and universal strategy of extruding ZSM-5 catalysts with attapulgite as binder could pave a way for preparation of shaped zeolite-base catalyst with enhanced catalytic performance.
Assuntos
Tolueno/química , Xilenos/química , Zeolitas/química , Adsorção , Catálise , Compostos de Magnésio/química , Metilação , Compostos de Silício/química , Difração de Raios XRESUMO
The present work was carried out to see the effect of blending of corn grit (CG) with varying levels of chickpea grit (CP 0-100%) and spinach leaf powder (SP 0-6%) on the characteristics [color, expansion, density, hardness, water absorption index, total phenolic content (TPC), antioxidant activity (AOA; as DPPH and ABTS free radical scavenging activities)] and sensory properties of extrudates. CP and SP were rich in proteins and minerals (Cu, Fe, Zn, Mg, Ca, K and Na). Their blending significantly influenced the physicochemical and antioxidant properties of CG extrudates. TPC and AOA of extrudates increased with the increased incorporation of CP and SP, though specific mechanical energy and extrudate expansion, generally, decreased while density and hardness increased. Sensory analysis revealed that CP and SP at incorporation levels of 25% and 4%, respectively could be blended with CG for making highly acceptable antioxidant-rich expanded snack.
RESUMO
Extrusion behavior of extrudates prepared from short (PR113) and long (PUSA1121) Indica rice cultivars milled to 0-8% degree of milling (DOM) extruded at variable extrusion temperature (150-190 °C) and feed moisture (15-19%) was studied. The physico-chemical and functional properties of extrudates prepared from both the cultivars varied significantly with variation in DOM as well as extrusion variables. DOM showed more pronounced effect for all the responses studied for both the cultivars. Expansion, L*, water absorption and overall acceptability increased whereas hardness, water solubility and bulk density decreased with increase in DOM. Extrusion temperature increase led to increase in expansion and water solubility and decreased L*, bulk density and water absorption. Feed moisture showed significant positive effect on hardness and water absorption and negative effect on expansion, L* and water solubility. Formation of amylose-lipid complexes were also observed during extrusion cooking for both the cultivars which showed negative correlation with DOM. Both the cultivars also showed different behavior for these responses at same values of independent variables.
RESUMO
This study compares the quality of extrudates made from corn grits with the addition of up to 8% of spirulina powder. The sensory properties (shape, color, aroma, taste and crispness), chemicals (content of water, protein, fat, ash, fiber, carbohydrates, carotenoids, chlorophyll and phycocyanin) and physical properties (color, water absorption index, expansion indices, texture and water sorption properties) were determined. It has been found that spirulina-enriched extrudates had slightly lower sensory scores, but the addition of spirulina improved their nutritional value. The contents of protein, ash, fiber and ß-carotene increased in extrudates with 8% of spirulina by 34, 36, 140 and 1,260%, respectively. The increasing addition of spirulina caused a decrease in extrudates lightness, an increase in their greenness and yellowness accompanied by a decrease of expansion indices and an increase of softness. Only small differences were found in water sorption properties, suggesting a similar behavior of spirulina-enriched extrudates during storage.
Assuntos
Fibras na Dieta/análise , Alimentos Fortificados , Spirulina/química , Zea mays/química , Fenômenos Químicos , Cor , Culinária , Manipulação de Alimentos , Valor Nutritivo , Paladar , beta Caroteno/análiseRESUMO
OBJECTIVES: The aim of the current research project was to investigate the effect of pressurized carbon dioxide (P-CO2) on the physico-mechanical properties of ketoprofen (KTP)-incorporated hydroxypropylcellulose (HPC) (Klucel™ ELF, EF, and LF) produced using hot-melt extrusion (HME) techniques and to assess the plasticization effect of P-CO2 on the various polymers tested. METHODS: The physico-mechanical properties of extrudates with and without injection of P-CO2 were examined and compared with extrudates with the addition of 5% liquid plasticizer of propylene glycol (PG). The extrudates were milled and compressed into tablets. Tablet characteristics of the extrudates with and without injection of P-CO2 were evaluated. RESULTS AND CONCLUSION: P-CO2 acted as a plasticizer for tested polymers, which allowed for the reduction in extrusion processing temperature. The microscopic morphology of the extrudates was changed to a foam-like structure due to the expansion of the CO2 at the extrusion die. The foamy extrudates demonstrated enhanced KTP release compared with the extrudates processed without P-CO2 due to the increase of porosity and surface area of those extrudates. Furthermore, the hardness of the tablets prepared by foamy extrudates was increased and the percent friability was decreased. Thus, the good binding properties and compressibility of the extrudates were positively influenced by utilizing P-CO2 processing.
Assuntos
Dióxido de Carbono/química , Celulose/análogos & derivados , Composição de Medicamentos/métodos , Cetoprofeno/química , Plastificantes/química , Varredura Diferencial de Calorimetria , Celulose/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Temperatura Alta , Cetoprofeno/administração & dosagem , Cetoprofeno/farmacocinética , Tamanho da Partícula , Polímeros/química , Porosidade , Pressão , Solubilidade , Comprimidos , TermogravimetriaRESUMO
In the realm of modern architecture, the demand for materials that combine strength, durability, and aesthetic flexibility is ever-growing. Addressing this need, this paper presents a study on the innovative use of aluminum extrudates in construction. Focusing on the AA6005 alloy, which is known for its excellent balance of strength, corrosion resistance, and weldability, this research delves into the development of an extrusion process that yields thin-walled, lightweight, yet high-strength structural components. Using FEM simulations, a new extrudate of the AA6005A was developed. It is compatible with standard façade systems, with high-strength properties and a weight reduced by 20% compared to that of conventional extrudates made of the AA6063 alloy. Using CAD engineering and FEM simulations of aluminum extrusion process, an innovative die was designed for the extrusion process, ensuring uniform flow of metal from the bearing and minimizing the elastic deflection of the die. This resulted in an increase in the extrusion velocity of thin-walled extrudate from AA6005A by 24% compared to conventional profiles extruded from AA6063. As part of the research, a trial test was carried out in production conditions and the quality of the extrudates was tested by 3D optical scanning, mechanical and structural properties tests, and microstructure observation.
RESUMO
With an increasing emphasis on health and environmental consciousness, there is a growing inclination toward plant protein-based meat substitutes as viable alternatives to animal meat. In the pursuit of creating diverse and functional plant protein-based substitutes, innovative plant proteins have been introduced in conjunction with soy protein isolate (SPI), encompassing pea protein isolate (PPI), rice bran protein (RBP), fava bean protein isolate (FPI), and spirulina protein isolate (SPPI). Notably, SPI-WG extrudates and SPI-PPI extrudates exhibited superior fiber structures (fiber degrees were 1.72 and 1.88, respectively), with coarse fibers in SPI-WG extrudates and fine, dense fibers in SPI-PPI extrudates. The addition of RBP, FPI and SPPI had minimal effect on fiber structure. Fresh SPI-FPI displayed the slowest rate of water loss, losing about 7.11% of their total weight in 5 h. Different plant proteins can be selected for the preparation of plant protein-based meat substitutes according to practical needs.
Assuntos
Proteínas de Plantas , Proteínas de Plantas/química , Proteínas de Soja/química , Oryza/química , Manipulação de Alimentos , Animais , Produtos da Carne/análise , Carne/análise , Spirulina/química , Substitutos da CarneRESUMO
BACKGROUND: Pazopanib hydrochloride (PZB) is a protein kinase inhibitor approved by the United States Food and Drug Administration and European agencies for the treatment of renal cell carcinoma and other renal malignancies. However, it exhibits poor aqueous solubility and inconsistent oral drug absorption. In this regard, the current research work entails the development and evaluation of the extrudates of pazopanib hydrochloride by the hot-melt extrusion (HME) technique for solubility enhancement and augmenting oral bioavailability. RESULTS: Solid dispersion of the drug was prepared using polymers such as Kollidon VA64, hydroxypropylmethylcellulose (HPMC), Eudragit EPO, and Affinisol 15LV in a 1:2 ratio by the HME process through a lab-scale 18 mm extruder. Systematic optimization of the formulation variables was carried out with the help of custom screening design (JMP Software by SAS, Version 14.0) to study the impact of polymer type and plasticizer level on the quality of extrudate processability by measuring the torque value, appearance, and disintegration time as the responses. The polymer blends containing Kollidon VA64 and Affinisol 15LV resulted in respective clear transparent extrudates, while Eudragit EPO and HPMC extrudates were found to be opaque white and brownish, respectively. Furthermore, evaluation of the impact of process parameters such as screw rpm and barrel temperature was measured using a definitive screening design on the extrude appearance, torque, disintegration time, and dissolution profile. Based on the statistical outcomes, it can be concluded that barrel temperature has a significant impact on torque, disintegration time, and dissolution at 30 min, while screw speed has an insignificant impact on the response variables. Affinisol extrudates showed less moisture uptake and faster dissolution in comparison to Kollidon VA64 extrudates. Affinisol extrudates were evaluated for polymorphic stability up to a 3-month accelerated condition and found no recrystallization. PZB-Extrudates using the Affinisol polymer (Test formulation A) revealed significantly higher bioavailability (AUC) in comparison to the free Pazopanib drug and marketed formulation.
RESUMO
In recent years, there has been a growing demand for gluten-free and functional products, driven by consumer preferences for healthier and more diverse food choices. Therefore, there is a need to explore new ingredients that can be used as alternatives to traditional gluten-containing grains. Thus, this work evaluated the physical, chemical, technological, and sensorial properties of extrudates and cookies from composite tannin sorghum (rich in resistant starch) and white cowpea flours. Extrudates and cookies were produced from a composite flour made of sorghum and cowpea, at a sorghum:cowpea flour ratio of 70:30, 50:50, and 30:70. Then, raw flours, cookies, and extrudates were characterized (dietary fiber, resistant starch, proteins, antioxidant capacity, pasting properties, etc.). Results obtained for particle size distribution and bulk density indicated that the particles increased and the color changed with the addition of cowpea flour. The raw tannin sorghum flour had a higher resistant starch concentration (36.3%) and antioxidant capacity (211.2 µmolTE/g), whereas cowpea flour had higher levels of proteins (18.7%) and dietary fiber (20.1%). This difference in the raw flour composition contributed to the nutritional value of the extrudates and cookies, especially the cookies which undergo dry heat and had higher retention of resistant starch and antioxidants. Moreover, sorghum flour presented a higher tendency to retrograde (high setback), which was decreased by the addition of cowpea flour. Overall acceptance and intention to purchase were higher for extrudates with 100% sorghum flour (6.52 and 68.3%, respectively) and cookies with 70% cowpea flour (7.03 and 76.7%, respectively). Therefore, nutritious and functional gluten-free extrudates and cookies, of good acceptability, can be produced from composite tannin sorghum and white cowpea flours.
RESUMO
There is a growing demand for practical and healthy food products. Obtaining naturally colored breakfast cereals with the incorporation of functional ingredients is a promising alternative for consumers that are looking for healthiness. This study aimed to evaluate the feasibility of using vegetable flours, rich in pigments, to obtain naturally colored breakfast cereals through thermoplastic extrusion. Vegetables considered "unsuitable for the retail market", classified as "type B", were used to prepare different flours from carrot (CF), spinach (SF) and beetroot (BF). Extrudates were produced from a mixture of 90% broken rice (BR) and 10% vegetable flour (CF, SF or BF). Besides giving the extrudates a natural color, the use of vegetable flours also provided nutritional and functional enrichment due to increased mineral, protein, lipid, fiber and phenolic compound contents, and greater antioxidant capacity. However, some of these components, such as fibers, affect extrudate physical structure and technological characteristics, evidenced by reduced expansion, hardness, paste viscosity and greater interaction with water present in milk under consumption conditions. In general, the evaluated flours proved to be an alternative for imparting a natural color to extruded breakfast cereals, in addition to positively contributing to their nutritional and functional value.
Assuntos
Oryza , Verduras , Farinha , Grão Comestível , DesjejumRESUMO
The extrusion of hollow profiles from hard-deformable AlZnMg alloys by using porthole dies encounters great technological difficulties in practice. High extrusion force accompanies the technological process, which is caused by high deformation resistance and high friction resistance in extrusion conditions. As a result of high thermo-mechanical loads affecting the die, a significant loss of dimensional accuracy of extruded profiles can be observed. The different projects of porthole dies for the extrusion of Ø50 × 2 mm tubes from the 7021 alloy were numerically calculated and then tested in industrial conditions by using a press of 25 MN capacity equipped with a container with a diameter of 7 inches (for 7021 alloy and 6082 alloy for comparison). New extrusion die 3 with modified bridge and mandrel geometry and a special radial-convex entry to the die opening was proposed. FEM was applied to analyse the metal flow during extrusion, geometrical stability of extruded tubes and the die deflection. The photogrammetric measuring method was used to evaluate dimensional accuracy of tubes extruded in different conditions and geometrical deviations in porthole dies elements, especially the bridges and the mandrels. Research revealed a high dimensional accuracy of tubes extruded from the 6082 alloy and from the 7021 alloy by using original extrusion die 3, while much higher dimensional deviations were noted for tubes extruded from the 7021 alloy by using extrusion dies 1 and 2, particularly in relation to the circularity, centricity and wall thickness.
RESUMO
Mixtures of potato starch with oils (rapeseed and sunflower) were extruded. To improve the complexation of edible oils, a catalyst was added in amounts of 3 g, 6 g, and 9 g per 100 g of sample. The aim was to obtain potato starch extrudates with a high degree of complexation and edible oils during physical modification (extrusion) with the innovative use of K2CO3 as a catalyst. Selected functional properties (water solubility index and fat absorption index) and technological properties of the obtained extrudates (radial expansion index); color in the L*, a*, and b* systems, and the specific surface area was determined from the water vapor adsorption isotherm (SBET). The fat content was determined as external, internal, or bound, and complexed by amylose to assess the degree and manner of fat complexation during extrusion. Iodine-binding capacity and the complexing index were determined to confirm the formation of amylose-lipid complexes. The incorporation of edible oils resulted in a decrease in the radial expansion index and water solubility index compared to control samples. The extrudates were dark orange. Extrudates obtained at the temperature profile L: 80/80/80/60/60/50 °C, depending on the cooking oil, complexed from 48-79% of the introduced rapeseed oil and from 36-40% of the sunflower oil. The extrusion temperature profile (H: 100/100/100/75/75/60 °C) reduced the amount of bound lipid fractions. Using potassium carbonate in the extrusion of starch-lipid systems gives hope for further increasing the share of lipids in extruded mixtures.
RESUMO
Oil addition is challenging during high-moisture extrusion due to the negative fiber formation effects. A previous study found that oil-in-water (O/W) emulsions could significantly increase the oil content in high-moisture extrudates, but the molecular mechanism remained unclear. This study aimed to determine O/W emulsion influence on protein physicochemical properties in SPI extrudates during high-moisture extrusion. O/W emulsions were mixed with soy protein isolates (SPI) to prepare extrudates with oil/water ratios of 0/65, 4/61, and 8/57 (w/w). SDS-PAGE and ATR-FTIR analysis showed that higher oil/water ratios enhanced protein aggregation and promoted alteration from ß-sheet to random coil in SPI extrudates, which could be correlated to the reduction of protein solubility. The color was altered to lighter and yellow, and hardness, chewiness, and fiber degree decreased with increased oil/water ratios in SPI extrudates. In addition, in vitro digestion analyses showed that higher oil content contributed to improved protein digestibility.
Assuntos
Carboidratos , Proteínas de Soja , Emulsões , Proteínas de Soja/química , SolubilidadeRESUMO
The effect of legume incorporation (5%, 10% and 15%) on functional and nutritional properties of sorghum and wheat extrudates was investigated. Sorghum extrudates incorporated with legumes showed lower water absorption index water solubility index and pasting properties viz., peak viscosity, minimum viscosity, breakdown viscosity, final viscosity and total set back and similar degree of gelatinization and nutritional profile. At 15% incorporation level, water absorption index and water solubility index found to be maximum while degree of gelatinization and all the pasting properties showed lowest values for both sorghum and wheat extrudates. Similarly nutritional profile observed to be significantly higher for 15% as compared to 10% and 15% incorporation levels. Incorporation of legumes at 15% could be effective in producing high energy dense food products having better functional and nutritional properties.
RESUMO
Rheological and nutritional quality of ready-to-eat rice (Oryza sativa ) -legume viz. black gram (Vigna mungo), green gram (Vigna radiata), lentil (Lens culinaris) and peas (Pisum sativum) based extrudates were studied using low cost collet extruder. Extrudates were prepared keeping constant feed rate (25 kg/h) and moisture content (14% wb) at 0, 5, 10 and 15% legume incorporation levels. Rheological properties of porridge made of extrudate flour were evaluated using Rapid Visco Analyser (RVA). Maximum and minimum peak viscosity for rice extrudates alone and rice extrudates blended with 15% peas were 697 cp and 523 cp, respectively. There was a decreasing trend in degree of gelatinization with increase in legume incorporation level. Other RVA rheological parameters like trough break down and final viscosity were in the range of 266-226 cp, 431-297 cp and 452-375 cp respectively. Maximum values of protein, fat, fibre and ash contents were found in rice extrudates at 15% legumes blend levels. There was an increasing trend in nutrient contents with legume content in rice extrudates. Degree of gelatinization for rice alone extrudate was 29.4% and showed a decrease in gelatinization with increase in legumes extrudate and was minimum (22.4%) for rice blended with 15% dehulled green gram. Sensory evaluation scores for all extrudates showed the most acceptable range of 6 to 8. Thus, legume blend level (up to 15%) of dehulled legumes fetched good scores and showed promising trend for the production of low cost expanded extrudates and its instant flour.