Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
J Virol ; 98(2): e0121623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38236006

RESUMO

Feline infectious peritonitis (FIP) is a fatal feline disease, caused by a feline coronavirus (FCoV), namely feline infectious peritonitis virus (FIPV). We produced a baby hamster kidney 21 (BHK) cell line expressing a serotype I FCoV replicon RNA with a green fluorescent protein (GFP) reporter gene (BHK-F-Rep) and used it as an in vitro screening system to test different antiviral compounds. Two inhibitors of the FCoV main protease (Mpro), namely GC376 and Nirmatrelvir, as well as the nucleoside analog Remdesivir proved to be effective in inhibiting the replicon system. Different combinations of these compounds also proved to be potent inhibitors, having an additive effect when combined. Remdesivir, GC376, and Nirmatrelvir all have a 50% cytotoxic concentration (CC50) more than 200 times higher than their half-maximal inhibitory concentrations (IC50), making them important candidates for future in vivo studies as well as clinically implemented drug candidates. In addition, results were acquired with a virus infection system, where Felis catus whole fetus 4 (Fcwf-4) cells were infected with a previously described recombinant GFP-expressing FIPV (based on the laboratory-adapted serotype I FIPV strain Black) and treated with the most promising compounds. Results acquired with the replicon system were comparable to the results acquired with the virus infection system, demonstrating that we successfully implemented the FCoV replicon system for antiviral screening. We expect that this system will greatly facilitate future screens for anti-FIPV compounds and provide a non-infectious system to study and evaluate drug-resistant mutations that may emerge in the FIPV genome.IMPORTANCEFIPV is of great significance in the cat population around the world, causing 0.3%-1.4% of feline deaths in veterinary practices (2). As there are neither effective preventive measures nor approved treatment options available, there is an urgent need to identify antiviral drugs against FIPV. Our FCoV replicon system provides a valuable tool for drug discovery in vitro. Due to the lack of cell culture systems for serotype I FCoVs (the serotype most prevalent in the feline population) (2), a different system is needed to study these viruses. A viral replicon system is a valuable tool for studying FCoVs. Overall, our results demonstrate the utility of the serotype I feline coronavirus replicon system for antiviral screening as well as to study this virus in general. We propose several compounds representing promising candidates for future clinical trials and ultimately with the potential to save cats suffering from FIP.


Assuntos
Antivirais , Coronavirus Felino , Peritonite Infecciosa Felina , Lactamas , Leucina , Ácidos Sulfônicos , Animais , Gatos , Antivirais/farmacologia , Coronavirus Felino/efeitos dos fármacos , Peritonite Infecciosa Felina/tratamento farmacológico , Lactamas/farmacologia , Leucina/análogos & derivados , RNA , Ácidos Sulfônicos/farmacologia
2.
Microb Pathog ; 194: 106795, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019122

RESUMO

Feline coronavirus (FCoV) infection is a leading cause of death in cats. In this study, we produced FCoV-I virus-like particles (VLPs) containing E, M, N, and S proteins using a baculovirus expression system and mixed VLPs with the adjuvants MF59 and CpG 55.2 to prepare an VLP/MF59/CpG vaccine. After immunization of mice with the vaccine, IgG specific antibodies titers against S and N proteins increased to 1:12,800, and IFN-γ+ and IL-4+ splenocytes were significantly increased. Following immunization of FCoV-negative cats, the S protein antibodies in immunized cats (5/5) increased significantly, with a peak of 1:12,800. Notably, after booster vaccination in FCoV-positive cats, a significant reduction in viral load was observed in the feces of partial cats (4/5), and the FCoV-I negative conversion was found in two immunized cats (2/5). Therefore, the VLP/MF59/CpG vaccine is a promising candidate vaccine to prevent the FCoV infection.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antivirais , Coronavirus Felino , Imunoglobulina G , Vacinas de Partículas Semelhantes a Vírus , Carga Viral , Animais , Gatos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Camundongos , Coronavirus Felino/imunologia , Imunoglobulina G/sangue , Adjuvantes Imunológicos/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Interleucina-4/metabolismo , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Fezes/virologia , Adjuvantes de Vacinas , Polissorbatos/administração & dosagem , Feminino , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Imunogenicidade da Vacina , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Baço/imunologia , Doenças do Gato/prevenção & controle , Doenças do Gato/imunologia , Doenças do Gato/virologia , Baculoviridae/genética , Vacinação , Imunização Secundária , Esqualeno
3.
BMC Vet Res ; 18(1): 55, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35078478

RESUMO

BACKGROUND: Coronaviruses (CoVs) are major human and animal pathogens and antiviral drugs are pursued as a complementary strategy, chiefly if vaccines are not available. Feline infectious peritonitis (FIP) is a fatal systemic disease of felids caused by FIP virus (FIPV), a virulent pathotype of feline enteric coronavirus (FeCoV). Some antiviral drugs active on FIPV have been identified, but they are not available in veterinary medicine. ERDRP-0519 (ERDRP) is a non-nucleoside inhibitor, targeting viral RNA polymerase, effective against morbilliviruses in vitro and in vivo. RESULTS: The antiviral efficacy of ERDRP against a type II FIPV was evaluated in vitro in Crandell Reese Feline Kidney (CRFK) cells. ERDRP significantly inhibited replication of FIPV in a dose-dependent manner. Viral infectivity was decreased by up to 3.00 logarithms in cell cultures whilst viral load, estimated by quantification of nucleic acids, was reduced by nearly 3.11 logaritms. CONCLUSIONS: These findings confirm that ERDRP is highly effective against a CoV. Experiments will be necessary to assess whether ERDRP is suitable for treatment of FIPV in vivo.


Assuntos
Antivirais/farmacologia , Coronavirus Felino , Peritonite Infecciosa Felina , Morfolinas/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Animais , Doenças do Gato/tratamento farmacológico , Doenças do Gato/virologia , Gatos , Linhagem Celular , Coronavirus Felino/efeitos dos fármacos , Peritonite Infecciosa Felina/tratamento farmacológico
4.
Oral Dis ; 28 Suppl 2: 2492-2499, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34739171

RESUMO

Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur through saliva and aerosol droplets deriving from the upper aerodigestive tract during coughing, sneezing, talking, and even during oral inspection or dental procedures. The aim of this study was to assess in vitro virucidal activity of commercial and experimental mouthwashes against a feline coronavirus (FCoV) strain. Commercial and experimental (commercial-based products with addition of either sodium dodecyl sulfate (SDS) or thymus vulgaris essential oil (TEO) at different concentrations) mouthwashes were placed in contact with FCoV for different time intervals, that is, 30 s (T30), 60 s (T60), and 180 s (T180); subsequently, the virus was titrated on Crandell Reese Feline Kidney cells. An SDS-based commercial mouthwash reduced the viral load by 5 log10 tissue culture infectious dose (TCID)50 /50 µl at T30 while a cetylpyridinium (CPC)-based commercial mouthwash was able to reduce the viral titer of 4.75 log10 at T60. Furthermore, five experimental mouthwashes supplemented with SDS reduced the viral titer by 4.75-5 log10 according to a dose- (up to 4 mM) and time-dependent fashion.


Assuntos
COVID-19 , Coronavirus Felino , Gatos , Animais , Antissépticos Bucais/farmacologia , SARS-CoV-2 , Cetilpiridínio
5.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34524074

RESUMO

Feline coronavirus (FCoV) is the causative agent of feline infectious peritonitis and diarrhoea in kittens worldwide. In this study, a total of 173 feline diarrhoeal faecal and ascetic samples were collected from 15 catteries and six veterinary hospitals in southwest China from 2017 to 2020. FCoV was detected in 80.35 % (139/173) of the samples using the RT-nPCR method; these included infections with 122 type I FCoV and 57 type II FCoV. Interestingly, 51 cases had co-infection with types I and II, the first such report in mainland China. To further analyse the genetic diversity of FCoV, we amplified 23 full-length spike (S) genes, including 18 type I and five type II FCoV. The type I FCoV and type II FCoV strains shared 85.5-98.7% and 97.4-98.9% nucleotide (nt) sequence identities between one another, respectively. The N-terminal domain (NTD) of 23 FCoV strains showed a high degree of variation (73.6-80.3 %). There was six type I FCoV strains with two amino acid insertions (159HL160) in the NTD. In addition, 18 strains of type I FCoV belonged to the Ie cluster, and five strains of type II FCoV were in the IIb cluster based on phylogenetic analysis. Notably, it was first time that two type I FCoV strains had recombination in the NTD, and the recombination regions was located 140-857 nt of the S gene. This study constitutes a systematic investigation of the current infection status and molecular characteristics of FCoV in southwest China.


Assuntos
Doenças do Gato/epidemiologia , Doenças do Gato/virologia , Coronavirus Felino/genética , Peritonite Infecciosa Felina/epidemiologia , Peritonite Infecciosa Felina/virologia , Animais , Sequência de Bases , Gatos , China , Coronavirus/classificação , Coronavirus/genética , Coronavirus Felino/classificação , Fezes/virologia , Filogenia , Prevalência , Glicoproteína da Espícula de Coronavírus/genética
6.
Virol J ; 18(1): 182, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496903

RESUMO

BACKGROUND: Traditional medicines based on herbal extracts have been proposed as affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Teas and drinks containing extracts of Artemisia annua and Artemisia afra have been widely used in Africa in efforts to prevent SARS-CoV-2 infection and fight COVID-19. METHODS: The plant extracts and Covid-Organics drink produced in Madagascar were tested for plaque reduction using both feline coronavirus and SARS-CoV-2 in vitro. Their cytotoxicities were also investigated. RESULTS: Several extracts as well as Covid-Organics inhibited SARS-CoV-2 and FCoV infection at concentrations that did not affect cell viability. CONCLUSIONS: Some plant extracts show inhibitory activity against FCoV and SARS-CoV-2. However, it remains unclear whether peak plasma concentrations in humans can reach levels needed to inhibit viral infection following consumption of teas or Covid-Organics. Clinical studies are required to evaluate the utility of these drinks for COVID-19 prevention or treatment of patients.


Assuntos
Antivirais/farmacologia , Artemisia/química , Extratos Vegetais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Coronavirus Felino/efeitos dos fármacos , Coronavirus Felino/crescimento & desenvolvimento , Extratos Vegetais/química , SARS-CoV-2/crescimento & desenvolvimento , Ensaio de Placa Viral
7.
Mol Cell Probes ; 54: 101669, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33203619

RESUMO

Feline coronavirus (FCoV) is classified into two pathotypes: the avirulent feline enteric coronavirus (FECV), and the virulent feline infectious peritonitis virus (FIPV). Rapid pathogen detection, which is efficient and convenient, is the best approach for early confirmatory diagnosis. In this study, we first developed and evaluated a rapid recombinase polymerase amplification (RPA) detection method for FCoV that can detect FCoV within 15 min at 39 °C. The detection limit of that assay was 233 copies/µL DNA molecules per reaction. The specificity was high: it did not cross-react with canine distemper virus (CDV), canine coronavirus (CCoV), canine adenovirus (CAV), feline calicivirus (FCV), feline herpesvirus (FHV), or feline parvovirus (FPV). This assay was evaluated using 42 clinical samples (30 diarrhea samples and 12 ascites samples). The coincidence rate between FCoV-RPA and RT-qPCR for detection in clinical samples was 95.2%. In summary, FCoV-RPA analysis provides an efficient, rapid, and sensitive detection method for FCoV.


Assuntos
Infecções por Coronavirus/diagnóstico , Coronavirus Felino/genética , Peritonite Infecciosa Felina/diagnóstico , Técnicas de Diagnóstico Molecular/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , Animais , Doenças do Gato/diagnóstico , Doenças do Gato/virologia , Gatos , Coronavirus Felino/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
8.
J Gen Virol ; 100(10): 1417-1430, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31483243

RESUMO

Feline coronavirus (FCoV) has been identified as the aetiological agent of feline infectious peritonitis (FIP), a highly fatal systemic disease in cats. FCoV open reading frame 3 (ORF3) encodes accessory proteins 3a, 3b and 3 c. The FCoV 3b accessory protein consists of 72 amino acid residues and localizes to nucleoli and mitochondria. The present work focused on peptide domains within FCoV 3b that drive its intracellular trafficking. Transfection of different cell types with FCoV 3b fused to enhanced green fluorescent protein (EGFP) or 3×FLAG confirmed localization of FCoV 3b in the mitochondria and nucleoli. Using serial truncated mutants, we showed that nucleolar accumulation is controlled by a joint nucleolar and nuclear localization signal (NoLS/NLS) in which the identified overlapping pat4 motifs (residues 53-57) play a critical role. Mutational analysis also revealed that mitochondrial translocation is mediated by N-terminal residues 10-35, in which a Tom20 recognition motif (residues 13-17) and two other overlapping hexamers (residues 24-30) associated with mitochondrial targeting were identified. In addition, a second Tom20 recognition motif was identified further downstream (residues 61-65), although the mitochondrial translocation evoked by these residues seemed less efficient as a diffuse cytoplasmic distribution was also observed. Assessing the spatiotemporal distribution of FCoV 3b did not provide convincing evidence of dynamic shuttling behaviour between the nucleoli and the mitochondria.


Assuntos
Coronavirus Felino/metabolismo , Peritonite Infecciosa Felina/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Animais , Gatos , Nucléolo Celular/virologia , Coronavirus Felino/química , Coronavirus Felino/genética , Mitocôndrias/virologia , Sinais de Localização Nuclear , Fases de Leitura Aberta , Domínios Proteicos , Transporte Proteico , Proteínas não Estruturais Virais/genética
9.
BMC Vet Res ; 13(1): 92, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388950

RESUMO

BACKGROUND: There are two biotypes of feline coronavirus (FCoV): the self-limiting feline enteric coronavirus (FECV) and the feline infectious peritonitis virus (FIPV), which causes feline infectious peritonitis (FIP), a fatal disease associated with cats living in multi-cat environments. This study provides an insight on the various immune mediators detected in FCoV-positive cats which may be responsible for the development of FIP. RESULTS: In this study, using real-time PCR and multiplex bead-based immunoassay, the expression profiles of several immune mediators were examined in Crandell-Reese feline kidney (CRFK) cells infected with the feline coronavirus (FCoV) strain FIPV 79-1146 and in samples obtained from FCoV-positive cats. CRFK cells infected with FIPV 79-1146 showed an increase in the expression of interferon-related genes and pro-inflammatory cytokines such as MX1, viperin, CXCL10, CCL8, RANTES, KC, MCP1, and IL8. In addition, an increase in the expression of the above cytokines as well as GM-CSF and IFNγ was also detected in the PBMC, serum, and peritoneal effusions of FCoV-positive cats. Although the expression of MX1 and viperin genes was variable between cats, the expression of these two genes was relatively higher in cats having peritoneal effusion compared to cats without clinically obvious effusion. Higher viral load was also detected in the supernatant of peritoneal effusions compared to in the plasma of FCoV-positive cats. As expected, the secretion of IL1ß, IL6 and TNFα was readily detected in the supernatant of peritoneal effusions of the FCoV-positive cats. CONCLUSIONS: This study has identified various pro-inflammatory cytokines and interferon-related genes such as MX1, viperin, CXCL10, CCL8, RANTES, KC, MCP1, IL8, GM-CSF and IFNγ in FCoV-positive cats. With the exception of MX1 and viperin, no distinct pattern of immune mediators was observed that distinguished between FCoV-positive cats with and without peritoneal effusion. Further studies based on definitive diagnosis of FIP need to be performed to confirm the clinical importance of this study.


Assuntos
Doenças do Gato/virologia , Coronavirus Felino/imunologia , Peritonite Infecciosa Felina/imunologia , Animais , Líquido Ascítico/imunologia , Líquido Ascítico/virologia , Doenças do Gato/imunologia , Gatos , Linhagem Celular , Citocinas/metabolismo
10.
BMC Vet Res ; 13(1): 228, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768514

RESUMO

BACKGROUND: Feline coronavirus (FCoV) exists as two pathotypes, and FCoV spike gene mutations are considered responsible for the pathotypic switch in feline infectious peritonitis (FIP) pathogenesis. The aim of this study was to evaluate sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction (RT-PCR) specifically designed to detect FCoV spike gene mutations at two nucleotide positions. It was hypothesized that this test would correctly discriminate feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV). METHODS: The study included 63 cats with signs consistent with FIP. FIP was confirmed in 38 cats. Twenty-five control cats were definitively diagnosed with a disease other than FIP. Effusion and/or serum/plasma samples were examined by real-time RT-PCR targeting the two FCoV spike gene fusion peptide mutations M1058 L and S1060A using an allelic discrimination approach. Sensitivity, specificity, negative and positive predictive values including 95% confidence intervals (95% CI) were calculated. RESULTS: FIPV was detected in the effusion of 25/59 cats, one of them being a control cat with chronic kidney disease. A mixed population of FIPV/FECV was detected in the effusion of 2/59 cats; all of them had FIP. RT-PCR was negative or the pathotype could not be determined in 34/59 effusion samples. In effusion, sensitivity was 68.6% (95% CI 50.7-83.2), specificity was 95.8% (95% CI 78.9-99.9). No serum/plasma samples were positive for FIPV. CONCLUSIONS: Although specificity of the test in effusions was high, one false positive result occurred. The use of serum/plasma cannot be recommended due to a low viral load in blood.


Assuntos
Doenças do Gato/diagnóstico , Coronavirus Felino/genética , Peritonite Infecciosa Felina/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Animais , Líquido Ascítico/virologia , Líquidos Corporais/virologia , Doenças do Gato/sangue , Doenças do Gato/virologia , Gatos , Peritonite Infecciosa Felina/sangue , Peritonite Infecciosa Felina/virologia , Mutação , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/genética
11.
Vet Pathol ; 54(6): 933-944, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29065819

RESUMO

Feline infectious peritonitis (FIP) is a serious, widely distributed systemic disease caused by feline coronavirus (FCoV), in which ocular disease is common. However, questions remain about the patterns of ocular inflammation and the distribution of viral antigen in the eyes of cats with FIP. This study characterized the ocular lesions of FIP including the expression of glial fibrillary acidic protein and proliferating cell nuclear antigen by Müller cells in the retina in cases of FIP and to what extent macrophages are involved in ocular inflammation in FIP. Immunohistochemistry for FCoV, CD3, CD79a, glial fibrillary acidic protein, calprotectin, and proliferating cell nuclear antigen was performed on paraffin sections from 15 naturally occurring cases of FIP and from controls. Glial fibrillary acidic protein expression was increased in the retina in cases of FIP. Müller cell proliferation was present within lesions of retinal detachment. Macrophages were present in FIP-associated ocular lesions, but they were the most numerous inflammatory cells only within granulomas (2/15 cats, 13%). In cases of severe inflammation of the ciliary body with damage to blood vessel walls and ciliary epithelium (3/15, 20%), some macrophages expressed FCoV antigens, and immunolabeling for calprotectin on consecutive sections suggested that these FCoV-positive macrophages were likely to be recently derived from blood. In cases of severe and massive inflammation of most ocular structures (4/15, 26%), B cells and plasma cells predominated over T cells and macrophages. These results indicate that gliosis can be present in FIP-affected retinas and suggest that breakdown of the blood-ocular barrier can allow FCoV-bearing macrophages to access the eye.


Assuntos
Antígenos Virais/metabolismo , Coronavirus Felino/fisiologia , Infecções Oculares Virais/veterinária , Peritonite Infecciosa Felina/patologia , Inflamação/veterinária , Animais , Linfócitos B/patologia , Gatos , Olho/patologia , Olho/virologia , Infecções Oculares Virais/patologia , Infecções Oculares Virais/virologia , Peritonite Infecciosa Felina/virologia , Feminino , Gliose/patologia , Gliose/veterinária , Gliose/virologia , Imuno-Histoquímica/veterinária , Inflamação/patologia , Inflamação/virologia , Macrófagos/patologia , Masculino , Retinite/patologia , Retinite/veterinária , Retinite/virologia , Linfócitos T/patologia , Uveíte/patologia , Uveíte/veterinária , Uveíte/virologia
12.
Vet Pathol ; 51(2): 505-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24569616

RESUMO

Feline infectious peritonitis (FIP) is one of the most important fatal infectious diseases of cats, the pathogenesis of which has not yet been fully revealed. The present review focuses on the biology of feline coronavirus (FCoV) infection and the pathogenesis and pathological features of FIP. Recent studies have revealed functions of many viral proteins, differing receptor specificity for type I and type II FCoV, and genomic differences between feline enteric coronaviruses (FECVs) and FIP viruses (FIPVs). FECV and FIP also exhibit functional differences, since FECVs replicate mainly in intestinal epithelium and are shed in feces, and FIPVs replicate efficiently in monocytes and induce systemic disease. Thus, key events in the pathogenesis of FIP are systemic infection with FIPV, effective and sustainable viral replication in monocytes, and activation of infected monocytes. The host's genetics and immune system also play important roles. It is the activation of monocytes and macrophages that directly leads to the pathologic features of FIP, including vasculitis, body cavity effusions, and fibrinous and granulomatous inflammatory lesions. Advances have been made in the clinical diagnosis of FIP, based on the clinical pathologic findings, serologic testing, and detection of virus using molecular (polymerase chain reaction) or antibody-based methods. Nevertheless, the clinical diagnosis remains challenging in particular in the dry form of FIP, which is partly due to the incomplete understanding of infection biology and pathogenesis in FIP. So, while much progress has been made, many aspects of FIP pathogenesis still remain an enigma.


Assuntos
Coronavirus Felino/fisiologia , Peritonite Infecciosa Felina/patologia , Genoma Viral/genética , Animais , Gatos , Coronavirus Felino/classificação , Coronavirus Felino/patogenicidade , Peritonite Infecciosa Felina/transmissão , Peritonite Infecciosa Felina/virologia , Proteínas Virais/genética , Virulência , Replicação Viral
13.
Viruses ; 16(3)2024 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-38543827

RESUMO

Feline infectious peritonitis (FIP) is a multisystemic, generally lethal immuno-inflammatory disease of domestic cats caused by an infection with a genetic variant of feline coronavirus, referred to as the FIP virus (FIPV). We leveraged data from four different antiviral clinical trials performed at the University of California, Davis. Collectively, a total of 60 client-owned domestic cats, each with a confirmed diagnosis of naturally occurring FIP, were treated with a variety of antiviral compounds. The tested therapies included the antiviral compounds GS-441524, remdesivir, molnupiravir and allogeneic feline mesenchymal stem/stroma cell transfusions. Four client-owned cats with FIP did not meet the inclusion criteria for the trials and were not treated with antiviral therapies; these cats were included in the data set as untreated FIP control cats. ELISA and Western blot assays were performed using feline serum/plasma or ascites effusions obtained from a subset of the FIP cats. Normalized tissue/effusion viral loads were determined in 34 cats by a quantitative RT-PCR of nucleic acids isolated from either effusions or abdominal lymph node tissue. Twenty-one cats were PCR "serotyped" (genotyped) and had the S1/S2 region of the coronaviral spike gene amplified, cloned and sequenced from effusions or abdominal lymph node tissue. In total, 3 untreated control cats and 14 (23.3%) of the 60 antiviral-treated cats died or were euthanized during (13) or after the completion of (1) antiviral treatment. Of these 17 cats, 13 had complete necropsies performed (10 cats treated with antivirals and 3 untreated control cats). We found that anticoronaviral serologic responses were persistent and robust throughout the treatment period, primarily the IgG isotype, and focused on the viral structural Nucleocapsid and Membrane proteins. Coronavirus serologic patterns were similar for the effusions and serum/plasma of cats with FIP and in cats entering remission or that died. Viral RNA was readily detectable in the majority of the cats in either abdominal lymph node tissue or ascites effusions, and all of the viral isolates were determined to be serotype I FIPV. Viral nucleic acids in cats treated with antiviral compounds became undetectable in ascites or abdominal lymph node tissue by 11 days post-treatment using a sensitive quantitative RT-PCR assay. The most common pathologic lesions identified in the necropsied cats were hepatitis, abdominal effusion (ascites), serositis, pancreatitis, lymphadenitis, icterus and perivasculitis. In cats treated with antiviral compounds, gross and histological lesions characteristic of FIP persisted for several weeks, while the viral antigen became progressively less detectable.


Assuntos
Infecções por Coronavirus , Coronavirus Felino , Peritonite Infecciosa Felina , Humanos , Gatos , Animais , Ascite , RNA Viral/análise , Antivirais/uso terapêutico
14.
Vaccines (Basel) ; 12(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39066343

RESUMO

Feline infectious peritonitis (FIP) is a devastating and often fatal disease caused by feline coronavirus (FCoV). Currently, there is no widely used vaccine for FIP, and many attempts using a variety of platforms have been largely unsuccessful due to the disease's highly complicated pathogenesis. One such complication is antibody-dependent enhancement (ADE) seen in FIP, which occurs when sub-neutralizing antibody responses to viral surface proteins paradoxically enhance disease. A novel vaccine strategy is presented here that can overcome the risk of ADE by instead using a lipid nanoparticle-encapsulated mRNA encoding the transcript for the internal structural nucleocapsid (N) FCoV protein. Both wild type and, by introduction of silent mutations, GC content-optimized mRNA vaccines targeting N were developed. mRNA durability in vitro was characterized by quantitative reverse-transcriptase PCR and protein expression by immunofluorescence assay for one week after transfection of cultured feline cells. Both mRNA durability and protein production in vitro were improved with the GC-optimized construct as compared to wild type. Immune responses were assayed by looking at N-specific humoral (by ELISA) and stimulated cytotoxic T cell (by flow cytometry) responses in a proof-of-concept mouse vaccination study. These data together demonstrate that an LNP-mRNA FIP vaccine targeting FCoV N is stable in vitro, capable of eliciting an immune response in mice, and provides justification for beginning safety and efficacy trials in cats.

15.
Antiviral Res ; 223: 105825, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38311297

RESUMO

Feline coronavirus (FCoV) is an unsegmented, single-stranded RNA virus belonging to the Alphacoronavirus genus. It can cause fatal feline infectious peritonitis (FIP) in cats of any ages. Currently, there are no effective prevention and control measures to against FCoV. In this study, we developed a recombinant adenovirus vaccine, AD5-N, based on the nucleocapsid(N) protein of FCoV. The immunogenicity of AD5-N was evaluated through intramuscular immunization in 6-week-old Balb/c mice and 9-12 months old cats. Compared to the control group, AD5-N specifically induced a significant increase in IgG and SIgA levels in the vaccinated mice. Furthermore, AD5-N not only effectively promoted strong cellular immune responses in cats but also induced high levels of specific SIgA, effectively helping cats resist FCoV infection. Our findings suggest that adenovirus vector vaccines based on the N gene have the potential to become candidate vaccines for the prevention and control of FCoV infection.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , Infecções por Coronavirus , Coronavirus Felino , Vacinas , Gatos , Animais , Camundongos , Adenoviridae/genética , Coronavirus Felino/genética , Imunoglobulina A Secretora , Camundongos Endogâmicos BALB C , Imunidade
16.
Viruses ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066306

RESUMO

In the past, feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) was considered fatal. Today, highly efficient drugs, such as GS-441524, can lead to complete remission. The currently recommended treatment duration in the veterinary literature is 84 days. This prospective randomized controlled treatment study aimed to evaluate whether a shorter treatment duration of 42 days with oral GS-441524 obtained from a licensed pharmacy is equally effective compared to the 84-day regimen. Forty cats with FIP with effusion were prospectively included and randomized to receive 15 mg/kg of GS-441524 orally every 24h (q24h), for either 42 or 84 days. Cats were followed for 168 days after treatment initiation. With the exception of two cats that died during the treatment, 38 cats (19 in short, 19 in long treatment group) recovered with rapid improvement of clinical and laboratory parameters as well as a remarkable reduction in viral loads in blood and effusion. Orally administered GS-441524 given as a short treatment was highly effective in curing FIP without causing serious adverse effects. All cats that completed the short treatment course successfully were still in complete remission on day 168. Therefore, a shorter treatment duration of 42 days GS-441524 15 mg/kg can be considered equally effective.


Assuntos
Antivirais , Coronavirus Felino , Peritonite Infecciosa Felina , Carga Viral , Animais , Gatos , Peritonite Infecciosa Felina/tratamento farmacológico , Peritonite Infecciosa Felina/virologia , Estudos Prospectivos , Coronavirus Felino/efeitos dos fármacos , Feminino , Administração Oral , Masculino , Antivirais/administração & dosagem , Antivirais/uso terapêutico , Carga Viral/efeitos dos fármacos , Resultado do Tratamento , Adenosina/análogos & derivados
17.
Microbiol Spectr ; : e0006124, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158411

RESUMO

Feline coronavirus (FCoV) infection normally causes mild or subclinical signs and is common in domestic cats. However, in some cats, FCoV infection can also lead to the development of feline infectious peritonitis (FIP)-a typically lethal disease. FCoV has two serotypes or genotypes, FCoV-1 and FCoV-2, both of which can cause FIP. The main difference between the genotypes is the viral spike (S) protein that determines tropism and pathogenicity, crucial mechanisms in the development of FIP. Subclinical infection and FIP have both been reported in wild felids, including in threatened species. Due to the high genetic variability of the S gene and the technical challenges to sequencing it, detection and characterization of FCoV in wild felids have mainly centered on other more conserved genes. Therefore, the genotype causing FIP in most wild felids remains unknown. Here, we report a retrospective molecular epidemiological investigation of FCoV in a zoological institution in the U.Ss. In 2008, a domestic cat (Felis catus) and a Pallas' cat (Otocolobus manul) sharing the same room succumbed to FIP. Using in situ hybridization, we detected FCoV RNA in different tissues of both felids. Using hybridization capture and next-generation sequencing, we detected, sequenced, and characterized the whole genome of the FCoV infecting both felids. Our data show for the first time that FCoV-1 can be transmitted between domestic and wild felids and extends the known host range of FCoV-1. Our findings highlight the importance of identifying the genotype causing FIP, to develop effective control measures. IMPORTANCE: Feline coronavirus (FCoV) is highly prevalent in domestic cats worldwide and has also been reported in wild felids, including endangered species, in which it has caused substantial population declines. Characterizing the genetic diversity of FCoV is crucial due to recent reports of novel pathogenic recombinant variants causing high mortality in feral cats in Cyprus. In this retrospective molecular epidemiology study, we used archived samples collected in a zoological institution in the U.S. in which a domestic and a wild felid succumbed to FCoV. Using hybridization capture (HC) and next-generation sequencing, we show for the first time that FCoV can be naturally transmitted between domestic and wild felids. We demonstrate the efficacy of HC for detecting and sequencing the whole genome of FCoV, which is essential to characterize its different genotypes.

18.
Front Vet Sci ; 11: 1388438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091390

RESUMO

Introduction: Coronavirus (CoV) has become a public health crisis that causes numerous illnesses in humans and certain animals. Studies have identified the small, lipid-bound structures called extracellular vesicles (EVs) as the mechanism through which viruses can enter host cells, spread, and evade the host's immune defenses. EVs are able to package and carry numerous viral compounds, including proteins, genetic substances, lipids, and receptor proteins. We proposed that the coronavirus could alter EV production and content, as well as influence EV biogenesis and composition in host cells. Methods: In the current research, Crandell-Rees feline kidney (CRFK) cells were infected with feline coronavirus (FCoV) in an exosome-free media at a multiplicity of infection (MOI) of 2,500 infectious units (IFU) at 48 h and 72 h time points. Cell viability was analyzed and found to be significantly decreased by 9% (48 h) and 15% (72 h) due to FCoV infection. EVs were isolated by ultracentrifugation, and the surface morphology of isolated EVs was analyzed via Scanning Electron Microscope (SEM). Results: NanoSight particle tracking analysis (NTA) confirmed that the mean particle sizes of control EVs were 131.9 nm and 126.6 nm, while FCoV infected-derived EVs were 143.4 nm and 120.9 nm at 48 and 72 h, respectively. Total DNA, RNA, and protein levels were determined in isolated EVs at both incubation time points; however, total protein was significantly increased at 48 h. Expression of specific protein markers such as TMPRSS2, ACE2, Alix, TSG101, CDs (29, 47, 63), TLRs (3, 6, 7), TNF-α, and others were altered in infection-derived EVs when compared to control-derived EVs after FCoV infection. Discussion: Our findings suggested that FCoV infection could alter the EV production and composition in host cells, which affects the infection progression and disease evolution. One purpose of studying EVs in various animal coronaviruses that are in close contact with humans is to provide significant information about disease development, transmission, and adaptation. Hence, this study suggests that EVs could provide diagnostic and therapeutic applications in animal CoVs, and such understanding could provide information to prevent future coronavirus outbreaks.

19.
Sci Rep ; 14(1): 18598, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127765

RESUMO

Feline mesenchymal stem cells (fMSCs) are well known for their robust differentiation capabilities and are commonly used in studying immune-related diseases in cats. Despite their importance, the susceptibility of fMSCs to viral infections remains uncertain. This study aimed to assess the susceptibility of feline adipose-derived mesenchymal stem cells (fAD-MSCs) and feline umbilical cord-derived mesenchymal stem cells (fUC-MSCs) to common feline viruses, including feline coronavirus (FCoV), feline herpesvirus type 1 (FHV-1), and feline panleukopenia virus (FPV). The results demonstrated that both FCoV and FHV-1 were able to infect both types of cells, while FPV did not exhibit cytopathic effects on fUC-MSCs. Furthermore, all three viruses were successfully isolated from fAD-MSCs. These findings suggest that certain feline viruses can replicate in fMSCs, indicating potential limitations in using fMSCs for treating viral diseases caused by these specific viruses. This study has important clinical implications for veterinarians, particularly in the management of viral diseases.


Assuntos
Coronavirus Felino , Células-Tronco Mesenquimais , Animais , Gatos , Células-Tronco Mesenquimais/virologia , Células-Tronco Mesenquimais/citologia , Coronavirus Felino/fisiologia , Vírus da Panleucopenia Felina , Células Cultivadas , Varicellovirus/fisiologia , Replicação Viral , Diferenciação Celular , Tecido Adiposo/citologia , Doenças do Gato/virologia
20.
Animals (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672364

RESUMO

The premortem understanding of the role of feline coronavirus (FeCoV) in the lungs of cats is limited as viruses are seldom inspected in the bronchoalveolar lavage (BAL) specimens of small animal patients. This study retrospectively analyzed the prevalence of FeCoV in BAL samples from cats with atypical lower airway and lung disease, as well as the clinical characteristics, diagnostic findings, and follow-up information. Of 1162 clinical samples submitted for FeCoV RT-nPCR, 25 were BAL fluid. After excluding 1 case with chronic aspiration, FeCoV was found in 3/24 (13%) BAL specimens, with 2 having immunofluorescence staining confirming the presence of FeCoV within the cytoplasm of alveolar macrophages. The cats with FeCoV in BAL fluid more often had pulmonary nodular lesions (66% vs. 19%, p = 0.14) and multinucleated cells on cytology (100% vs. 48%, p = 0.22) compared to the cats without, but these differences did not reach statistical significance due to the small sample size. Three cats showed an initial positive response to the corticosteroid treatment based on the clinical signs and radiological findings, but the long-term prognosis varied. The clinical suspicion of FeCoV-associated pneumonia or pneumonitis was raised since no other pathogens were found after extensive investigations. Further studies are warranted to investigate the interaction between FeCoV and lung responses in cats.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa