Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Molecules ; 29(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39274868

RESUMO

Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.


Assuntos
Microbioma Gastrointestinal , Polifenóis , Chá , Microbioma Gastrointestinal/efeitos dos fármacos , Chá/química , Humanos , Polifenóis/farmacologia , Polifenóis/química , Animais , Fermentação , Fezes/microbiologia
2.
J Sci Food Agric ; 104(14): 8500-8510, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38923512

RESUMO

BACKGROUND: Kratom (Mitragyna speciosa) has a long history of traditional use. It contains various alkaloids and polyphenols. The properties of kratom's alkaloids have been well-documented. However, the property of kratom's polyphenols in water-soluble phase have been less frequently reported. This study assessed the effects of water-soluble Mitragyna speciosa (kratom) extract (MSE) on gut microbiota and their metabolite production in fecal batch culture. RESULTS: The water-soluble kratom extract (MSE0) and the water-soluble kratom extract after partial sugar removal (MSE50) both contained polyphenols, with total phenolic levels of 2037.91 ± 51.13 and 3997.95 ± 27.90 mg GAE/g extract, respectively and total flavonoids of 81.10 ± 1.00 and 84.60 ± 1.43 mg CEQ/g extract. The gut microbiota in fecal batch culture was identified by 16S rRNA gene sequencing at 0 and 24 h of fermentation. After fermentation, MSE50 stimulated the growth of Bifidobacterium more than MSE0. MSE0 gave the highest total fatty acids level among the treatments. The phenolic metabolites produced by some intestinal microbiota during fecal fermentation at 24 h were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major metabolite of biotransformation of both water-soluble MSEs by intestinal microbiota was pyrocatechol (9.85-11.53%). CONCLUSION: The water-soluble MSEs and their produced metabolites could potentially be used as ingredients for functional and medicinal food production that supports specific gut microbiota. © 2024 Society of Chemical Industry.


Assuntos
Fezes , Fermentação , Microbioma Gastrointestinal , Mitragyna , Extratos Vegetais , Polifenóis , Microbioma Gastrointestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Fezes/microbiologia , Mitragyna/química , Mitragyna/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Humanos , Masculino , Flavonoides/metabolismo , Flavonoides/farmacologia , Bifidobacterium/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/efeitos dos fármacos
3.
Crit Rev Food Sci Nutr ; 63(15): 2509-2520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34515592

RESUMO

Resistant starch (RS) is beneficial for human health through its interactions with gut microbiota. However, the alignment between RS structures with gut microbiota profile and consequentially health benefits remain elusive. This review summarizes current understanding of RS complex structures and their interactions with the gut microbiota, aiming to highlight the possibility of manipulating RS structures for a targeted and predictable gut microbiota shift for human health in a personalized way. Current definition of RS types is strongly associated with starch digestion behaviors in small intestine, which does not precisely reflect their interactions with human gut microbiota. Distinct alterations of gut microbiota could be associated with the same RS type. The principles to describe the specificity of different RS structural characteristics in terms of aligning with human gut microbiota shift was proposed in this review, which could result in new definitions of RS types from the microbial perspectives. To consider the highly variable personal features, a machine-learning algorithm to integrate different personalized factors and better understand the complex interaction between RS and gut microbiota and its effects on individual health was explained. This review contains important information to bring interactions between RS and gut microbiota to translational practice.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Amido Resistente , Bactérias , Amido/química , Fezes
4.
Appl Microbiol Biotechnol ; 107(22): 6985-6998, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37702791

RESUMO

The presence of cypermethrin in the environment and food poses a significant threat to human health. Lactic acid bacteria have shown promise as effective absorbents for xenobiotics and well behaved in wide range of applications. This study aimed to characterize the biosorption behavior of cypermethrin by Lactiplantibacillus plantarum RS60, focusing on cellular components, functional groups, kinetics, and isotherms. Results indicated that RS60 exopolysaccharides played a crucial role removing cypermethrin, with the cell wall and protoplast contributing 71.50% and 30.29% to the overall removal, respectively. Notably, peptidoglycans exhibited a high affinity for cypermethrin binding. The presence of various cellular surface groups including -OH, -NH, -CH3, -CH2, -CH, -P = O, and -CO was responsible for the efficient removal of pollutants. Additionally, the biosorption process demonstrated a good fit with pseudo-second-order and Langmuir-Freundlich isotherm. The biosorption of cypermethrin by L. plantarum RS60 involved complex chemical and physical interactions, as well as intraparticle diffusion and film diffusion. RS60 also effectively reduced cypermethrin residues in a fecal fermentation model, highlighting its potential in mitigating cypermethrin exposure in humans and animals. These findings provided valuable insights into the mechanisms underlying cypermethrin biosorption by lactic acid bacteria and supported the advancement of their application in environmental and health-related contexts. KEY POINTS: • Cypermethrin adsorption by L. plantarum was clarified. • Cell wall and protoplast showed cypermethrin binding ability. • L. plantarum can reduce cypermethrin in a fecal fermentation model.

5.
Molecules ; 28(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687136

RESUMO

Genipin, an aglycone of geniposide, is a rich iridoid component in the fruit of Gardenia jasminoides Ellis and has numerous biological activities. However, its metabolic profiles in vivo and vitro remain unclear. In this study, an effective analytical strategy based on ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) in positive and negative ion modes was developed to analyze and identify genipin metabolites in rat urine, blood, feces, and fecal fermentation in combination with many methods including post-collection data mining methods, high-resolution extracted ion chromatography (HREIC), and multiple mass defect filtering (MMDF). Simultaneously, the metabolites of genipin in vivo were verified by fecal fermentation of SD rats at different times. Finally, based on information such as reference substances, chromatographic retention behavior, and accurate mass determination, a total of 50 metabolites (including prototypes) were identified in vivo. Among them, 7, 31 and 28 metabolites in vivo were identified in blood, urine, and feces, respectively. Our results showed that genipin could generate different metabolites that underwent multiple metabolic reactions in vivo including methylation, hydroxylation, dehydroxylation, hydrogenation, sulfonation, glucuronidation, demethylation, and their superimposed reactions. Forty-six metabolites were verified in vitro. Meanwhile, 2 and 19 metabolites identified in blood and urine were also verified in fecal fermentation at different times. These results demonstrated that metabolites were produced in feces and reabsorbed into the body. In conclusion, the newly discovered metabolites of genipin can provide a new perspective for understanding its pharmacological effects and build the foundation for thee toxicity and safety evaluations of genipin.


Assuntos
Iridoides , Animais , Ratos , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas
6.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067525

RESUMO

Fucoidan, brown seaweed-derived dietary fibers (DFs), can be considered a promising candidate for modulating immune responses. Due to its structural complexity and diversity, it is unclear whether Sargassum graminifolium fucoidans (SGFs) also show marvelous immunoregulatory effects. In the present study, two fractions, SGF-1 and SGF-2, were purified from SGFs by DEAE-Sepharose Fast Flow and Sephacryl S-400 HR column chromatography. We investigated the in vivo immune regulatory activity of SGF-2 and explored the immune activation of SGF-2 fecal fermentation products with in vitro fecal fermentation combined with a Caco-2/RAW264.7 co-culture system. In vivo results exhibited that SGF-2 could elevate the thymus/spleen indices, CD8+ splenic T lymphocyte subpopulations, and CD4+ Foxp3+ splenic Tregs. The 16S high-throughput sequencing results showed that SGF-2 administration significantly increased the relative abundance of Lactobacillus, Alloprevotella, Ruminococcus, and Akkermansia. In addition, it was found that SGF-2 fermented by feces could significantly improve the phagocytosis, NO, and cytokine (TNF-α, IL-6, and IL-10) production of macrophages in the co-culture system. These results indicated that SGFs have the potential to modulate immunity and promote health by affecting the gut microbiota.


Assuntos
Sargassum , Humanos , Sargassum/química , Técnicas de Cocultura , Células CACO-2 , Fermentação , Promoção da Saúde , Polissacarídeos/farmacologia , Polissacarídeos/química , Fezes , Imunidade
7.
Biotechnol Bioeng ; 119(11): 3044-3061, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35941765

RESUMO

Dietary studies play a crucial role in determining the health-benefiting effects of most food substances, including prebiotics, probiotics, functional foods, and bioactive compounds. Such studies involve gastrointestinal digestion and colonic fermentation of dietary substances. In colonic fermentation, any digested food is further metabolized in the gut by the residing colonic microbiota, causing a shift in the gut microenvironment and production of various metabolites, such as short-chain fatty acids. These diet-induced shifts in the microbial community and metabolite production, which can be assessed through in vitro fermentation models using a donor's fecal microbiota, are well known to impact the health of the host. Although in vivo or animal experiments are the gold standard in dietary studies, recent advancements using different in vitro systems, like artificial colon (ARCOL), mini bioreactor array (MBRA), TNO in vitro model of the colon (TIM), Simulator of the Human Intestinal Microbial Ecosystem (SHIME), M-SHIME, Copenhagen MiniGut, and Dynamic Gastrointestinal Simulator, make it easy to study the dietary impact in terms of the gut microbiota and metabolites. Such a continuous in vitro system can have multiple compartments corresponding to different parts of the colon, that is, proximal, transverse, and distal colon, making the findings physiologically more significant. Furthermore, postfermentation samples can be analyzed using metagenomic, metabolomic, quantitative-polymerase chain reaction, and flow-cytometry approaches. Moreover, studies have shown that in vitro results are in accordance with the in vivo findings, supporting their relevance in dietary studies and giving confidence that shifts in metabolites are only due to microbes. This review meticulously describes the recent advancements in various fermentation models and their relevance in dietary studies.


Assuntos
Microbiota , Prebióticos , Animais , Colo , Dieta , Ácidos Graxos Voláteis/metabolismo , Fermentação , Humanos
8.
J Dairy Sci ; 104(7): 7781-7793, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33865598

RESUMO

We reported recently that adding bakery by-products (BP) to the diets of dairy cows up to 30% improved performance and rumen pH, but caused major shifts in the nutrient profile and availability, likely modifying nutrient degradation patterns throughout the gastrointestinal tract. The aim of this study was to investigate the effects of the gradual replacement of cereals by BP on the apparent total-tract digestibility (ATTD), the fermentation patterns, and the microbial community in feces of dairy cows. Twenty-four mid-lactating Simmental cows (149 ± 22.3 days in milk, 756 ± 89.6 kg of initial body weight) were fed a total mixed ration ad libitum (fresh feed was offered twice per day) containing a 50:50 ratio of forage to concentrate (dry matter basis) throughout the experiment. The trial lasted 5 wk, whereby the first week was used for baseline measurements, in which all cows received the same diet, without BP. Cows were then randomly allocated into 3 groups differing in the BP content of diets (0% BP, 15% BP, and 30% BP on a DM basis) and fed for 4 wk. Fecal samples were taken for analysis of pH, volatile fatty acids (VFA), and 16S rRNA gene sequencing. The inclusion of BP resulted in an increase of ether extract and sugars, and a reduction of starch and neutral detergent fiber in the diet. Feeding BP linearly increased the ATTD of almost all nutrients resulting in up to 2 kg more digestible organic matter intake (DOMI). Increasing BP level up to 30% increased fecal total VFA concentration and decreased the pH. The proportion of butyrate in feces increased linearly, but the proportion of all other VFA was not affected by BP-feeding. The richness and diversity indices of the fecal microbiota linearly declined by the inclusion of BP. The cellulolytic phyla Fibrobacteres decreased, whereas amylolytic phyla, such as Proteobacteria, increased. Overall, results showed that feeding BP linearly increased ATTD and DOMI, but impaired fecal microbial diversity and pH. In the interest of the optimization of BP inclusion in the dairy cows' feeding, a dietary level between 15 to 30% of BP might be a better compromise than 30% in terms of an enhanced DOMI and performance with still lowered risk of hindgut dysbiosis, but this will require further investigations.


Assuntos
Ração Animal , Lactação , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Fibras na Dieta/metabolismo , Digestão , Fezes , Feminino , Fermentação , Concentração de Íons de Hidrogênio , Leite , Nutrientes , RNA Ribossômico 16S/metabolismo , Rúmen/metabolismo
9.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32737132

RESUMO

Extracellular proteins are important factors in host-microbe interactions; however, the specific factors that enable bifidobacterial adhesion and survival in the gastrointestinal (GI) tract are not fully characterized. Here, we discovered that Bifidobacterium longum NCC2705 cultured in bacterium-free supernatants of human fecal fermentation broth released a myriad of particles into the extracellular environment. The aim of this study was to characterize the physiological properties of these extracellular particles. The particles, approximately 50 to 80 nm in diameter, had high protein and double-stranded DNA contents, suggesting that they were extracellular vesicles (EVs). A proteomic analysis showed that the EVs primarily consisted of cytoplasmic proteins with crucial functions in essential cellular processes. We identified several mucin-binding proteins by performing a biomolecular interaction analysis of phosphoketolase, GroEL, elongation factor Tu (EF-Tu), phosphoglycerate kinase, transaldolase (Tal), and heat shock protein 20 (Hsp20). The recombinant GroEL and Tal proteins showed high binding affinities to mucin. Furthermore, the immobilization of these proteins on microbeads affected the permanence of the microbeads in the murine GI tract. These results suggest that bifidobacterial exposure conditions that mimic the intestine stimulate B. longum EV production. The resulting EVs exported several cytoplasmic proteins that may have promoted B. longum adhesion. This study improved our understanding of the Bifidobacterium colonization strategy in the intestinal microbiome.IMPORTANCEBifidobacterium is a natural inhabitant of the human gastrointestinal (GI) tract. Morphological observations revealed that extracellular appendages of bifidobacteria in complex microbial communities are important for understanding its adaptations to the GI tract environment. We identified dynamic extracellular vesicle (EV) production by Bifidobacterium longum in bacterium-free fecal fermentation broth that was strongly suggestive of differing bifidobacterial extracellular appendages in the GI tract. In addition, export of the adhesive moonlighting proteins mediated by EVs may promote bifidobacterial colonization. This study provides new insight into the roles of EVs in bifidobacterial colonization processes as these bacteria adapt to the GI environment.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium longum/metabolismo , Proteínas de Transporte/metabolismo , Vesículas Extracelulares/metabolismo , Mucinas/metabolismo , Proteínas de Bactérias/genética , Bifidobacterium longum/genética , Proteínas de Transporte/genética , Proteômica
10.
J Dairy Sci ; 103(9): 8020-8033, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32600769

RESUMO

Organic cattle farming encourages the use of forage-rich diets, and the reduction of particle size has been suggested as an approach to improve forage utilization and enhance nutrient intake of cows. However, reducing forage particle size increases passage rate, as well as the flow of potentially fermentable nutrients out of the rumen, and the consequences for hindgut fermentation have not been evaluated yet. This study evaluated the effects of decreasing dietary forage particle size on the fecal short-chain fatty acid (SCFA) profile and the bacterial community structure of dairy cows fed forage-based rations. Twenty-one organically fed lactating Holstein cows (4 primiparous and 17 multiparous; mean and standard deviation 703 ± 65 kg body weight, 135 ± 104 days in milk) were divided into 2 groups and fed 1 of 2 diets for 34 d. Diets contained 20% concentrate and 80% forage (dry matter basis), and were fed either as a control with a forage geometric mean particle size of 52 mm (CON; 11 cows) or as a diet with the forage particle size reduced to a geometric mean size of 7 mm (RED; 10 cows). Fecal samples were collected at the end of the experiment, and samples were immediately frozen at -20°C. Samples were analyzed for SCFA, and the fecal bacterial community was evaluated using 16S rRNA sequencing. Data showed that the concentration of total SCFA was not affected by treatment, but the proportion of propionate, a key glucogenic precursor in cattle, tended to be greater for RED (13.3 and 13.8 ± 0.1%, respectively). The predominant bacterial phyla, including Firmicutes (58.0 ± 0.7%), Bacteroidetes (26.9 ± 0.4%), and Verrucomicrobia (4.0 ± 0.4%), were not affected by forage particle size. Family Lachnospiraceae increased in relative abundance when the RED diet was fed (12.1 and 13.9 ± 0.5% for CON and RED, respectively), and genera Acetitomaculum (1.1 and 1.8 ± 0.2%), Turicibacter (0.7 and 0.9 ± 0.1%), and Ruminobacter (0.1 and 0.4 ± 0.1%) increased in relative abundance when RED was fed. In addition, relative abundance of some fecal bacterial taxa was correlated with major fecal SCFA and pH. Reducing the particle size of forages, from 52 to 7 mm geometric mean particle size, maintained fecal concentration of total SCFA and tended to enhance propionate concentration, without risk of dysbiosis. Thus, results suggest that reduction of forage particle size represents an effective approach to optimizing forage utilization while maintaining hindgut fermentation and fecal bacterial diversity in dairy cows fed forage-rich diets.


Assuntos
Dieta/veterinária , Ácidos Graxos Voláteis/análise , Fezes/química , Fezes/microbiologia , Fermentação , Microbiota , Ração Animal/normas , Animais , Bactérias/genética , Peso Corporal , Bovinos , Feminino , Lactação , Tamanho da Partícula , RNA Ribossômico 16S/genética , Rúmen/metabolismo
11.
Int J Mol Sci ; 20(8)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003566

RESUMO

The development of prebiotic fibers requires fast high-throughput screening of their effects on the gut microbiota. We demonstrated the applicability of a mictotiter plate in the in vitro fermentation models for the screening of potentially-prebiotic dietary fibers. The effects of seven rye bran-, oat- and linseed-derived fiber preparations on the human fecal microbiota composition and short-chain fatty acid production were studied. The model was also used to study whether fibers can alleviate the harmful effects of amoxicillin-clavulanate on the microbiota. The antibiotic induced a shift in the bacterial community in the absence of fibers by decreasing the relative amounts of Bifidobacteriaceae, Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae, and increasing proteobacterial Sutterilaceae levels from 1% to 11% of the total microbiota. The fermentation of rye bran, enzymatically treated rye bran, its insoluble fraction, soluble oat fiber and a mixture of rye fiber:soluble oat fiber:linseed resulted in a significant increase in butyrate production and a bifidogenic effect in the absence of the antibiotic. These fibers were also able to counteract the negative effects of the antibiotic and prevent the decrease in the relative amount of bifidobacteria. Insoluble and soluble rye bran fractions and soluble oat fiber were the best for controlling the level of proteobacteria at the level below 2%.


Assuntos
Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/biossíntese , Microbioma Gastrointestinal/efeitos dos fármacos , Prebióticos/administração & dosagem , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/isolamento & purificação , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/isolamento & purificação , Ácidos Graxos Voláteis/administração & dosagem , Ácidos Graxos Voláteis/química , Fezes/química , Fermentação , Humanos , Proteobactérias/efeitos dos fármacos , Proteobactérias/isolamento & purificação
12.
Molecules ; 24(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30769960

RESUMO

Fruit by-products are being investigated as non-conventional alternative sources of dietary fiber (DF). High hydrostatic pressure (HHP) treatments have been used to modify DF content as well as its technological and physiological functionality. Orange, mango and prickly pear peels untreated (OU, MU and PPU) and HHP-treated at 600 MPa (OP/55 °C and 20 min, MP/22 °C and 10 min, PPP/55 °C and 10 min) were evaluated. Untreated and treated fruit peels were subjected to fecal in vitro fermentations. The neutral sugar composition and linkage glycosidic positions were related to the production of short chain fatty acids (SCFA) resulting from the fermentation of the materials. After HHP-treatments, changes from multibranched sugars to linear sugars were observed. After 24 h of fermentation, OP yielded the highest amount of SCFA followed by PPU and MP (389.4, 282.0 and 204.6 µmol/10 mg DF, respectively). HHP treatment increased the SCFA concentration of orange and mango peel by 7 and 10.3% respectively, compared with the untreated samples after 24 h of fermentation. The results presented herein suggest that fruit peels could be used as good fermentable fiber sources, because they yielded high amounts of SCFA during in vitro fermentations.


Assuntos
Fibras na Dieta/metabolismo , Fezes/microbiologia , Fermentação , Frutas/química , Pressão , Fibras na Dieta/análise , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/biossíntese , Concentração de Íons de Hidrogênio , Pressão Hidrostática , Compostos Fitoquímicos/química
13.
Molecules ; 24(6)2019 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-30909544

RESUMO

Stilbenoids are dietary phenolics with notable biological effects on humans. Epidemiological, clinical, and nutritional studies from recent years have confirmed the significant biological effects of stilbenoids, such as oxidative stress protection and the prevention of degenerative diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. Stilbenoids are intensively metabolically transformed by colon microbiota, and their corresponding metabolites might show different or stronger biological activity than their parent molecules. The aim of the present study was to determine the metabolism of six stilbenoids (resveratrol, oxyresveratrol, piceatannol, thunalbene, batatasin III, and pinostilbene), mediated by colon microbiota. Stilbenoids were fermented in an in vitro faecal fermentation system using fresh faeces from five different donors as an inoculum. The samples of metabolized stilbenoids were collected at 0, 2, 4, 8, 24, and 48 h. Significant differences in the microbial transformation among stilbene derivatives were observed by liquid chromatography mass spectrometry (LC/MS). Four stilbenoids (resveratrol, oxyresveratrol, piceatannol and thunalbene) were metabolically transformed by double bond reduction, dihydroxylation, and demethylation, while batatasin III and pinostilbene were stable under conditions simulating the colon environment. Strong inter-individual differences in speed, intensity, and pathways of metabolism were observed among the faecal samples obtained from the donors.


Assuntos
Colo/metabolismo , Fezes/microbiologia , Microbiota , Estilbenos/metabolismo , Cromatografia Líquida , Colo/microbiologia , Fermentação , Humanos , Espectrometria de Massas , Fenóis/química , Fenóis/metabolismo , Resveratrol/química , Resveratrol/metabolismo , Estilbenos/química , Espectrometria de Massas em Tandem
14.
Biosci Microbiota Food Health ; 43(1): 23-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188663

RESUMO

Blackcurrant is available as a traditional medicine in Europe. However, the detailed effects of blackcurrant on the human gut microbiota remain unknown. In this study, we investigated the prebiotic effects of a blackcurrant extract using a human fecal culture model in six healthy subjects. Feces were individually inoculated into a medium with or without the blackcurrant extract and then fermented for 48 hr under anaerobic conditions. The results obtained from analysis of samples from the fermented medium demonstrated that after 48 hr of fermentation, the pH of the medium with the blackcurrant extract was significantly decreased (control, 6.62 ± 0.20; blackcurrant extract, 6.41 ± 0.33; p=0.0312). A 16S rRNA gene sequencing analysis of the microbiota of the fermented medium showed a significant increase in the relative abundance of Bifidobacteriaceae. In measuring the concentrations of putrefactive components in the fermented medium, we found that the blackcurrant extract significantly reduced ammonia levels and displayed a tendency toward reduced indole levels. Our results suggest that blackcurrant extract could be a potential ingredient for relief of putrefactive components in the gut.

15.
Int J Biol Macromol ; 266(Pt 1): 131198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552700

RESUMO

The metabolic process of polysaccharides in gastrointestinal digestions and the effects of the resulting carbohydrates on the composition of gut microbes are important to explore their prebiotic properties. Therefore, the purpose of this study was to investigate the simulated digestion and fecal fermentation in vitro of three fractions (PHEPSs-1, PHEPSs-2 and PHEPSs-3) purified from the crude exopolysaccharides of Paecilomyces hepiali HN1 (PHEPSs) and to explore the potential prebiotic mechanisms. The three purified fractions were characterized by HPLC, UV, FT-IR, SEM and AFM, and they were all of galactoglucomannan family with molecular weight of 178, 232 and 119 kDa, respectively. They could resist the simulated gastrointestinal digestions, but they were metabolized in fecal fermentation in vitro. Furthermore, the mannose in PHEPSs showed a higher utilization rate than that of glucose or galactose. The proliferation effects of PHEPSs on Bifidobacterium and Lactobacillus were weaker significantly than those of fructooligosaccharides before 12 h of fecal fermentation, but stronger after 24 h of fecal fermentation. Meanwhile, higher levels of short-chain fatty acids were found in PHEPSs groups when the fecal fermentation extended to 36 h. Therefore, PHEPSs are expected to have a potent gut healthy activity and can be explored as functional food ingredients.


Assuntos
Digestão , Fermentação , Microbioma Gastrointestinal , Paecilomyces , Humanos , Paecilomyces/metabolismo , Fezes/microbiologia , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Prebióticos
16.
J Agric Food Chem ; 72(36): 19748-19765, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39194315

RESUMO

Exopolysaccharides (EPSs) produced by Lactobacillus have important physiological activities and are commonly used as novel prebiotics. A strain of Lactobacillus with high EPS yield was identified as Schleiferilactobacillus harbinensis (S. harbinensis Z171), which was isolated from Chinese sauerkraut. The objective of this study was to investigate the in vitro simulated digestion and fecal fermentation behavior of the purified exopolysaccharide fraction F-EPS1A from S. harbinensis Z171 and its influence on the human intestinal flora composition. The in vitro digestion results showed that the primary structural characteristics of F-EPS1A, such as morphology, molecular weight, and monosaccharide composition remained stable after saliva and gastrointestinal digestion. Compared with the blank group, the fermentation of F-SPS1A by fecal microbiota decreased the diversity of the bacterial communities, significantly promoted the relative abundance of Bifidobacterium and Faecalibacterium, and decreased the relative abundance of Lachnospiraceae_Clostridium, Fusobacterium, and Oscillospira. Reverse transcription polymerase chain reaction (RT-PCR) analysis also showed that the population of Bifidobacterium markedly increased. Furthermore, the total short-chain fatty acid levels increased significantly, especially for butyric acid. Gas chromatography-mass spectrometry (GC-MS) results showed that F-EPS1A could be fermented by the human gut microbiota to synthesize organic acids and derivative metabolites that are beneficial to gut health. Therefore, these findings suggest that F-EPS1A could be exploited as a potential prebiotic.


Assuntos
Digestão , Fezes , Fermentação , Microbioma Gastrointestinal , Polissacarídeos Bacterianos , Humanos , Fezes/microbiologia , Fezes/química , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/biossíntese , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Prebióticos/análise , Lactobacillus/metabolismo , Modelos Biológicos , Ácidos Graxos Voláteis/metabolismo
17.
Int J Biol Macromol ; 278(Pt 1): 134617, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127293

RESUMO

This study aimed to prepare soybean dregs dietary fibre (DF) using physically assisted chemical (KHMSO) modification and study its structure, function and vitro simulation experiments. The soluble dietary fibre (SDF) content in KHMSO increased and insoluble dietary fibre (IDF) content decreased. The modified DF surface becomes irregular and rough, and the results of XPS fitting indicated that the DF structure had different peak-splitting groups. The KHMSO-treated group had the lowest digestion rate in gastric fluid and the highest digestibility in intestine fluid. The OD600 of fecal cultures was increased to 0.915, and the increased abundance of microbiota was associated with the metabolism of SCFAs, such as Lachnospiraceae, as well as the higher n-butyric acid in the KHMSO-treated group compared to the other groups and lower than the inulin, suggesting KHMSO might enhance the production of functional foods aimed at promoting intestinal health.


Assuntos
Fibras na Dieta , Digestão , Fermentação , Glycine max , Prebióticos , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Glycine max/química , Digestão/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Fezes/microbiologia , Fezes/química , Humanos , Animais
18.
Foods ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38790861

RESUMO

Tea plants have a long cultivation history in the world, but there are few studies on polysaccharides from fresh tea leaves. In this study, tea polysaccharides (TPSs) were isolated from fresh tea leaves. Then, we investigated the characteristics of TPSs during in vitro simulated digestion and fermentation; moreover, the effects of TPSs on gut microbiota were explored. The results revealed that saliva did not significantly affect TPSs' molecular weight, monosaccharide composition, and reducing sugar content, indicating that TPSs cannot be digested in the oral cavity. However, TPSs were partially decomposed in the gastrointestinal tract after gastric and intestinal digestion, resulting in the release of a small amount of free glucose monosaccharides. Our in vitro fermentation experiments demonstrated that TPSs are degraded by gut microbiota, leading to short-chain fatty acid (SCFA) production and pH reduction. Moreover, TPSs increased the abundance of Bacteroides, Lactobacillus, and Bifidobacterium but reduced that of Escherichia, Shigella, and Enterococcus, demonstrating that TPSs can regulate the gut microbiome. In conclusion, TPSs are partially decomposed by gut microbiota, resulting in the production of SCFAs and the regulation of gut microbiota composition and function. Therefore, TPSs may be used to develop a prebiotic supplement to regulate the gut microbiome and improve host health.

19.
Life (Basel) ; 14(5)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38792663

RESUMO

Epilactose is a disaccharide composed of galactose and mannose, and it is currently considered an "under development" prebiotic. In this study, we described the prebiotic potential of epilactose by in vitro fermentation using human fecal inocula from individuals following a Mediterranean diet (DM) or a Vegan diet (DV). The prebiotic effect of epilactose was also compared with lactulose and raffinose, and interesting correlations were established between metabolites and microbiota modulation. The production of several metabolites (lactate, short-chain fatty acids, and gases) confirmed the prebiotic properties of epilactose. For both donors, the microbiota analysis showed that epilactose significantly stimulated the butyrate-producing bacteria, suggesting that its prebiotic effect could be independent of the donor diet. Butyrate is one of the current golden metabolites due to its benefits for the gut and systemic health. In the presence of epilactose, the production of butyrate was 70- and 63-fold higher for the DM donor, when compared to lactulose and raffinose, respectively. For the DV donor, an increase of 29- and 89-fold in the butyrate production was obtained when compared to lactulose and raffinose, respectively. In conclusion, this study suggests that epilactose holds potential functional properties for human health, especially towards the modulation of butyrate-producing strains.

20.
Int J Biol Macromol ; 271(Pt 1): 132340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816293

RESUMO

In this study, the high amylose corn starch and Canna edulis native starch were compounded with lauric acid and fermented by human fecal inoculation in vitro. Changes in beneficial metabolite profile and microbiota composition were evaluated. The structural properties showed that both NS-12C and HAMS-12C formed V-shaped crystals under the same preparation method, but NS-12C had a higher composite index and resistance content than HAMS-12C. At the end of fermentation, the starch-lauric acid complexes prepared from the two types of starch significantly promoted the formation of short-chain fatty acids and the contents of acetic acid, butyric acid and valeric acid produced by NS-12C were higher than those of HAMS-12C(p>0.05). HAMS-12C and NS-12C both increased the relative abundance of Blautia. Notably, NS-12C also increased the relative abundance of beneficial bacteria Bifidobacterium and Meganomas, while HAMS-12C did not. These results suggested that this effect may be related to starch type and provide a basis for designing and producing functional foods to improve intestinal health in Canna edulis native starch.


Assuntos
Amilose , Fermentação , Amido , Amilose/química , Amido/química , Humanos , Fezes/microbiologia , Fezes/química , Microbioma Gastrointestinal , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/química , Ácidos Láuricos/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa