Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2406036, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375977

RESUMO

Glioblastoma (GBM) recurrence leads to high mortality, which remains a major concern in clinical therapy. Herein, an injectable triptolide (TP)-preloaded hydrogel (TP@DNH) accompanied by a postoperative injection strategy is developed to prevent the recurrence of GBM. With a potential inhibitor of the NRF2/SLC7A11/GPX4 axis, it is demonstrated that TP can deactivate glutathione peroxidase 4 (GPX4) from the source of glutathione (GSH) biosynthesis, thereby activating ferroptosis in GBM cells by blocking the neutralization of intracellular lipid peroxide (LPO). Based on acid-sensitive Fe3+/tannic acid (TA) metal-phenolic networks (MPNs), the TP@DNH hydrogel can induce the effective generation of reactive oxygen species (ROS) through Fe3+/TA-mediated Fenton reaction and achieve controllable release of TP in resected GBM cavity. Due to ROS generation and GPX4 deactivation, postoperative injection of TP@DNH can achieve high-level ferroptosis through dual-pathway LPO accumulation, remarkably suppressing the growth of recurrent GBM and prolonging the overall survival in orthotopic GBM relapse mouse model. This work provides an alternative paradigm for regulating ferroptosis in the postoperative treatment of GBM.

2.
Small ; 20(29): e2309842, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431935

RESUMO

Triple negative breast cancer (TNBC) cells have a high demand for oxygen and glucose to fuel their growth and spread, shaping the tumor microenvironment (TME) that can lead to a weakened immune system by hypoxia and increased risk of metastasis. To disrupt this vicious circle and improve cancer therapeutic efficacy, a strategy is proposed with the synergy of ferroptosis, immunosuppression reversal and disulfidptosis. An intelligent nanomedicine GOx-IA@HMON@IO is successfully developed to realize this strategy. The Fe release behaviors indicate the glutathione (GSH)-responsive degradation of HMON. The results of titanium sulfate assay, electron spin resonance (ESR) spectra, 5,5'-Dithiobis-(2-nitrobenzoic acid (DTNB) assay and T1-weighted magnetic resonance imaging (MRI) demonstrate the mechanism of the intelligent iron atom (IA)-based cascade reactions for GOx-IA@HMON@IO, generating robust reactive oxygen species (ROS). The results on cells and mice reinforce the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis triggered by the GOx-IA@HMON@IO with the following steps: 1) GSH peroxidase 4 (GPX4) depletion by disulfidptosis; 2) IA-based cascade reactions; 3) tumor hypoxia reversal; 4) immunosuppression reversal; 5) GPX4 depletion by immunotherapy. Based on the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis, the intelligent nanomedicine GOx-IA@HMON@IO can be used for MRI-guided tumor therapy with excellent biocompatibility and safety.


Assuntos
Ferroptose , Imageamento por Ressonância Magnética , Ferroptose/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Animais , Humanos , Linhagem Celular Tumoral , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Terapia de Imunossupressão , Microambiente Tumoral/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Feminino , Glutationa/metabolismo
3.
Sci Technol Adv Mater ; 25(1): 2351354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800054

RESUMO

The synergistic disruption of intracellular redox homeostasis through the combination of ferroptosis/gas therapy shows promise in enhancing the antitumor efficacy. However, the development of an optimal delivery system encounters significant challenges, including effective storage, precise delivery, and controlled release of therapeutic gas. In this study, we propose the utilization of a redox homeostasis disruptor that is selectively activated by the tumor microenvironment (TME), in conjunction with our newly developed nanoplatforms (MC@HMOS@Au@RGD), for highly efficient ferroptosis therapy of tumors. The TME-triggered degradation of HMOS initiates the release of MC and AuNPs from the MC@HMOS@Au@RGD nanoplatform. The released MC subsequently reacts with endogenous hydrogen peroxide (H2O2) and H+ to enable the on-demand release of CO gas, leading to mitochondrial damage. Simultaneously, the released AuNPs exhibit GOx-like activity, catalyzing glucose to generate gluconic acid and H2O2. This process not only promotes the decomposition of MnCO to enhance CO production but also enhances the Fenton-like reaction between Mn2+ and H2O2, generating ROS through the modulation of the H+ and H2O2-enriched TME. Moreover, the generation of CO bubbles enables the monitoring of the ferroptosis treatment process through ultrasound (US) imaging. The efficacy of our prepared MC@HMOS@Au@RGD disruptors in ferroptosis therapy is validated through both in vitro and in vivo experiments.


A strategy of disrupted redox homeostasis specifically initiated by the tumor microenvironment and our constructed MC@HMOS@Au@RGD nanoplatforms is proposed for ultrasound (US) imaging-guided potent ferroptosis therapy of tumors.

4.
Small ; 19(44): e2302575, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37394717

RESUMO

Osteosarcoma (OS) is the most frequent osseous neoplasm among young people aged 10-20. Currently, the leading treatment for osteosarcoma is a combination of surgery and chemotherapy. However, the mortality remains high due to chemoresistance, metastasis, and recurrence, attributing to the existence of cancer stem cells (CSCs) as reported. To target CSCs, differentiation therapy attracts increasing attention, inducing CSCs to bulk tumor cells with elevated reactive oxygen species (ROS) levels and less chemoresistance. Moreover, increasing studies have implied that ferroptosis is a promising approach to eliminating cancer cells through eliciting oxidative damage and subsequent apoptosis, effectively bypassing chemoresistance. Here, a cancer-cell-membrane-decorated biocompatible formulation (GA-Fe@CMRALi liposome) is constructed to combat OS efficiently by combining distinct differentiation and ferroptosis therapies through magnified ROS-triggered ferroptosis and apoptosis with homologous target capability to tumor sites. The combinational approach exhibited favorable therapeutic efficacy against OS in vitro and in vivo. Impressively, the potential mechanisms are revealed by mRNA sequencing. This study provides a tactical design and typical paradigm of the synergized differentiation and ferroptosis therapies to combat heterogeneous OS.


Assuntos
Neoplasias Ósseas , Ferroptose , Osteossarcoma , Humanos , Adolescente , Espécies Reativas de Oxigênio , Apoptose , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico , Diferenciação Celular , Linhagem Celular Tumoral
5.
Small ; 18(20): e2200330, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35451223

RESUMO

Nowadays, destruction of redox homeostasis to induce cancer cell death is an emerging anti-cancer strategy. Here, the authors utilized pH-sensitive acetalated ß-cyclodextrin (Ac-ß-CD) to efficiently deliver dihydroartemisinin (DHA) for tumor ferroptosis therapy and chemodynamic therapy in a synergistic manner. The Ac-ß-CD-DHA based nanoparticles are coated by an iron-containing polyphenol network. In response to the tumor microenvironment, Fe2+ /Fe3+ can consume glutathione (GSH) and trigger the Fenton reaction in the presence of hydrogen peroxide (H2 O2 ), leading to the generation of lethal reactive oxygen species (ROS). Meanwhile, the OO bridge bonds of DHA are also disintegrated to enable ferroptosis of cancer cells. Their results demonstrate that these nanoparticles acted as a ROS generator to break the redox balance of cancer cells, showing an effective anticancer efficacy, which is different from traditional approaches.


Assuntos
Ciclodextrinas , Ferroptose , Linhagem Celular Tumoral , Glutationa/metabolismo , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Nanomedicina , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
6.
Small ; 18(35): e2202705, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35923138

RESUMO

Because of the insufficiency of hydrogen peroxide, the relatively low rate of Fenton reaction, and the active glutathione (GSH) peroxidase 4 (GPX4) in tumor cells, it is difficult to achieve a desirable efficacy of ferroptosis therapy (FT) for tumors based on nanomaterials. Inspired by the concept of "cyclotron" in physics, in this study, a new concept of cycloacceleration of reactive oxygen species (ROS) generation in tumor cells to realize high-performance FT of tumors is proposed. Typically, a magnetic resonance imaging (MRI) contrast agent of dotted core-shell Fe3 O4 /Gd2 O3 hybrid nanoparticles (FGNPs) is prepared based on exceedingly small magnetic iron oxide nanoparticles (ES-MIONs). Sorafenib (SFN) is loaded and poly(ethylene glycol) methyl ether-poly(propylene sulfide)-NH2 (mPEG-PPS-NH2 ) is grafted on the surface of FGNP to generate SA-SFN-FGNP via self-assembly. The results of in vitro and in vivo demonstrate SA-SFN-FGNP can work with the acidic tumor microenvironment and endosomal conditions, Fenton reaction and system XC - , and generate cyclic reactions in tumor cells, resulting in specific cycloacceleration of ROS generation for high-performance FT of tumors. The very high longitudinal relaxivity (r1 , 33.43 mM-1 s-1 , 3.0 T) makes sure that the SA-SFN-FGNP can be used for MRI-guided FT of tumors.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Meios de Contraste , Humanos , Nanopartículas Magnéticas de Óxido de Ferro , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Espécies Reativas de Oxigênio , Microambiente Tumoral
7.
Int J Nanomedicine ; 19: 9055-9070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246426

RESUMO

Purpose: The efficacy of systemic therapy for hepatocellular carcinoma (HCC) is limited mainly by the complex tumor defense mechanism and the severe toxic side-effects of drugs. The efficacy of apatinib (Apa), a key liver cancer treatment, is unsatisfactory due to inadequate targeting and is accompanied by notable side-effects. Leveraging nanomaterials to enhance its targeting represents a crucial strategy for improving the effectiveness of liver cancer therapy. Patients and Methods: A metal polyphenol network-coated apatinib-loaded metal-organic framework-based multifunctional drug-delivery system (MIL-100@Apa@MPN) was prepared by using metal-organic frameworks (MOFs) as carriers. The nanoparticles (NPs) were subsequently characterized using techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential measurements, and particle size analysis. In vitro experiments were conducted to observe the drug release kinetics and cytotoxic effects of MIL-100@Apa@MPN on HepG2 cells. The in vivo anti-tumor efficacy of MIL-100@Apa@MPN was evaluated using the H22 tumor-bearing mouse model. Results: The formulated MIL-100@Apa@MPN demonstrates remarkable thermal stability and possesses a uniform structure, with measured drug-loading (DL) and encapsulation efficiency (EE) rates of 28.33% and 85.01%, respectively. In vitro studies demonstrated that HepG2 cells efficiently uptake coumarin-6-loaded NPs, and a significant increase in cumulative drug release was observed under lower pH conditions (pH 5.0), leading to the release of approximately 73.72% of Apa. In HepG2 cells, MIL-100@Apa@MPN exhibited more significant antiproliferative activity compared to free Apa. In vivo, MIL-100@Apa@MPN significantly inhibited tumor growth, attenuated side-effects, and enhanced therapeutic effects in H22 tumor-bearing mice compared to other groups. Conclusion: We have successfully constructed a MOF delivery system with excellent safety, sustained-release capability, pH-targeting, and improved anti-tumor efficacy, highlighting its potential as a therapeutic approach for the treatment of HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Liberação Controlada de Fármacos , Ferroptose , Estruturas Metalorgânicas , Piridinas , Estruturas Metalorgânicas/química , Animais , Humanos , Piridinas/química , Piridinas/administração & dosagem , Piridinas/farmacocinética , Piridinas/farmacologia , Camundongos , Células Hep G2 , Concentração de Íons de Hidrogênio , Ferroptose/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Tamanho da Partícula , Nanopartículas/química
8.
ACS Appl Mater Interfaces ; 16(22): 28193-28208, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776411

RESUMO

Ferroptosis therapy and immunotherapy have been widely used in cancer treatment. However, nonselective induction of ferroptosis in tumors is prone to immunosuppression, limiting the therapeutic effect of ferroptosis cancer treatment. To address this issue, this study reports a customized hybrid nanovesicle composed of NK cell-derived extracellular versicles and RSL3-loaded liposomes (hNRVs), aiming to establish a positive cycle between ferroptosis therapy and immunotherapy. Thanks to the enhanced permeability and retention effect and the tumor homing characteristics of NK exosomes, our data indicate that hNRVs can actively accumulate in tumors and enhance cellular uptake. FASL, IFN-γ, and RSL3 are released into the tumor microenvironment, where FASL derived from NK cells effectively lyses tumor cells. RSL3 downregulates the expression of GPX4 in the tumor, leading to the accumulation of LPO and ROS, and promotes ferroptosis in tumor cells. The accumulation of IFN-γ and TNF-α stimulates the maturation of dendritic cells and effectively induces the inactivation of GPX4, promoting lipid peroxidation, making them sensitive to ferroptosis and indirectly promoting the occurrence of ferroptosis. This study highlights the role of the customized hNRV platform in enhancing the effectiveness of synergistic treatment with selective delivery of ferroptosis inducers and immune activation against glioma without causing additional side effects on healthy organs.


Assuntos
Exossomos , Ferroptose , Glioma , Imunoterapia , Células Matadoras Naturais , Lipossomos , Ferroptose/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/química , Lipossomos/química , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Animais , Camundongos , Glioma/terapia , Glioma/patologia , Glioma/tratamento farmacológico , Glioma/imunologia , Glioma/metabolismo , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Linhagem Celular Tumoral , Interferon gama/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Carbolinas
9.
Cells ; 12(2)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36672245

RESUMO

Ferroptosis is a type of iron-dependent cell death caused by ferrous iron overload, reactive oxygen species generation through the Fenton reaction, and lipid peroxidation, leading to antioxidative system dysfunction and, ultimately, cell membrane damage. The functional role of ferroptosis in human physiology and pathology is considered a cause or consequence of diseases. Circulating exosomes mediate intercellular communication and organ crosstalk. They not only transport functional proteins and nucleic acids derived from parental cells but also serve as vehicles for the targeted delivery of exogenous cargo. Exosomes regulate ferroptosis by delivering the biological material to the recipient cell, affecting ferroptosis-related proteins, or transporting ferritin-bound iron out of the cell. This review discusses pathogenesis mediated by endogenous exosomes and the therapeutic potential of exogenous exosomes for ferroptosis-related diseases. In addition, this review explores the role of exosome-mediated ferroptosis in ferroptosis-related diseases with an emphasis on strategies for engineering exosomes for ferroptosis therapy.


Assuntos
Exossomos , Ferroptose , Humanos , Exossomos/metabolismo , Morte Celular , Antioxidantes/metabolismo , Peroxidação de Lipídeos
10.
ACS Appl Mater Interfaces ; 15(39): 46213-46225, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37740721

RESUMO

Recently, nanozymes with peroxidase (POD)-like activity have shown great promise for ferroptosis-based tumor therapy, which are capable of transforming hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (•OH). However, the unsatisfactory therapeutic performance of nanozymes due to insufficient endogenous H2O2 and acidity at tumor sites has always been a conundrum. Herein, an ultrasmall gold (Au) @ ferrous sulfide (FeS) cascade nanozyme (AuNP@FeS) with H2S-releasing ability constructed with an Au nanoparticle (AuNP) and an FeS nanoparticle (FeSNP) is designed to increase the H2O2 level and acidity in tumor cells via the collaboration between cascade reactions of AuNP@FeS and the biological effects of released H2S, achieving enhanced •OH generation as well as effective ferroptosis for tumor therapy. The cascade reaction in tumor cells is activated by the glucose oxidase (GOD)-like activity of AuNP in AuNP@FeS to catalyze intratumoral glucose into H2O2 and gluconic acid; meanwhile, the released H2S from AuNP@FeS reduces H2O2 consumption by inhibiting intracellular catalase (CAT) activity and promotes lactic acid accumulation. The two pathways synergistically boost H2O2 and acidity in tumor cells, thus inducing a cascade to generate abundant •OH by catalyzing H2O2 through the POD-like activity of FeS in AuNP@FeS and ultimately causing amplified ferroptosis. In vitro and in vivo experiments demonstrated that AuNP@FeS presents a superior tumor therapeutic effect compared to that of AuNP or FeS alone. This strategy represents a simple but powerful method to amplify ferroptosis with H2S-releasing cascade nanozymes and will pave a new way for the development of tumor therapy.

11.
ACS Appl Mater Interfaces ; 15(2): 2602-2616, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36622638

RESUMO

To improve the efficiency of radiation therapy (RT) for breast cancer, a designable multifunctional core-shell nanocomposite of FeP@Pt is constructed using Fe(III)-polydopamine (denoted as FeP) as the core and platinum particles (Pt) as the shell. The hybrid structure is further covered with hyaluronic acid (HA) to give the final nanoplatform of FeP@Pt@HA (denoted as FPH). FPH exhibits good biological stability, prolongs blood circulation time, and is simultaneously endowed with tumor-targeting ability. With CD44-mediated endocytosis of HA, FPH can be internalized by cancer cells and activated by the tumor microenvironment (TME). The redox reaction between Fe3+ in FPH and endogenous glutathione (GSH) or/and hydrogen peroxide (H2O2) initiates ferroptosis therapy by promoting GSH exhaustion and •OH generation. Moreover, FPH has excellent photothermal conversion efficiency and can absorb near-infrared laser energy to promote the above catalytic reaction as well as to achieve photothermal therapy (PTT). Ferroptosis therapy and PTT are further accompanied by the catalase activity of Pt nanoshells to accelerate O2 production and the high X-ray attenuation coefficient of Pt for enhanced radiotherapy (RT). Apart from the therapeutic modalities, FPH exhibits dual-modal contrast enhancement in infrared (IR) thermal imaging and computed tomography (CT) imaging, offering potential in imaging-guided cancer therapy. In this article, the nanoplatform can remodel the TME through the production of O2, GSH- and H2O2-depletion, coenhanced PTT, ferroptosis, and RT. This multimodal nanoplatform is anticipated to shed light on the design of TME-activatable materials to enhance the synergism of treatment results and enable the establishment of efficient nanomedicine.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Microambiente Tumoral , Feminino , Humanos , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Terapia Combinada/métodos , Compostos Férricos/uso terapêutico , Peróxido de Hidrogênio , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico
12.
J Colloid Interface Sci ; 645: 882-894, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37178565

RESUMO

Photodynamic therapy (PDT), as a promising strategy in cancer treatment that utilizes photosensitizers (PSs) to produce reactive oxygen species, has been widely used for eliminating cancer cells under specific wavelength light irradiation. However, the low aqueous solubility of PSs and special tumor microenvironments (TME), such as high glutathione (GSH) and tumor hypoxia remain challenges towards PDT for hypoxic tumor treatment. To address these problems, we constructed a novel nanoenzyme for enhanced PDT-ferroptosis therapy by integrating small Pt nanoparticles (Pt NPs) and near-infrared photosensitizer CyI into iron-based metal organic frameworks (MOFs). In addition, hyaluronic acid was adhered to the surface of the nanoenzymes to enhance the targeting ability. In this design, MOFs act not only as a delivery vector for PSs, but also a ferroptosis inducer. Pt NPs stabilized by MOFs were functioned as an oxygen (O2) generator by catalyzing hydrogen peroxide into O2 to relieve tumor hypoxia and increase singlet oxygen generation. In vitro and in vivo results demonstrated that under laser irradiation, this nanoenzyme could effectively relive the tumor hypoxia and decrease the level of GSH, resulting in enhanced PDT-ferroptosis therapy against hypoxic tumor. The proposed nanoenzymes represent an important advance in altering TME for improved clinical PDT-ferroptosis therapy, as well as their potential as effective theranostic agents for hypoxic tumors.


Assuntos
Ferroptose , Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Estruturas Metalorgânicas/farmacologia , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes , Neoplasias/tratamento farmacológico , Oxigênio , Peróxido de Hidrogênio/farmacologia , Microambiente Tumoral
13.
Adv Healthc Mater ; 12(26): e2300871, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37204046

RESUMO

Ferroptosis is a form of programmed cell death and plays an important role in many diseases. Dihydroorotate dehydrogenase (DHODH) and glutathione peroxidase 4 (GPX4) play major roles in cell resistance to ferroptosis. Therefore, inactivation of these proteins provides an excellent opportunity for efficient ferroptosis-based synergistic cancer therapy. In this study, a multifunctional nanoagent (BPNpro ) containing a GPX4 targeting boron dipyrromethene (Bodipy) probe (BP) and a DHODH targeting proteolysis targeting chimera (PROTAC) is reported. BPNpro is prepared using a nanoprecipitation method in the presence of a thermoresponsive liposome, where BP is encapsulated inside and the cathepsin B (CatB)-cleavable PROTAC peptide (DPCP) is modified on the outer surface. In the presence of near-infrared (NIR) photoirradiation, BPNpro is melted and BP is released in tumor cells. Subsequently, BP inhibits the activity of GPX4 by covalently bonding with the selenocysteine at the enzyme active site. In addition, DPCP achieves sustained degradation of DHODH upon activation by CatB overexpressed in the tumor. The synergistic deactivation of GPX4 and DHODH induces extensive ferroptosis and subsequent cell death. In vivo and in vitro studies clearly show that the proposed ferroptosis therapy provides excellent antitumor effect.


Assuntos
Di-Hidro-Orotato Desidrogenase , Ferroptose , Neoplasias , Humanos , Boro , Ferroptose/genética , Ferroptose/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia
14.
ACS Nano ; 17(12): 11492-11506, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37283506

RESUMO

Ferroptosis therapy (FT) efficacy of tumors suffers from a relatively low concentration of Fenton agents, limited hydrogen peroxide (H2O2) content, and insufficient acidity in the tumor environment (TME), which are unfavorable for reactive oxygen species (ROS) generation based on Fenton or Fenton-like reactions. The glutathione (GSH) overexpression in TME can scavenge ROS and abate the FT performance. In this study, a strategy of ROS storm generation specifically initiated by the TME and our developed nanoplatforms (TAF-HMON-CuP@PPDG) is proposed for high-performance FT of tumors. The GSH in the TME initiates HMON degradation, resulting in tamoxifen (TAF) and copper peroxide (CuP) release from TAF3-HMON-CuP3@PPDG. The released TAF leads to enhanced acidification within tumor cells, which reacts with the released CuP producing Cu2+ and H2O2. The Fenton-like reaction between Cu2+ and H2O2 generates ROS and Cu+, and that between Cu+ and H2O2 generates ROS and Cu2+, forming a cyclic catalysis effect. Cu2+ reacts with GSH to generate Cu+ and GSSG. The increased acidification by TAF can accelerate the Fenton-like reaction between Cu+ and H2O2. The GSH consumption decreases the glutathione peroxidase 4 (GPX4) expression. All of the above reactions generate a ROS storm in tumor cells for high-performance FT, which is demonstrated in cancer cells and tumor-bearing mice.


Assuntos
Ferroptose , Neoplasias , Camundongos , Animais , Espécies Reativas de Oxigênio , Cobre , Peróxido de Hidrogênio/metabolismo , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Glutationa/metabolismo
15.
Adv Healthc Mater ; 12(18): e2203362, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36893770

RESUMO

The emerging tumor ferroptosis therapy confronts impediments of the tumor microenvironment (TME) with weak intrinsic acidity, inadequate endogenous H2 O2 , and a powerful intracellular redox balance system that eliminates toxic reactive oxygen species (ROS). Herein, a strategy of Fenton reaction cycloacceleration initiated by remodeling the TME for magnetic resonance imaging (MRI)-guided high-performance ferroptosis therapy of tumors is proposed. The synthesized nanocomplex exhibits enhanced accumulation at carbonic anhydrase IX (CAIX)-positive tumors based on the CAIX-mediated active targeting, and increased acidification via the inhibition of CAIX by 4-(2-aminoethyl) benzene sulfonamide (ABS) (remodeling TME). This accumulated H+ and abundant glutathione in TME synergistically trigger biodegradation of the nanocomplex to release the loaded cuprous oxide nanodots (CON), ß-lapachon (LAP), Fe3+ , and gallic acid-ferric ions coordination networks (GF). The Fenton and Fenton-like reactions are cycloaccelerated via the catalytic loop of Fe-Cu, and the LAP-triggered and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase1-mediated redox cycle, generating robust ROS and plenitudinous lipid peroxides accumulation for ferroptosis of tumor cells. The detached GF network has improved relaxivities in response to the TME. Therefore, the strategy of Fenton reaction cycloacceleration initiated by remodeling the TME is promising for MRI-guided high-performance ferroptosis therapy of tumors.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Microambiente Tumoral , Benzeno , Sulfanilamida , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Peróxido de Hidrogênio
16.
Biomaterials ; 302: 122300, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659110

RESUMO

The immunotherapy efficiency of stimulator of interferon genes (STING)-activatable drugs (e.g., 7-ethyl-10-hydroxycamptothecin, SN38) is limited by their non-specificity to tumor cells and the slow excretion of the DNA-containing exosomes from the treated cancer cells. The efficacy of tumor ferroptosis therapy is always limited by the elimination of lipid peroxides (LPO) by the pathways of glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH) and ferroptosis suppressor protein 1(FSP1). To solve these problems, in this study, we developed a STING pathway-activatable contrast agent (i.e., FeGd-HN@TA-Fe2+-SN38 nanoparticles) for magnetic resonance imaging (MRI)-guided tumor immunoferroptosis synergistic therapy. The remarkable in vivo MRI performance of FeGd-HN@TA-Fe2+-SN38 is attributed to its high accumulation at tumor location, the high relaxivities of FeGd-HN core, and the pH-sensitive TA-Fe2+-SN38 layer. The effectiveness and biosafety of the immunoferroptosis synergistic therapy induced by FeGd-HN@TA-Fe2+-SN38 are demonstrated by the in vivo investigations on the 4T1 tumor-bearing mice. The mechanisms of in vivo immunoferroptosis synergistic therapy by FeGd-HN@TA-Fe2+-SN38 are demonstrated by measurements of in vivo ROS, LPO, GPX4 and SLC7A11 levels, the intratumor matured DCs and CD8+ T cells, the protein expresion of STING and IRF-3, and the secretion of IFN-ß and IFN-γ.


Assuntos
Meios de Contraste , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Imageamento por Ressonância Magnética , Imunoterapia , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Peróxidos Lipídicos , Linhagem Celular Tumoral
17.
Adv Mater ; 35(45): e2305932, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717205

RESUMO

To improve the magnetic resonance imaging (MRI) efficiency and ferroptosis therapy efficacy of exceedingly small magnetic iron oxide nanoparticles (IO, <5 nm) for tumors via enhancing the sensitivity of tumor microenvironment (TME) responsiveness, inspired by molecular logic gates, a self-assembled IO with an AND logic gate function is designed and constructed. Typically, cystamine (CA) is conjugated onto the end of poly(2-methylthio-ethanol methacrylate) (PMEMA) to generate PMEMA-CA. The PMEMA-CA is grafted onto the surface of brequinar (BQR)-loaded IO to form IO-BQR@PMEMA. The self-assembled IO-BQR@PMEMA (SA-IO-BQR@PMEMA) is obtained due to the hydrophobicity of PMEMA. The carbon-sulfur single bond of PMEMA-CA can be oxidized by reactive oxygen species (ROS) in the TME to a thio-oxygen double bond, resulting in the conversion from being hydrophobic to hydrophilic. The disulfide bond of PMEMA-CA can be broken by the glutathione (GSH) in the TME, leading to the shedding of PMEMA from the IO surface. Under the dual actions of ROS and GSH in TME (i.e., AND logic gate), SA-IO-BQR@PMEMA can be disassembled to release IO, Fe2+/3+ , and BQR. In vitro and in vivo results demonstrate the AND logic gate function and mechanism, the high T1 MRI performance and exceptional ferroptosis therapy efficacy for tumors, and the excellent biosafety of SA-IO-BQR@PMEMA.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Glutationa/química , Linhagem Celular Tumoral , Nanopartículas/química , Microambiente Tumoral
18.
ACS Nano ; 16(5): 8370-8387, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35575209

RESUMO

Ferroptosis therapy by catalyzing the Fenton reaction has emerged as a promising tumor elimination strategy for lung adenocarcinoma (ADC). However, the unsatisfactory Fenton reaction efficiency, strong intracellular antioxidant system, and insufficient lung drug accumulation limits the ferroptosis therapeutic effect. To address these issues, an inhalable nanoreactor was proposed by spontaneously adsorbing biomimetic protein corona (PC) composed of matrix metalloproteinase 2 responsive gelatin and glutamate (Glu) on the surface of cationic nanostructured lipid carriers (NLC) core loaded with ferrocene (Fc) and fluvastatin. The prepared Fc-NLC(F)@PC could be nebulized into lung lesions with 2.6 times higher drug accumulation and boost lipid peroxide production by 3.2 times to enhance ferroptosis therapy. Mechanically, fluvastatin was proved to inhibit monocarboxylic acid transporter 4 mediated lactate efflux, inducing tumor acidosis to boost Fc-catalyzing reactive oxygen species production, while the extracellular elevating Glu concentration was found to inhibit xCT (system Xc-) functions and further collapse the tumor antioxidant system by glutathione synthesis suppression. Mitochondrial dysfunction and cell membrane damage were involved in the nanoreactor-driven ferroptotic cell death process. The enhanced antitumor effects by combination of tumor acidosis and antioxidant system collapse were confirmed in an orthotopic lung ADC tumor model. Overall, the proposed nanoreactor highlights the pulmonary delivery approach for local lung ADC treatment and underscores the great potential of ferroptosis therapy.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Ferroptose , Neoplasias , Coroa de Proteína , Humanos , Metaloproteinase 2 da Matriz , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomimética , Antioxidantes/uso terapêutico , Fluvastatina/uso terapêutico , Neoplasias/tratamento farmacológico , Nanotecnologia , Linhagem Celular Tumoral
19.
ACS Nano ; 14(9): 11017-11028, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32786253

RESUMO

Although ferroptosis therapy has been proven to be a promising strategy for cancer treatment, its efficacy still might be limited by insufficient H2O2 supply in tumor tissue. Herein, we designed a cancer cell membrane-cloaked cascade nanoreactor based on ferric metal-organic frameworks (MOF) and glucose oxidase (GOx) decoration for synergistic ferroptosis-starvation anticancer therapy. The GOx can catalyze glucose to generate sufficient H2O2 for ferroptosis therapy, and the glucose consumption caused by GOx can be utilized as another attractive cancer treatment strategy called starvation therapy. When the nanoreactor reached tumor sites, high concentration of GSH reduced Fe3+ to trigger structure collapse of MOF and release Fe2+ and GOx catalyzed the oxidation of glucose to generate H2O2. Then Fenton reaction happened between H2O2 and Fe2+ to produce hydroxyl radicals (•OH) and promoted ferroptosis therapy. With these cascade reactions, the synergistic ferroptosis-starvation anticancer therapy was realized. Furthermore, the cancer cell membrane endows the nanoreactor homologous targeting and immune escaping ability, which facilitated the nanoreactor to accumulate into tumor site with high efficiency. The nanoreactor exhibits high efficiency for tumor suppression with the in situ consumed and produced compounds, which can promote the development of precise cooperative cancer therapy with spatiotemporal controllability.


Assuntos
Ferroptose , Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Glucose Oxidase , Humanos , Peróxido de Hidrogênio , Nanotecnologia , Neoplasias/tratamento farmacológico
20.
Adv Healthc Mater ; 9(20): e2000864, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32945131

RESUMO

Ferroptotic cell death results from glutathione peroxidase 4 (GPX4) inactivation and/or glutathione (GSH) depletion. Elevated GSH levels are often found in multidrug-resistant (MDR) tumor cells, reducing their sensitivity to chemotherapeutic drugs and the efficacy of treatment. MDR cells also acquire a dependency on GPX4, reducing their oxidative stress and promoting their survival. Therefore, the depletion of GSH and inactivation of GPX4 has the potential to be a superior treatment strategy for MDR tumors. Platinum-decorated gold nanostars (Pt-AuNS) are presented as a novel metal nanoprodrug for ferroptotic therapy against MDR tumors. Under dark conditions, the synthesized Pt-AuNS exhibit negligible levels of toxicity. Upon exposure of the Pt-AuNS to near-infrared (NIR) light, active metallic (Pt and Au) species are released, subsequently inducing cytotoxicity. The mechanism of action is attributed to GSH depletion and GPX4 inactivation, accumulating lipid hydroperoxides, which in turn leads to ferroptosis. In in vivo xenograft, the MDR cancer model confirmed the NIR light-activation of Pt-AuNS prodrugs, resulting in efficient ferroptotic therapeutic action against MDR tumors without long-term side effects. The findings lay the groundwork for using Pt-AuNS prodrugs responsive to NIR light as ferroptosis-inducing agents in chemo-resistant cancer cells and demonstrate their potential for use in future clinical applications.


Assuntos
Ferroptose , Neoplasias , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Ouro , Platina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa