RESUMO
Due to the increased prevalence of diabetes, the consumption of anti-diabetic drugs for its treatment has likewise increased. Metformin is an anti-diabetic drug that is commonly prescribed for patients with type 2 diabetes and has been frequently detected in surface water and wastewaters, thus representing an emerging contaminant. Metformin can be prescribed in combination with other classes of anti-diabetic drugs; however, these drugs are not sufficiently investigated in environmental samples. Fabric phase sorptive extraction (FPSE) has emerged as a simple and green method for the extraction of analytes in environmental samples. In this study, FPSE coupled with a high-performance liquid chromatography diode array detector (HPLC-DAD) was employed for the simultaneous analysis of different classes of anti-diabetic drugs (metformin, dapagliflozin, liraglutide, pioglitazone, gliclazide, glimepiride, glargine, repaglinide, sitagliptin, and vildagliptin) in environmental water samples. Four different fabric membranes were synthesized but the microfiber glass filter coated with sol-gel polyethylene glycol (PEG 300) was observed to be the best FPSE membrane. The parameters affecting the FPSE process were optimized using a combination of one-factor-at-a-time processes and the design of experiments. The FPSE was evaluated as a green extraction method, based on green sample preparation criteria. The FPSE-HPLC-DAD method achieved acceptable validation results and was applied for the simultaneous analysis of anti-diabetic drugs in surface and wastewater samples. Glimepiride was detected below the quantification limit in both lake and river water samples. Dapagliflozin, liraglutide, and glimepiride were detected at 69.0 ± 1.0 µg·L-1, 71.9 ± 0.4 µg·L-1, and 93.9 ± 1.3 µg·L-1, respectively, in the city wastewater influent. Dapagliflozin and glimepiride were still detected below the quantification limit in city wastewater effluent. For the hospital wastewater influent, metformin and glimepiride were detected at 1158 ± 21 µg·L-1 and 28 ± 0.8 µg·L-1, respectively, while only metformin (392.6 ± 7.7 µg·L-1) was detected in hospital wastewater effluent.
Assuntos
Hipoglicemiantes , Poluentes Químicos da Água , Hipoglicemiantes/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão/métodos , Águas Residuárias/química , Águas Residuárias/análise , Química Verde/métodos , Têxteis/análise , Metformina/análise , Extração em Fase Sólida/métodosRESUMO
Fabric phase sorptive extraction (FPSE) has become a popular sorptive-based microextraction technique for the rapid analysis of a wide variety of analytes in complex matrices. The present study describes a simple and green analytical protocol based on in-matrix methyl chloroformate (MCF) derivatization of non-steroidal anti-inflammatory (NSAID) drugs in urine samples followed by FPSE and gas chromatography-mass spectrometry (GC-MS) analysis. Use of MCF as derivatizing reagent saves substantial amounts of time, reagent and energy, and can be directly performed in aqueous samples without any sample pre-treatment. The derivatized analytes were extracted using sol−gel Carbowax 20M coated FPSE membrane and eluted in 0.5 mL of MeOH for GC-MS analysis. A chemometric design of experiment-based approach was utilized comprising a Placket−Burman design (PBD) and central composite design (CCD) for screening and optimization of significant variables of derivatization and FPSE protocol, respectively. Under optimized conditions, the proposed FPSE-GC-MS method exhibited good linearity in the range of 0.1−10 µg mL−1 with coefficients of determination (R2) in the range of 0.998−0.999. The intra-day and inter-day precisions for the proposed method were lower than <7% and <10%, respectively. The developed method has been successfully applied to the determination of NSAIDs in urine samples of patients under their medication. Finally, the green character of the proposed method was evaluated using ComplexGAPI tool. The proposed method will pave the way for simper analysis of polar drugs by FPSE-GC-MS.
Assuntos
Anti-Inflamatórios não Esteroides , Poluentes Químicos da Água , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Anti-Inflamatórios não Esteroides/análise , Poluentes Químicos da Água/análise , Água/químicaRESUMO
The current study coupled fabric phase sorptive extraction (FPSE) with ultraperformance liquid chromatography method with electrospray ionization and tandem mass detection (UPLC-ESI-MS/MS) for fast and sensitive determination of tadalafil (TAD) in a bioequivalence study. Fabric phase sorptive extraction allowed direct extraction of TAD from the sample matrix with improved selectivity, repeatability, and recoveries. A sol-gel Carbowax 20 M (CX-20 M) coated FPSE membrane revealed the best extraction efficiency for TAD because of its strong affinity for analytes via intermolecular interactions, high mass transfer rate to FPSE membrane, and high permeability. An automated multiple reaction monitoring (MRM) optimizer was employed for the best selection of the precursor and product ions, ion breakdown profile, the fine adjustment of the fragmentor voltages for each precursor ions, and the collision energies for the product ions. The chromatographic separation was conducted using a mobile phase A: 5.0 mM ammonium acetate with 0.1 % formic acid in water and mobile phase B: formic acid (0.1%) in acetonitrile in ratio (55:45, v/v) through isocratic elution mode on an Agilent EclipsePlus C18 (50 × 2.1 mm, 1.8 µm) column and the flow rate was adjusted at 0.4 mL min-1. The total run time per sample was 1.0 min. The method was validated by FDA standards for bioanalytical method validation over a concentration range of 0.1-100 ng mL-1 with a correlation coefficient of 0.9993 and the lower limit of quantitation (LLOQ) was 0.1 ng mL-1 in rat plasma. Intra- and inter-assay precision (%RSD) were lower than 4.1% and accuracy (%RE) was within 2.4%. The developed FPSE-UPLC-ESI-MS/MS method was effectively used in a randomized, two-way, single-dose, crossover study to compare the bioequivalence of two TAD formulations from different companies in male rats and verified to be bioequivalent.
RESUMO
An improved fabric-phase sorptive extraction (FPSE) protocol has been developed and validated herein for the simple, fast, sensitive and green determination of seven parabens-methyl paraben, ethyl paraben, propyl paraben, butyl paraben, isopropyl paraben, isobutyl paraben and benzyl paraben-in human urine samples by HPLC-DAD. The mobile phase consisted of ammonium acetate (0.05 m) and acetonitrile, while total analysis time was 13.2 min. Sol-gel poly (tetrahydrofuran) coated FPSE membrane resulted in optimum extraction sensitivity for the seven parabens. The novel FPSE medium as well as the improved and faster sample preparation procedure resulted in lower limit of detection and quantitation values in comparison with previously reported methods. The separation was carried out using an RP-HPLC method with a Spherisorb C18 column and a flow rate of 1.4 ml/min. The validation of the analytical method was carried out by means of linearity, precision, accuracy, selectivity, sensitivity and robustness. For all seven parabens, the limits of detection and quantitation were 0.003 and 0.01 µg/ml, respectively. Relative recovery rates were between 86.3 and 104%, while RSD values were <12.6 and 19.3% for within- and between-day repeatability, respectively. The method was subsequently applied to real human urine samples.
Assuntos
Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Parabenos/análise , Humanos , Limite de Detecção , Modelos Lineares , Parabenos/química , Parabenos/isolamento & purificação , Reprodutibilidade dos Testes , TêxteisRESUMO
Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation approach which was introduced in 2014, meeting all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol-gel organic-inorganic hybrid sorbent in the form of an ultra-thin coating. This construction results in a versatile, fast, and sensitive micro-extraction device. The user-friendly FPSE membrane allows direct extraction of analytes with no sample modification, thus eliminating/minimizing the sample pre-treatment steps, which are not only time consuming, but are also considered the primary source of major analyte loss. Sol-gel sorbent-coated FPSE membranes possess high chemical, solvent, and thermal stability due to the strong covalent bonding between the fabric substrate and the sol-gel sorbent coating. Subsequent to the extraction on FPSE membrane, a wide range of organic solvents can be used in a small volume to exhaustively back-extract the analytes after FPSE process, leading to a high preconcentration factor. In most cases, no solvent evaporation and sample reconstitution are necessary. In addition to the extensive simplification of the sample preparation workflow, FPSE has also innovatively combined the extraction principle of two major, yet competing sample preparation techniques: solid phase extraction (SPE) with its characteristic exhaustive extraction, and solid phase microextraction (SPME) with its characteristic equilibrium driven extraction mechanism. Furthermore, FPSE has offered the most comprehensive cache of sorbent chemistry by successfully combining almost all of the sorbents traditionally used exclusively in either SPE or in SPME. FPSE is the first sample preparation technique to exploit the substrate surface chemistry that complements the overall selectivity and the extraction efficiency of the device. As such, FPSE indeed represents a paradigm shift approach in analytical/bioanalytical sample preparation. Furthermore, an FPSE membrane can be used as an SPME fiber or as an SPE disk for sample preparation, owing to its special geometric advantage. So far, FPSE has overwhelmingly attracted the interest of the separation scientist community, and many analytical scientists have been developing new methodologies by implementing this cutting-edge technique for the extraction and determination of many analytes at their trace and ultra-trace level concentrations in environmental samples as well as in food, pharmaceutical, and biological samples. FPSE offers a total sample preparation solution by providing neutral, cation exchanger, anion exchanger, mixed mode cation exchanger, mixed mode anion exchanger, zwitterionic, and mixed mode zwitterionic sorbents to deal with any analyte regardless of its polarity, ionic state, or the sample matrix where it resides. Herein we present the theoretical background, synthesis, mechanisms of extraction and desorption, the types of sorbents, and the main applications of FPSE so far according to different sample categories, and to briefly show the progress, advantages, and the main principles of the proposed technique.
Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Extração em Fase Sólida/métodosRESUMO
Parabens have been widely employed as preservatives since the 1920s for extending the shelf life of foodstuffs, medicines, and daily care products. Given the fact that there are some legitimate concerns related to their potential multiple endocrine-disrupting properties, the development of novel bioanalytical methods for their biomonitoring is crucial. In this study, a fabric phase sorptive extraction reversed-phase liquid chromatography method coupled with UV detection (FPSE-HPLC-UV) was developed and validated for the quantitation of seven parabens in human plasma samples. Chromatographic separation of the seven parabens and p-hydroxybenzoic acid was achieved on a semi-micro Spherisorb ODS1 analytical column under isocratic elution using a mobile phase containing 0.1% (v/v) formic acid and 66% 49 mM ammonium formate aqueous solution in acetonitrile at flow rate 0.25 mL min-1 with a 24-min run time for each sample. The method was linear at a concentration range of 20 to 500 ng mL-1 for the seven parabens under study in human plasma samples. The efficiency of the method was proven with the analysis of 20 human plasma samples collected from women subjected to breast cancer surgery and to reconstructive and aesthetic breast surgery. The highest quantitation rates in human plasma samples from cancerous cases were found for methylparaben and isobutylparaben with average plasma concentrations at 77 and 112.5 ng mL-1. The high concentration levels detected agree with previous findings for some of the parabens and emphasize the need for further epidemiological research on the possible health effects of the use of these compounds.
Assuntos
Cromatografia de Fase Reversa/métodos , Parabenos/análise , Plasma/química , Cromatografia Líquida de Alta Pressão/métodos , Disruptores Endócrinos/análise , Feminino , Humanos , Limite de Detecção , Conservantes Farmacêuticos/análise , Extração em Fase Sólida/métodos , Têxteis/análiseRESUMO
A simple, fast, and sensitive analytical protocol using fabric-phase sorptive extraction followed by high performance liquid chromatography with ultraviolet detection has been developed and validated for the extraction of five parabens including methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. In the present work, sol-gel polyethylene glycol coated fabric-phase sorptive extraction membrane is used for the preconcentration of parabens (polar) from complex matrices. The use of fabric-phase sorptive extraction membrane provides a high surface area which offers high sorbent loading, shortened equilibrium time, and overall decrease in the sample preparation time. Various factors affecting the performance of fabric-phase sorptive extraction, including extraction time, eluting solvent, elution time, and pH of the sample matrix, were optimized. Separation was performed using a mobile phase consisting of water:acetonitrile (63:37; v/v) at an isocratic elution mode at a flow rate of 0.9 mL/min with wavelength at 254 nm. The calibration curves of the target analytes were prepared with good correlation coefficient values (r2 > 0.9955). The limit of detection values range from 0.252 to 0.580 ng/mL. Finally, the method was successfully applied to various cosmetics and personal care product samples such as rose water, deodorant, hair serum, and cream with extraction recoveries ranged between 88 and 122% with relative standard deviation <5%.
Assuntos
Cosméticos/química , Parabenos/análise , Adsorção , Cromatografia Líquida de Alta Pressão , Espectrofotometria UltravioletaRESUMO
A rapid environmental pollution screening and monitoring workflow based on fabric phase sorptive extraction-gas chromatography-tandem mass spectrometry (FPSE-GC-MS/MS) is proposed for the first time for the analysis of 17 widespread used fungicides (metalaxyl, cyprodinil, tolylfluanid, procymidone, folpet, fludioxonil, myclobutanil, kresoxim methyl, iprovalicarb, benalaxyl, trifloxystrobin, fenhexamid, tebuconazole, iprodione, pyraclostrobin, azoxystrobin and dimethomorph) in environmental waters. The most critical parameters affecting FPSE, such as sample volume, matrix pH, desorption solvent and time, and ionic strength were optimized by statistical design of experiment to obtain the highest extraction efficiency. Under the optimized conditions, the proposed FPSE-GC-MS/MS method was validated in terms of linearity, repeatability, reproducibility, accuracy and precision. To assess matrix effects, recovery studies were performed employing different water matrices including ultrapure, fountain, river, spring, and tap water at 4 different concentration levels (0.1, 0.5, 1 and 5 µg/L). Recoveries were quantitative with values ranging between 70-115%, and relative standard deviation values lower than 14%. Limits of quantification were at the low ng/L for all the target fungicides. Finally, the validated FPSE-GC-MS/MS method was applied to real water samples, revealing the presence of 11 out of the 17 target fungicides.
Assuntos
Fungicidas Industriais/análise , Poluentes Químicos da Água/química , Adsorção , Cromatografia Gasosa , Espectrometria de Massas em TandemRESUMO
A sensitive and readily deployable analytical method has been reported for the simultaneous analysis of pirimicarb (PRM) and fenitrothion (FEN) pesticide residues in environmental water samples using fabric phase sorptive extraction (FPSE) followed by high-performance liquid chromatography combined with photodiode array (HPLC-PDA) detector. Both pesticides were successfully determined with a Luna omega C18 column under isocratic elution mode by means of acetonitrile and phosphate buffer (pH 3.0) as the mobile phase. The quantitative data for PRM and FEN were obtained at their maximum wavelengths of 310 nm and 268 nm, respectively. The calibration plots were linear in the range 10.00-750.00 ng mL-1 and 10.00-900.00 ng mL-1 with correlation coefficient of 0.9984 and 0.9992 for PRM and FEN, respectively. Major FPSE experimental variables were investigated in detail, such as contact time with the FPSE membrane, pH and electrolyte concentration, and the volume and type of desorption solvent. Under the optimized conditions, the developed method showed satisfactory reproducibility with relative standard deviations less than 2.5% and low limits of detection of 2.98 and 3.02 ng mL-1 for PRM and FEN, respectively. The combined procedure allows for enhancement factors ranging from 88 to 113, with pre-concentration values of 125 for both analytes. The chromatographic resolutions were approx. 12 for FEN (retention factor of 3.52) and PRM (retention factor of 6.09), respectively, with a selectivity factor of 1.73. Finally, the validated method was successfully applied to real environmental water samples for the determination of these pesticides. Graphical abstract.
Assuntos
Carbamatos/análise , Fenitrotion/análise , Resíduos de Praguicidas/análise , Pirimidinas/análise , Celulose/química , Cromatografia Líquida de Alta Pressão , Dimetilpolisiloxanos/química , Lagos/análise , Limite de Detecção , Poliésteres/química , Lagoas/análise , Reprodutibilidade dos Testes , Rios/química , Extração em Fase Sólida/instrumentação , Extração em Fase Sólida/métodos , Têxteis , Poluentes Químicos da Água/análiseRESUMO
The modern application of mass spectrometry-based metabolomics to the field of radiation assessment and biodosimetry has allowed for the development of prompt biomarker screenings for radiation exposure. Our previous work on radiation assessment, in easily accessible biofluids (such as urine, blood, saliva), has revealed unique metabolic perturbations in response to radiation quality, dose, and dose rate. Nevertheless, the employment of swift injury assessment in the case of a radiological disaster still remains a challenge as current sample processing can be time consuming and cause sample degradation. To address these concerns, we report a metabolomics workflow using a mass spectrometry-compatible fabric phase sorptive extraction (FPSE) technique. FPSE employs a matrix coated with sol-gel poly(caprolactone-b-dimethylsiloxane-b-caprolactone) that binds both polar and nonpolar metabolites in whole blood, eliminating serum processing steps. We confirm that the FPSE preparation technique combined with liquid chromatography-mass spectrometry can distinguish radiation exposure markers such as taurine, carnitine, arachidonic acid, α-linolenic acid, and oleic acid found 24 h after 8 Gy irradiation. We also note the effect of different membrane fibers on both metabolite extraction efficiency and the temporal stabilization of metabolites in whole blood at room temperature. These findings suggest that the FPSE approach could work in future technology to triage irradiated individuals accurately, via biomarker screening, by providing a novel method to stabilize biofluids between collection and sample analysis.
Assuntos
Biomarcadores/sangue , Metaboloma/efeitos da radiação , Metabolômica/métodos , Exposição à Radiação/efeitos adversos , Cromatografia Líquida , Humanos , Espectrometria de Massas/normas , Metaboloma/genética , Radiação Ionizante , Radiometria/efeitos adversosRESUMO
In the present work, a high-efficiency and solvent minimized microextraction technique, fabric phase sorptive extraction followed by gas chromatography and mass spectrometry analysis is proposed for the rapid determination of four organophosphorus pesticides (terbufos, malathion, chlorpyrifos, and triazofos) in vegetable samples including beans, tomato, brinjal, and cabbage. Fabric phase sorptive extraction combines the beneficial features of sol-gel derived microextraction sorbents with the rich surface chemistry of cellulose fabric substrate, which collectively form a highly efficient microextraction system. Fabric phase sorptive extraction membrane, when immersed directly into the sample matrix, may extract target analytes even when high percentage of matrix interferents are present. The technique also greatly simplifies sample preparation workflow. Most important fabric phase sorptive extraction parameters were investigated and optimized. The developed method displayed good linearity over the concentration range 0.5-500 ng/g. Under optimum experimental conditions, the limits of detection were found in the range of 0.033 to 0.136 ng/g. The relative standard deviations for the extraction of organophosphorus pesticides were < 5%. Subsequently, the new method was applied to beans, tomato, brinjal, and cabbage samples. The results from the real sample analysis indicate that the method is green, rapid, and economically feasible for the determination of organophosphorus pesticides in vegetable samples.
Assuntos
Compostos Organofosforados/análise , Praguicidas/análise , Microextração em Fase Sólida , Verduras/química , Adsorção , Cromatografia Gasosa-Espectrometria de Massas , Propriedades de SuperfícieRESUMO
A simple and sensitive analytical methodology is developed for rapid screening and quantification of selected estrogenic endocrine disrupting chemicals and bisphenol A from intact milk using fabric phase sorptive extraction in combination with high-performance liquid chromatography coupled to ultraviolet detection/tandem mass spectrometry. The new approach eliminates protein precipitation and defatting step from the sample preparation workflow. In addition, the error prone and time-consuming solvent evaporation and sample reconstitution step used as the sample post-treatment has been eliminated. Parameters with most significant impact on the extraction efficiency of fabric phase sorptive extraction including sorbent chemistry, sample volume, extraction time have been thoroughly studied and optimized. Separation of the selected estrogenic endocrine disrupting chemicals including α-estradiol, hexestrol, estrone, 17α-ethinyl estradiol, diethylstilboestrol, and bisphenol A were achieved using a Zorbax Extend-C18 high-performance liquid chromatography column (15 cm × 4.6 mm, 5 µm particle size). The limit of detection values obtained in fabric phase sorptive extraction with high-performance liquid chromatography with ultraviolet detection ranged from 25.0 to 50.0 ng/mL. The method repeatability values were 3.6-13.9 (relative standard deviation, %) and intermediate precision values were 4.6-12.7 (relative standard deviation, %). The fabric phase sorptive extraction method was also coupled to liquid chromatography with tandem mass spectrometry for identifying each endocrine disrupting chemical at 10 ng/mL.
Assuntos
Compostos Benzidrílicos/análise , Disruptores Endócrinos/análise , Extração Líquido-Líquido , Leite/química , Fenóis/análise , Animais , Cromatografia Líquida , Tamanho da Partícula , Espectrofotometria Ultravioleta , Propriedades de Superfície , Espectrometria de Massas em TandemRESUMO
A rapid extraction and cleanup method using selective fabric phase sorptive extraction combined with gas chromatography and mass spectrometry has been developed and validated for the determination of broad polarity spectrum emerging pollutants, ethyl paraben, butyl paraben, diethyl phthalate, dibutyl phthalate, lidocaine, prilocaine, triclosan, and bisphenol A in various aqueous samples. Some important parameters of fabric phase sorptive extraction such as extraction time, matrix pH, stirring speed, type and volume of desorption solvent were investigated and optimized. Calibration curves were obtained in the concentration range 0.05-500 ng/mL. Under the optimum conditions, the limits of detection were in the range 0.009 -0.021 ng/mL. This method was validated by analyzing the compounds in spiked aqueous samples at different levels with recoveries of 93 to 99% and relative standard deviations of <6%. The developed method was applied for the determination of the emerging contaminants in tap water, municipal water, ground water, sewage water, and sludge water samples. The results demonstrate that fabric phase sorptive extraction has great potential in the preconcentration of trace analytes in complex matrix.
Assuntos
Extração em Fase Sólida , Poluentes Químicos da Água/análise , Adsorção , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
Fabric phase sorptive extraction, an innovative integration of solid phase extraction and solid phase microextraction principles, has been combined with gas chromatography-mass spectrometry for the rapid extraction and determination of nineteen organochlorine pesticides in various fruit juices and water samples. FPSE consolidates the advanced features of sol-gel derived extraction sorbents with the rich surface chemistry of cellulose fabric substrate, which could extract the target analytes directly from the complex sample matrices, substantially simplifying the sample preparation operation. Important FPSE parameters, including sorbent chemistry, extraction time, stirring speed, type and volume of back-extraction solvent, and back-extraction time have been optimized. Calibration curves were obtained in a concentration range of 0.1â»500 ng/mL. Under optimum conditions, limits of detection were obtained in a range of 0.007â»0.032 ng/mL with satisfactory precision (RSD < 6%). The relative recoveries obtained by spiking organochlorine pesticides in water and selected juice samples were in the range of 91.56â»99.83%. The sorbent sol-gel poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) was applied for the extraction and preconcentration of organochlorine pesticides in aqueous and fruit juice samples prior to analysis with gas chromatography-mass spectrometry. The results demonstrated that the present method is simple, rapid, and precise for the determination of organochlorine pesticides in aqueous samples.
Assuntos
Sucos de Frutas e Vegetais/análise , Hidrocarbonetos Clorados/análise , Resíduos de Praguicidas/análise , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Calibragem , Contaminação de Alimentos/análise , Cromatografia Gasosa-Espectrometria de Massas , Extração em Fase Sólida/normas , Microextração em Fase Sólida/métodos , Microextração em Fase Sólida/normas , Água/químicaRESUMO
Fabric phase sorptive extraction (FPSE), a recently introduced novel sample preparation technology, has been evaluated for the extraction of benzodiazepines from human blood serum. FPSE utilizes a flexible fabric surface as the substrate platform for creating sol-gel hybrid organic-inorganic sorbent coatings. FPSE media can be introduced directly into the sample containing the target analyte(s), requiring no need for prior sample pretreatment or clean-up. Benzodiazepines were selected as model analytes because they represent one of the most widely used therapeutic drugs in psychiatry and are also amongst the most frequently encountered drugs in forensic toxicology. The chromatographic separation of target analytes was performed on a LiChroCART-LiChrospher®100 RP-18e (5 µm, 250 × 4 mm) analytical column, operated at room temperature. Ternary gradient elution was applied with a mobile phase that consisted of acetonitrile, methanol and ammonium acetate (0.05 M), which was delivered at a flow rate of 1.0 mL/min. Diode array detection was performed with monitoring at 240 nm. FPSE was performed using cellulose fabric extraction media coated with sol-gel poly(ethylene glycol) (sol-gel PEG). Absolute recovery values in the equilibrium state for the examined benzodiazepines were found to be 27% for bromazepam, 63% for lorazepam, 42 % for diazepam and 39% for alprazolam. Copyright © 2015 John Wiley & Sons, Ltd.
Assuntos
Benzodiazepinas/sangue , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Padrões de Referência , Reprodutibilidade dos TestesRESUMO
A fast and sensitive sample preparation strategy using fabric phase sorptive extraction followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection has been developed to analyse benzotriazole UV stabilizer compounds in aqueous samples. Benzotriazole UV stabilizer compounds are a group of compounds added to sunscreens and other personal care products which may present detrimental effects to aquatic ecosystems. Fabric phase sorptive extraction is a novel solvent minimized sample preparation approach that integrates the advantages of sol-gel derived hybrid inorganic-organic nanocomposite sorbents and the flexible, permeable and hydrophobic surface chemistry of polyester fabric. It is a highly sensitive, fast, efficient and inexpensive device that can be reused and does not suffer from coating damage, unlike SPME fibres or stir bars. In this paper, we optimized the extraction of seven benzotriazole UV filters evaluating the majority of the parameters involved in the extraction process, such as sorbent chemistry selection, extraction time, back-extraction solvent, back-extraction time and the impact of ionic strength. Under the optimized conditions, fabric phase sorptive extraction allows enrichment factors of 10 times with detection limits ranging from 6.01 to 60.7 ng L(-1) and intra- and inter-day % RSDs lower than 11 and 30 % for all compounds, respectively. The optimized sample preparation technique followed by ultra-high-performance liquid chromatography and tandem mass spectrometry detection was applied to determine the target analytes in sewage samples from wastewater treatment plants with different purification processes of Gran Canaria Island (Spain). Two UV stabilizer compounds were measured in ranges 17.0-60.5 ng mL(-1) (UV 328) and 69.3-99.2 ng mL(-1) (UV 360) in the three sewage water samples analysed.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Excipientes/análise , Esgotos/análise , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos , Triazóis/análise , Poluentes Químicos da Água/análise , Excipientes/isolamento & purificação , Química Verde , Limite de Detecção , Protetores Solares/química , Têxteis/análise , Triazóis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificaçãoRESUMO
A novel analytical method has been developed and validated for the quantification of alkyl phenols in aqueous and soil samples. Fabric phase sorptive extraction, a new sorptive microextraction technique, has been employed for the preconcentration of some endocrine-disruptor alkylphenol molecules, namely, 4-tert-butylphenol, 4-sec-butylphenol, 4-tert-amylphenol, and 4-cumylphenol, followed by high-performance liquid chromatography with ultraviolet detection. Various parameters influencing the fabric phase sorptive extraction performance, namely, extraction time, eluting solvent, elution time and pH of the sample matrix, were optimized. The chromatographic separation was carried out with a mobile phase of acetonitrile/water (60:40 v/v) at an isocratic flow rate of 1.0 mL/min using a reversed-phase C18 column at λmax 225 nm. The calibration curves of target analytes were prepared in the concentration range 5-500 ng/mL with good coefficient of determination values (R2 > 0.992). Extraction efficiency values were 74.0, 75.6, 78.0, and 78.3 for 4-tert-butylphenol, 4-sec-butylphenol, 4-tert-amylphenol, and 4-cumylphenol, respectively. The limits of detection range from 0.161 to 0.192 ng/mL. Subsequently, the new fabric phase sorptive extraction with high-performance liquid chromatography and ultraviolet detection was successfully applied for the recovery of alkyl phenols from spiked ground water, river water, and treated water from a sewage treatment plant, and soil and sludge samples.
RESUMO
Determination of pharmaceutical active molecules in the biological matrices is crucial in various fields of clinical and pharmaceutical chemistry, e.g., in pharmacokinetic studies, developing new drugs, or therapeutic drug monitoring. Chloramphenicol (CP) is used for treating bacterial infections, and it's one of the first antibiotics synthetically manufactured on a large scale. Fabric phase sorptive extraction (FPSE) was used to determine Chloramphenicol antibiotic residues in milk samples by means of validated HPLC-DAD instrumentation. Cellulose fabric phases modified with polyethylene glycol-block-polypropylene glycol-block-polyethylene glycol triblock copolymer was synthesized using sol-gel synthesis approach (Sol-gel PEG-PPG-PEG) and used for batch-type fabric phase extractions. Experimental variables of the FPSE method for antibiotic molecules were investigated and optimized systematically. The HPLC analysis of chloramphenicol was performed using a C18 column, isocratic elution of trifluoroacetic acid (0.1%), methanol, and acetonitrile (17:53:30) with a flow rate of 1.0 mL/min. The linear range for the proposed method for chloramphenicol (r2 > 0.9982) was obtained in the range of 25.0-1000.0 ng/mL. The limit of detections (LOD) is 8.3 ng/mL, while RSDs% are below 4.1%. Finally, the developed method based on FPSE-HPLC-DAD was applied to milk samples to quantitatively determine antibiotic residues.
Assuntos
Cloranfenicol , Leite , Animais , Cloranfenicol/análise , Leite/química , Antibacterianos/análise , Cromatografia Líquida de Alta Pressão/métodos , Polietilenoglicóis/análiseRESUMO
A new fabric phase sorptive extraction (FPSE) based separation and enrichment method was developed for sensitive determination of two antiepileptic drug molecules, Levetiracetam (LEV) and Lamotrigine (LTG). The analysis of these drug molecules was performed with high-performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) after FPSE. HPLC analysis was carried out by using phenyl hexyl column, under isocratic conditions with the mobile phase composed of pH 3.0 buffer-acetonitrile (77:23 v: v). All parameters affecting the separation and enrichment process were studied and optimized step by step. The linear working range of the developed method was calculated in the range of 10.0-1000.0 ng mL-1 for both the drug molecules (LEV and LTG). The limits of detection of the method (LODs) were calculated as 2.72 and 3.64 ng mL-1, respectively. The relative standard deviation (%RSD) values of the developed method as an indicator of precision were varied between 4.0 and 7.3. The accuracy of the optimized FPSE method was determined by the recovery tests utilizing spiked samples and results were assessed in the range from 94.6 to 106.3%. This is the first application of sol-gel Titania polycaprolactone-polydimethylsiloxane-polycaprolactone (Ti-PCAP-PDMS-PCAP) based FPSE membrane in the determination of antiepileptic drug molecules.
Assuntos
Anticonvulsivantes , Titânio , Cromatografia Líquida de Alta Pressão/métodos , Lamotrigina , LevetiracetamRESUMO
BACKGROUND: The introduction of white analytical chemistry encourages the development of methods characterized by a balance among greenness, productivity/feasibility and analytical performances. In the environmental analysis of emerging contaminants (ECs), for which high sensitivity and specificity are mandatory, the use of green and sustainable sample preparation needs to be coupled to a reliable analytical determination. Herein, an extraction method based on the use of a biodegradable polymeric film (Mater-Bi) and coupled to LC-MS/MS analysis was developed for the sensitive determination of ECs in wastewater. RESULTS: The interaction among a range of ECs and the Mater-Bi film (a commercially available patented blend of polybutylene-terephthalate, starch and fatty acids) was investigated by two sequential experimental designs, to simultaneously study several factors and optimize extraction efficiency. The final method, resembling a fabric phase sorptive extraction, involved pH and ionic strength modification of the sample, 1h extraction and desorption in ethanol. Satisfactory recoveries from real wastewater were obtained for sixteen analytes (56-116 %), as well as excellent precision (inter-day relative standard deviations below 10 % for most compounds). Matrix effect was in the range 88-116 % at the lower pre-concentration factor, but also acceptable in most cases at the higher pre-concentration factor. LODs in matrix, from 0.004 to 0.159 µg L-1, were lower than or comparable to those from recent studies employing green extraction procedures. The method demonstrated its applicability to samples from wastewater treatment plants, allowing quantification of pharmaceuticals and UV filters at the µg L-1 and ng L-1 levels, respectively. SIGNIFICANCE: For the first time, the synthetic biopolymer Mater-Bi, so far unexplored for the use in analytical chemistry, was exploited for a green, simple and extremely cheap extraction protocol. The optimized method is suitable for several ECs, guaranteeing very good accuracy, precision and specificity, also thanks to the LC-MS/MS analysis. The evaluation by green and white analytical chemistry metrics highlighted its superiority to conventional extraction methods.