Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(2): e2307836121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170749

RESUMO

High-harmonic generation from a gas target exhibits sharp spectral features and rapid phase variation near the Cooper minimum. By applying spectral filtering, shaped isolated attosecond pulses can be generated where the pulse is split into two in the time domain. Using such shaped extreme-ultraviolet (XUV) pulses, we theoretically study attosecond transient absorption (ATA) spectra of helium [Formula: see text] autoionizing state which is resonantly coupled to the [Formula: see text] dark state by a time-delayed infrared laser. Our simulations show that the asymmetric [Formula: see text] Fano line shape can be readily tuned into symmetric Lorentzian within the time delay of a few tens of attoseconds. Such efficient control is due to the destructive interference in the generation of the [Formula: see text] state when it is excited by a strongly shaped XUV pulse. This is to be compared to prior experiments where tuning the line shape of a Fano resonance would take tens of femtoseconds. We also show that the predicted ATA spectral line shape can be observed experimentally after propagation in a gas medium. Our results suggest that strongly shaped attosecond XUV pulses offer the opportunity for controlling and probing fine features of narrow resonances on the few-ten attoseconds timescale.

2.
Nano Lett ; 24(19): 5879-5885, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38652056

RESUMO

Monolayer transition metal dichalcogenides (TMDs) are considered promising building blocks for next-generation photonic and optoelectronic devices, owing to their fascinating optical properties. However, their inherent weak light absorption and low quantum yield severely hinder their practical applications. Here, we report up to 18000-fold photoluminescence (PL) enhancement in a monolayer WSe2-coupled plasmonic nanocavity. A spectroscopy-assisted nanomanipulation technique enables the assembly of a nanocavity with customizable resonances to simultaneously enhance the excitation and emission processes. In particular, precise control over the magnetic cavity mode facilitates spectral and spatial overlap with the exciton, resulting in plasmon-exciton intermediate coupling that approaches the maximum emission rate in the hybrid system. Meanwhile, the cavity mode exhibits high radiation directivity, which overwhelmingly directs surface-normal PL emission and leads to a 17-fold increase in the collection efficiency. Our approach opens up a new avenue to enhance the PL intensity of monolayer TMDs, facilitating their implementation in highly efficient optoelectronic devices.

3.
Nano Lett ; 24(34): 10540-10546, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39141843

RESUMO

Molecular vibrations that bear information about intrinsic properties of chemical compounds are challenging to detect at submonolayer densities. Surface-enhanced infrared absorption (SEIRA) spectroscopy has been proven to be a viable approach to enhance and detect weak vibration signals. Here, we report a SEIRA sensor based on mid-infrared surface plasmon resonances supported by single-walled carbon nanotubes (SWCNTs). Due to the 1D nature of SWCNTs, their plasmon modes are highly polarized with the electromagnetic fields spatially confined to nanometer scales. Leveraging these characteristics of SWCNTs, we observe a polarization selective coupling between their surface plasmons and vibrational modes of chemical bonds introduced onto their surfaces. A maximum modulation of ∼15% to the plasmon resonance peak is obtained for a submonolayer chemical group coverage. These findings suggest that SWCNTs may potentially serve as a highly sensitive SEIRA platform for revealing intricate information about molecular compositions and bond orientations.

4.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931726

RESUMO

This article shows an all-dielectric metasurface consisting of "H"-shaped silicon disks with tilted splitting gaps, which can detect the temperature and refractive index (RI). By introducing asymmetry parameters that excite the quasi-BIC, there are three distinct Fano resonances with nearly 100% modulation depth, and the maximal quality factor (Q-factor) is over 104. The predominant roles of different electromagnetic excitations in three distinct modes are demonstrated through near-field analysis and multipole decomposition. A numerical analysis of resonance response based on different refractive indices reveals a RI sensitivity of 262 nm/RIU and figure of merit (FOM) of 2183 RIU-1. This sensor can detect temperature fluctuations with a temperature sensitivity of 59.5 pm/k. The proposed metasurface provides a novel method to induce powerful TD resonances and offers possibilities for the design of high-performance sensors.

5.
Nano Lett ; 23(11): 5236-5241, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37200154

RESUMO

Thin film coatings with tunable colors have a broad range of applications, from solid-state reflective displays to steganography. Here, we propose a novel approach to chalcogenide phase change material (PCM)-incorporated steganographic nano-optical coatings (SNOC) as thin film color reflectors for optical steganography. The proposed SNOC design combines a broad-band and a narrow-band absorber made up of PCMs to achieve tunable optical Fano resonance in the visible wavelength, which is a scalable platform for accessing the full-color range. We demonstrate that the line width of the Fano resonance can be dynamically tuned by switching the structural phase of PCM from amorphous to crystalline, which is crucial for obtaining high-purity colors. For steganography applications, the cavity layer of SNOC is divided into an ultralow loss PCM and a high index dielectric material with identical optical thickness. We show that electrically tunable color pixels can be fabricated using the SNOC on a microheater device.

6.
Nano Lett ; 23(11): 4723-4731, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37256850

RESUMO

The pursuit for efficient nanoparticle trapping with low powers has led to optical tweezers technology moving from the conventional free-space configuration to advanced plasmonic systems. However, trapping nanoparticles smaller than 10 nm still remains a challenge even for plasmonic tweezers. Proper nanocavity design and excitation has given rise to the self-induced back-action (SIBA) effect offering enhanced trap stiffness with decreased laser power. In this work, we investigate the SIBA effect in metamaterial tweezers and its synergy with the exhibited Fano resonance. We demonstrate stable trapping of 20 nm gold particles with trap stiffnesses as high as 4.18 ± 0.2 (fN/nm)/(mW/µm2) and very low excitation intensity. Simulations reveal the existence of two different groups of hotspots on the plasmonic array. The two hotspots exhibit tunable trap stiffnesses, a unique feature that can allow for sorting of particles and biological molecules based on their characteristics.

7.
Small ; 19(40): e2302355, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37282744

RESUMO

By preparing colloidal crystals with random missing scatterers, crystals are created where disorder is embodied as vacancies in an otherwise perfect lattice. In this special system, there is a critical defect concentration where light propagation undergoes a transition from an all but perfect reflector (for the spectral range defined by the Bragg condition), to a metamaterial exhibiting an enhanced transmission phenomenon. It is shown that this behavior can be phenomenologically described in terms of Fano-like resonances. The results show that the Fano's parameter q experiences a sign change signaling the transition from a perfect crystal exhibiting a reflectance Bragg peak, through a state where background scattering is maximum and Bragg reflectance reaches a minimum to a point where the system reenters a low scattering state recovering ordinary Bragg diffraction. A simple dipolar model considering the correlation between scatterers and vacancies is proposed and the reported evolution of the Fano-like scattering is explained in terms of the emerging covariance between the optical paths and polarizabilities and the effect of field enhancement in photonic crystal (PhC) defects.

8.
Sensors (Basel) ; 23(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514756

RESUMO

Localized surface plasmon resonance (LSPR)-based sensors exhibit enormous potential in the areas of medical diagnosis, food safety regulation and environmental monitoring. However, the broadband spectral lineshape of LSPR hampers the observation of wavelength shifts in sensing processes, thus preventing its widespread applications in sensors. Here, we describe an improved plasmonic sensor based on Fano resonances between LSPR and the Rayleigh anomaly (RA) in a metal-insulator-metal (MIM) meta-grating, which is composed of silver nanoshell array, an isolation grating mask and a continuous gold film. The MIM configuration offers more freedom to control the optical properties of LSPR, RA and the Fano resonance between them. Strong couplings between LSPR and RA formed a series of narrowband reflection peaks (with a linewidth of ~20 nm in full width at half maximum (FWHM) and a reflectivity nearing 100%) within an LSPR-based broadband extinction window in the experiment, making the meta-grating promising for applications of high-efficiency reflective filters. A Fano resonance that is well optimized between LSPR and RA by carefully adjusting the angles of incident light can switch such a nano-device to an improved biological/chemical sensor with a figure of merit (FOM) larger than 57 and capability of detecting the local refractive index changes caused by the bonding of target molecules on the surface of the nano-device. The figure of merit of the hybrid sensor in the detection of target molecules is 6 and 15 times higher than that of the simple RA- and LSPR-based sensors, respectively.

9.
Nano Lett ; 22(2): 561-569, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34978824

RESUMO

Nanoplasmonic systems combined with optically active two-dimensional materials provide intriguing opportunities to explore and control light-matter interactions at extreme subwavelength length scales approaching the exciton Bohr radius. Here, we present room- and cryogenic-temperature investigations of a MoSe2 monolayer on individual gold dipole nanoantennas. By controlling nanoantenna size, the dipolar resonance is tuned relative to the exciton achieving a total tuning of ∼130 meV. Differential reflectance measurements performed on >100 structures reveal an apparent avoided crossing between exciton and dipolar mode and an exciton-plasmon coupling constant of g = 55 meV, representing g/(ℏωX) ≥ 3% of the transition energy. This places our hybrid system in the intermediate-coupling regime where spectra exhibit a characteristic Fano-like shape. We demonstrate active control by varying the polarization of the excitation light to programmably suppress coupling to the dipole mode. We further study the emerging optical signatures of the monolayer localized at dipole nanoantennas at 10 K.


Assuntos
Ouro , Ressonância de Plasmônio de Superfície , Ouro/química , Ressonância de Plasmônio de Superfície/métodos
10.
Nano Lett ; 22(3): 911-917, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35040646

RESUMO

Complex van der Waals heterostructures from layered molecular stacks are promising optoelectronic materials offering the means to efficient, modular charge separation and collection layers. The effect of stacking in the electrodynamics of such hybrid organic-inorganic two-dimensional materials remains largely unexplored, whereby molecular scale engineering could lead to advanced optical phenomena. For instance, tunable Fano engineering could make possible on-demand transparent conducting layers or photoactive elements, and passive cooling. We employ an adapted Gersten-Nitzan model and real time time-dependent density functional tight-binding to study the optoelectronics of self-assembled monolayers on graphene nanoribbons. We find Fano resonances that cause electromagnetic induced opacity and transparency and reveal an additional incoherent process leading to interlayer exciton formation with a characteristic charge transfer rate. These results showcase hybrid van der Waals heterostructures as paradigmatic 2D optoelectronic stacks, featuring tunable Fano optics and unconventional charge transfer channels.

11.
Nanotechnology ; 33(40)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35732108

RESUMO

Transitioning plasmonic metasurfaces into practical, low-cost applications requires meta-atom designs that focus on ease of manufacturability and a robustness with respect to structural imperfections and nonideal substrates. It also requires the use of inexpensive, earth-abundant metals such as Al for plasmonic properties. In this study, we focus on combining two aspects of plasmonic metasurfaces-visible coloration and Fano resonances-in a morphology amenable to scalable manufacturing. The resulting plasmonic metasurface is a candidate for reflective colorimetric sensing. We examine the potential of this metasurface for reflective strain sensing, where the periodicity of the meta-atoms could ultimately be modified by a potential flexion, and for localized surface plasmon resonance refractive index sensing. This study evaluates the potential of streamlined meta-atom design combined with low-cost metallization for inexpensive sensor readout based on human optical perception.

12.
Nanotechnology ; 33(37)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35654003

RESUMO

Fano resonant Si nanoparticles (NPs) are synthesized in single-crystal Mg:Er:LiNbO3using ion implantation and subsequent thermal annealing. The structural and optical properties of the Si NPs embedded in the crystal have been investigated. Spherical particles with radius of about 60 nm are observed by cross-sectional transmission electron microscope, while ion beam analysis are used to characterize the NPs formation process. The absorption of the Mg:Er:LiNbO3crystals have been enhanced significantly due to the embedded Si NPs, which are induced by the Fano resonance effect in the visible light wavelength band. Periodic structures of spherical Si particles model is proposed and analyzed using the Mie theory to study the optical response features and local fields. As a result, numerical simulations demonstrate that periodicities of the array of Si NPs can yield narrow resonant peaks connected with multiple light scattering by the NPs and displaying a Fano-type resonant profile. The wavelengths of the absorption peak show clear red shift with increasing the radius of NPs and the peak intensity can be enhanced by decreasing the array period. This work opens an avenue to modulate the optical filed by embedding Fano resonant Si NPs for potential application in optical devices.

13.
Chem Pharm Bull (Tokyo) ; 70(2): 130-137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35110433

RESUMO

The free electrons inside precious metals such as Au vibrate when the surface of the metal is irradiated with an electromagnetic wave of an appropriate frequency. This oscillation is referred to as surface plasmon resonance (SPR), and the resonance frequency varies with permittivity of the medium around the metal. SPR sensors are widely applied in the fields of bioscience and pharmaceutical sciences, including biosensing for drug discovery, biomarker screening, virus detection, and testing for food safety. Here, we fabricated a metal-insulator-metal (MIM) SPR sensor by constructing two-dimensional (2D) regular array of Au colloidal particles (2D colloidal crystals) on an insulator layer over a thin Au film coated on a glass substrate surface. The 2D crystals were fabricated by electrostatically adsorbing negatively charged three-dimensional crystals onto a positively charged thin insulator formed on Au film. The plasmon peaks/dips from the MIM structure were measured in aqueous solutions of ethylene glycol (EG) at various concentrations. Multiple plasmon peaks/dips were observed due to the localized SPR (LSPR) of the Au particles and the Fano resonance between the Au particles and thin film. The plasmon peaks/dips shifted to higher wavelengths on increasing EG concentrations due to an increase in the refractive index of the media. The observed peak/dip shift was approximately twice that of LSPR from an isolated Au particle. We expect the present MIM substrate will be useful as a highly sensitive sensor in the pharmaceutical field.


Assuntos
Coloide de Ouro/química , Ouro/química , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície , Cristalização , Etilenoglicol/química , Tamanho da Partícula , Soluções
14.
Sensors (Basel) ; 22(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365895

RESUMO

A novel nano-refractive index sensor based on the Fano resonance phenomenon is proposed in this paper. The sensor consists of the metal-insulator-metal (MIM) waveguide and a V-ring cavity with a groove (VRCG). We analyzed the performance of the nanoscale sensor using the finite element method. The simulation results show that the asymmetry of the geometric structure itself is the main factor leading to Fano resonance splitting. In Fano splitting mode, the Fano bandwidth of the system can be significantly reduced when the sensor sensitivity is slightly reduced, so that the figure of merit (FOM) of the sensor can be substantially improved. Based on the above advantages, the sensor's sensitivity in this paper is as high as 2765 nm/RIU, FOM = 50.28. In addition, we further applied the sensor to alcohol concentration detection. The effect is good, and the sensitivity achieves about 150. This type of sensor has a bright future in the precision measurement of solution concentrations.

15.
Nano Lett ; 21(13): 5813-5818, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34132552

RESUMO

Interaction of surface adsorbate vibration and intraband electron absorption in nanocrystals has been reported to affect the photophysical properties of both nanocrystals and surface adsorbates and may affect the performance of hybrid photocatalysts composed of semiconductor nanocrystals and molecular catalysts. Here, by combining ultrafast transient visible and IR spectroscopic measurements, we report the observation of Fano resonances between the intraband transition of the photogenerated electrons in CdS and CdSe nanocrystals and CO stretching vibrational modes of adsorbed molecular catalysts, [Fe2(cbdt)(CO)6] (FeFe; cbdt = 1-carboxyl-benzene-2,3-dithiolate), a molecular mimic for the active site of FeFe-hydrogenase. The occurrence of Fano resonances is independent of nanocrystal types (rods vs dots) or charge transfer character between the nanocrystal and FeFe, and is likely a general feature of nanocrystal and molecular catalyst hybrid systems. These results provide new insights into the fundamental interactions in these hybrid assemblies for artificial photosynthesis.


Assuntos
Nanopartículas , Pontos Quânticos , Catálise , Elétrons , Vibração
16.
Nano Lett ; 21(4): 1765-1771, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33539099

RESUMO

Sharp optical resonances in high-index dielectric nanostructures have recently attracted significant attention for their promising applications in nanophotonics. Fano resonances, as well as resonances associated with bound states in the continuum (BIC), have independently shown a great potential for applications in nanoscale lasers, sensors, and nonlinear optical devices. Here, we demonstrate experimentally a close connection between Fano and quasi-BIC resonances excited in individual dielectric nanoantennas. We analyze systematically the resonant response of AlGaAs nanoantennas pumped with a structured light in the near-infrared range. We trace a variation of the scattering spectrum that fully agrees with an analytical expression governed by a Fano parameter and observe directly a transition to a quasi-BIC resonance. Our results suggest a unified approach toward the analysis of sharp resonances in subwavelength nanostructures originating from strong coupling of optical modes that can provide high energy localization for enhanced light-matter interactions.

17.
Nano Lett ; 21(24): 10423-10430, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34846905

RESUMO

Experiments on spin transport through a chiral molecule demonstrated the attainment of significant spin polarization, demanding a theoretical explanation. We report the emergence of spin Fano resonances as a mechanism in the chiral-induced spin-selectivity (CISS) effect associated with transport through a chiral polyacetylene molecule. Initializing electrons through optical excitation, we derive the Fano resonance formula for the spin polarization. Computations reveal that quasidegeneracy is common in this complex molecular system. A remarkable phenomenon is the generation of pronounced spin Fano resonances due to the contributions of two near-degeneracy states. We also find that the Fano resonance width increases linearly with the coupling strength between the molecule and the lead. Our findings provide another mechanism to explain the experimental observations and lead to new insights into the role of the CISS effect in complex molecules from the perspective of transport and spin polarization resonance, paving the way for chiral molecule-based spintronics applications.


Assuntos
Elétrons , Vibração , Estereoisomerismo
18.
Nano Lett ; 21(23): 10070-10075, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34802245

RESUMO

Thin film optical coatings have a wide range of industrial applications from displays and lighting to photovoltaic cells. The realization of electrically tunable thin film optical coatings in the visible wavelength range is particularly important to develop energy efficient and dynamic color filters. Here, we experimentally demonstrate dynamic color generation using electrically tunable thin film optical coatings that consist of two different phase change materials (PCMs). The proposed active thin film nanocavity excites the Fano resonance that results from the coupling of a broadband and a narrowband absorber made up of phase change materials. The Fano resonance is then electrically tuned by structural phase switching of PCM layers to demonstrate active color filters covering the entire visible spectrum. In contrast to existing thin film optical coatings, the developed electrically tunable PCM based Fano resonant thin optical coatings have several advantages in tunable displays and active nanophotonic applications.

19.
Angew Chem Int Ed Engl ; 61(40): e202210097, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35981229

RESUMO

The Fano resonance in single-molecule junctions could be created by interaction with discrete and continuous molecular orbitals and enables effective electron transport modulation between constructive and destructive interference within a small energy range. However, direct observation of Fano resonance remains unexplored because of the disappearance of discrete orbitals by molecule-electrode coupling. We demonstrated the room-temperature observation of Fano resonance from electrochemical gated single-molecule conductance and current-voltage measurements of a para-carbazole anion junction. Theoretical calculations reveal that the negative charge on the nitrogen atom induces a localized HOMO on the molecular center, creating Fano resonance by interfering with the delocalized LUMO on the molecular backbone. Our findings demonstrate that the Fano resonance in electron transport through single-molecule junctions opens pathways for designs of interference-based electronic devices.

20.
Small ; 17(44): e2104275, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611988

RESUMO

Arming metasurface with active materials furnishes a feasible solution to dynamically control over terahertz (THz) waves, which is extremely significant for the realization of upcoming sixth generation telecommunications. However, the present active materials are mainly limited to single external driving field, hindering the capability of metasurface for flexible manipulation of THz waves. Besides, less attention has been paid to the energy question how to significantly reduce the pump threshold for achieving the desired function. Here, a germanium (Ge) hybrid Fano metasurface under dual-stimulus control is experimentally demonstrated. Photoexcitation of Ge thin film enables 100% modulation depth of Fano resonance and ultrafast switching time within 10 ps. By adding current-bias, the pump threshold to modulate the metasurface is greatly reduced from 1600 to 200 µJ cm-2 . Different from the optical modulation independent of film thickness, it is found that the current function is in proportion with the thickness of Ge thin film. Moreover, it is demonstrated that compared to the single optical-stimulus, the THz amplitude modulation is increased by 56.3% under dual-stimulus function. This work naturally improves the flexibility and practicality of Ge-based metadevice and inspires more innovations to boost the development of switchable sensing, lasing spacer, and nonlinear systems.


Assuntos
Óptica e Fotônica , Vibração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa