Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
BMC Plant Biol ; 24(1): 386, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724922

RESUMO

BACKGROUND: Potato serves as a major non-cereal food crop and income source for small-scale growers in Punjab, Pakistan. Unfortunately, improper fertilization practices have led to low crop yields, worsened by challenging environmental conditions and poor groundwater quality in the Cholistan region. To address this, we conducted an experiment to assess the impact of two fertilizer application approaches on potato cv. Barna using plant growth-promoting bacteria (PGPB) coated biofertilizers. The first approach, termed conventional fertilizer application (CFA), involved four split applications of PGPB-coated fertilizers at a rate of 100:75 kg acre-1 (N and P). The second, modified fertilizer application (MFA), employed nine split applications at a rate of 80:40 kg acre-1. RESULTS: The MFA approach significantly improved various plant attributes compared to the CFA. This included increased plant height (28%), stem number (45%), leaf count (46%), leaf area index (36%), leaf thickness (three-folds), chlorophyll content (53%), quantum yield of photosystem II (45%), photosynthetically active radiations (56%), electrochromic shift (5.6%), proton flux (24.6%), proton conductivity (71%), linear electron flow (72%), photosynthetic rate (35%), water use efficiency (76%), and substomatal CO2 (two-folds), and lowered non-photochemical quenching (56%), non-regulatory energy dissipation (33%), transpiration rate (59%), and stomatal conductance (70%). Additionally, the MFA approach resulted in higher tuber production per plant (21%), average tuber weight (21.9%), tuber diameter (24.5%), total tuber yield (29.1%), marketable yield (22.7%), seed-grade yield (9%), specific gravity (9.6%), and soluble solids (7.1%). It also reduced undesirable factors like goli and downgrade yields by 57.6% and 98.8%, respectively. Furthermore, plants under the MFA approach exhibited enhanced nitrogen (27.8%) and phosphorus uptake (40.6%), with improved N (26.1%) and P uptake efficiency (43.7%) compared to the CFA approach. CONCLUSION: The use of PGPB-coated N and P fertilizers with a higher number of splits at a lower rate significantly boosts potato production in the alkaline sandy soils of Cholistan.


Assuntos
Fertilizantes , Nitrogênio , Fósforo , Solanum tuberosum , Fertilizantes/análise , Fósforo/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Nitrogênio/metabolismo , Paquistão , Solo/química , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento
2.
J Environ Manage ; 327: 116843, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459784

RESUMO

As an important part of agricultural socialization services, outsourced machinery services are of great significance for promoting the green development of agriculture. Using the field survey data of 1080 rice growers in Sichuan Province, this paper empirically analyzes outsourced machinery services' impact and role path on farmers' green production behavior. Further, it analyzes the difference in influence from the perspective of group heterogeneity. The research results show that: (1) The outsourced machinery services significantly impact farmers' adoption of no-tillage technology, organic fertilizer application technology, and straw returning technology. The conclusion is still stable after considering endogeneity. (2) The outsourced machinery services indirectly affect farmers' green production behavior by promoting off-farm employment and expanding the scale of farmland. (3) The impact of outsourced machinery services on farmers' green production behavior is not significant in the male group and the group whose households own agricultural machinery. In conclusion, the study proposes to increase assistance to outsourced machinery services providers and encourage service entities to actively publicize and popularize green production technologies while providing services, to play an influential role in guiding and educating farmers.


Assuntos
Oryza , Serviços Terceirizados , Masculino , Humanos , Fazendeiros , População do Leste Asiático , Agricultura/métodos , China
3.
J Sci Food Agric ; 102(6): 2424-2431, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34632585

RESUMO

BACKGROUND: Integrated wheat management strategies can affect grain yield and flour end-use properties. However, the effect of integrated management and its interaction with environmental factors on the phenolic acid profiles of wheat has not been reported. The phenolic acid profile has become another parameter for the evaluation of wheat quality due to its potential health benefits. RESULTS: Year × location × management and year × management × genotype interactions were significant for the total phenolic content (TPC) of wheat samples. The year × location × management × genotype interaction was significant for the concentration of trans-ferulic acid and several other phenolic acids. Field management practices with no fungicide application (e.g., farmer's practice, enhanced fertility) may lead to increased accumulation of phenolic compounds, especially for WB4458, which is more susceptible to fungi infection. However, this effect was also related to growing year and location. Higher soil nitrogen content at sowing also seems to affect the TPC and phenolic acid concentration positively. CONCLUSION: Wheat phenolic acid profiles are affected by genotype, field management, environment, and their interactions. Intensified field management, in particular, may lead to decreased concentration of wheat phytochemicals. The level of naturally occurring nitrogen in the soil may also affect the accumulation of wheat phytochemicals. © 2021 Society of Chemical Industry.


Assuntos
Hidroxibenzoatos , Triticum , Genótipo , Fenóis , Triticum/química , Triticum/genética
4.
Glob Chang Biol ; 27(4): 855-867, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33155724

RESUMO

Ammonia (NH3 ) emissions from fertilized soils to the atmosphere and the subsequent deposition to land surface exert adverse effects on biogeochemical nitrogen (N) cycling. The region- and crop-specific emission factors (EFs) of N fertilizer for NH3 are poorly developed and therefore the global estimate of soil NH3 emissions from agricultural N fertilizer application is constrained. Here we quantified the region- and crop-specific NH3 EFs of N fertilizer by compiling data from 324 worldwide manipulative studies and focused to map the global soil NH3 emissions from agricultural N fertilizer application. Globally, the NH3 EFs averaged 12.56% and 14.12% for synthetic N fertilizer and manure, respectively. Regionally, south-eastern Asia had the highest NH3 EFs of synthetic N fertilizer (19.48%) and Europe had the lowest (6%), which might have been associated with the regional discrepancy in the form and rate of N fertilizer use and management practices in agricultural production. Global agricultural NH3 emissions from the use of synthetic N fertilizer and manure in 2014 were estimated to be 12.32 and 3.79 Tg N/year, respectively. China (4.20 Tg N/year) followed by India (2.37 Tg N/year) and America (1.05 Tg N/year) together contributed to over 60% of the total global agricultural NH3 emissions from the use of synthetic N fertilizer. For crop-specific emissions, the NH3 EFs averaged 11.13%-13.95% for the three main staple crops (i.e., maize, wheat, and rice), together accounting for 72% of synthetic N fertilizer-induced NH3 emissions from croplands in the world and 70% in China. The region- and crop-specific NH3 EFs of N fertilizer established in this study offer references to update the default EF in the IPCC Tier 1 guideline. This work also provides an insight into the spatial variation of soil-derived NH3 emissions from the use of synthetic N fertilizer in agriculture at the global and regional scales.


Assuntos
Amônia , Fertilizantes , Agricultura , Amônia/análise , China , Europa (Continente) , Fertilizantes/análise , Índia , Nitrogênio/análise , Óxido Nitroso/análise , Solo
5.
Glob Chang Biol ; 26(11): 6116-6133, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32697859

RESUMO

Balancing crop production and greenhouse gas (GHG) emissions from agriculture soil requires a better understanding and quantification of crop GHG emissions intensity, a measure of GHG emissions per unit crop production. Here we conduct a state-of-the-art estimate of the spatial-temporal variability of GHG emissions intensities for wheat, maize, and rice in China from 1949 to 2012 using an improved agricultural ecosystem model (Dynamic Land Ecosystem Model-Agriculture Version 2.0) and meta-analysis covering 172 field-GHG emissions experiments. The results show that the GHG emissions intensities of these croplands from 1949 to 2012, on average, were 0.10-1.31 kg CO2 -eq/kg, with a significant increase rate of 1.84-3.58 × 10-3  kg CO2 -eq kg-1  year-1 . Nitrogen fertilizer was the dominant factor contributing to the increase in GHG emissions intensity in northern China and increased its impact in southern China in the 2000s. Increasing GHG emissions intensity implies that excessive fertilizer failed to markedly stimulate crop yield increase in China but still exacerbated soil GHG emissions. This study found that overfertilization of more than 60% was mainly located in the winter wheat-summer maize rotation systems in the North China Plain, the winter wheat-rice rotation systems in the middle and lower reaches of the Yangtze River and southwest China, and most of the double rice systems in the South. Our simulations suggest that roughly a one-third reduction in the current N fertilizer application level over these "overfertilization" regions would not significantly influence crop yield but decrease soil GHG emissions by 29.60%-32.50% and GHG emissions intensity by 0.13-0.25 kg CO2 -eq/kg. This reduction is about 29% and 5% of total agricultural soil GHG emissions in China and the world, respectively. This study suggests that improving nitrogen use efficiency would be an effective strategy to mitigate GHG emissions and sustain China's food security.


Assuntos
Gases de Efeito Estufa , Agricultura , China , Mudança Climática , Produtos Agrícolas , Ecossistema , Fertilizantes/análise , Segurança Alimentar , Efeito Estufa , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Solo
6.
Antonie Van Leeuwenhoek ; 113(11): 1559-1571, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32803452

RESUMO

This study investigated the diversity, structure and nutrient pathways of the root-associated bacterial endophytes of maize plant cultivated using different fertilizers to verify the claim that inorganic fertilizers have some toxic effects on plant microbiome and not are ecofriendly. Whole DNA was extracted from the roots of maize plants cultivated with organic fertilizer, inorganic fertilizer and maize planted without any fertilizer at different planting sites in an experimental field and sequenced using shotgun metagenomics. Our results using the Subsystem database revealed a total of 28 phyla and different nutrient pathways in all the samples. The major phyla observed were Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, Tenericutes, Planctomycetes, Cyanobacteria, and Chlorobi. Bacteroidetes dominated maize from organic fertilizer sites, Firmicutes dominated the no fertilizers site while Proteobacteria dominated Inorganic fertilizer. The diversity analysis showed that the abundance of endophytic bacteria in all the sites is in the order organic fertilizer (FK) > no fertilizer (CK) > inorganic fertilizer (NK). Furthermore, the major nutrient cycling pathways identified are linked with nitrogen and phosphorus metabolism which were higher in FK samples. Going by the results obtained, this study suggests that organic fertilizer could be a boost to sustainable agricultural practices and should be encouraged. Also, a lot of novel endophytic bacteria groups were identified in maize. Mapping out strategies to isolate and purify this novel endophytic bacteria could help in promoting sustainable agriculture alongside biotechnological applications in future.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Endófitos/genética , Endófitos/metabolismo , Metagenômica , Zea mays/microbiologia , Fertilizantes/análise , Nutrientes , Solo , Microbiologia do Solo
7.
Pestic Biochem Physiol ; 168: 104641, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32711774

RESUMO

Plant diseases and insect pests are one of the major limiting factors that reduce crop production worldwide. Silicon (Si) is one of the most abundant elements in the lithosphere and has a positive impact on plant health by effectively mitigating biotic and abiotic stresses. It also enhances plant resistance against insect pests and fungal, bacterial, and viral diseases. Therefore, this review critically converges its focus upon Si-mediated physical, biochemical, and molecular mechanisms in plant defense against pathogens and insect pests. It further explains Si-modulated interactive phytohormone signaling and enzymatic production and their involvement in inducing resistance against biotic stresses. Furthermore, this review highlights the recent research accomplishments which have successfully revealed the active role of Si in protecting plants against insect herbivory and various viral, bacterial, and fungal diseases. The article explores the potential in enhancing Si-mediated plant resistance against various economically important diseases and insect pests, further shedding light upon future issues regarding the role of Si in defense against pathogens and insect pests.


Assuntos
Insetos , Silício , Animais , Herbivoria , Plantas , Estresse Fisiológico
8.
Chem Biodivers ; 17(12): e2000617, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33078532

RESUMO

Paeonia ostii is now being extensively planted for oil extraction in China, which is recognized as a single oil-use tree peony cultivar and commonly called 'Fengdan'. This study investigated the effects of nitrogen fertilizer on oil yield, fatty acid compositions and antioxidant activity of P. ostii. Oil yield (33.46 %), oleic acid (25.12 %), linoleic acid (29.21 %) and α-linolenic acid (43.12 %) reached the maximum at N450 treatment, with significant differences compared with other treatments (P<0.05). Furthermore, strong antioxidant activity with low DPPHIC50 value (19.43±1.91 µg mL-1 ) and large ABTS value (1216.53±30.21 µmol Trolox g-1 ) and FRAP value (473.57±9.11 µmol Trolox g-1 ) was also observed at N450. Palmitic acid (5.57 %) and stearic acid (2.02 %) reached a maximum at N375, but not significant with N450 (P<0.05). Nitrogen fertilizer could promote oil yield, fatty acid accumulation and antioxidant activity, and N450 (450 kg ha-1 ) is recommended as the optimum application for P. ostii.


Assuntos
Antioxidantes/farmacologia , Ácidos Graxos/análise , Fertilizantes , Nitrogênio/administração & dosagem , Paeonia/química , Extratos Vegetais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Paeonia/crescimento & desenvolvimento , Extratos Vegetais/química , Óleos de Plantas/análise
9.
J Environ Manage ; 249: 109327, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400587

RESUMO

The use of Nitrogen (N) fertilizer boosted crop production to accommodate 7 billion people on Earth in the 20th century but with the consequence of exacerbating N losses from agricultural landscapes. Land management practices that can prevent high N load are constantly being sought for mitigation and conservation purposes. This study was aimed at evaluating the impacts of different land management practices under projected climate scenarios on surface runoff linked N load at the field scale level. A framework to analyze changes in N load at a high spatiotemporal resolution under high greenhouse emission climate projections was developed using the Pesticide Root Zone Model (PRZM) for the Willow Creek Watershed in the Fort Cobb Experimental Watershed in Oklahoma. Specifically, 12 combinations of land management and climate scenarios were evaluated based on their N load via surface runoff from 2020 to 2070. Results showed that crop rotation practices lowered both the N load and the probability of high N load events. Spring application reduced the negative effects in summer and fall from other land management practices but at the risk of increased probability of generating high N load in April and May. The fertilizer application rate was found to be the most critical factor that affected the amount and the probability of high N load events. By adopting a target application management approach, the monthly maximum N can be decreased by 13% while the annual mean N load by 6%. The model framework and analysis method developed in this research can be used to analyze tradeoffs between environmental welfare and economic benefits of N fertilizer at the field scale level.


Assuntos
Agricultura , Nitrogênio , Clima , Mudança Climática , Fertilizantes
10.
Mitig Adapt Strateg Glob Chang ; 24(1): 147-163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30662320

RESUMO

Most attention in quantifying carbon dioxide (CO2) emissions from tropical peatlands has been on large-scale plantations (industrial timber, oil palm (Elaeis guinensis)), differing in drainage and land-use practices from those of smallholder farms. We measured subsidence and changes in bulk density and carbon organic content to calculate CO2 emissions over 2.5 years in a remnant logged-over forest and four dominant smallholder land-use types in Tanjung Jabung Barat District, Jambi Province, Sumatra, Indonesia: (1) simple rubber (Hevea brasiliensis) agroforest (> 30 years), (2) mixed coconut (Cocos nucifera) and coffee gardens (Coffea liberica) (> 40 years), (3) mixed betel nut (Areca catechu) and coffee gardens (> 20 years), and (4) oil palm plantation (1 year). We quantified changes in microtopography for each site for greater accuracy of subsidence estimates and tested the effects of nitrogen and phosphorus application. All sites had a fibric type of peat with depths of 50 to > 100 cm. A recently established oil palm had the highest rate of peat subsidence and emission (4.7 cm year-1 or 121 Mg CO2 ha-1 year-1) while the remnant forest had the lowest (1.8 cm year-1 or 40 Mg CO2 ha-1 year-1). Other land-use types subsided by 2-3 cm year-1, emitting 70-85 Mg CO2 ha-1 year-1. Fertilizer application did not have a consistent effect on inferred emissions. Additional emissions in the first years after drainage, despite groundwater tables of 40 cm, were of the order of belowground biomass of peat forest. Despite maintaining higher water tables, smallholder landscapes have CO2 emissions close to, but above, current IPCC defaults.

11.
J Appl Microbiol ; 120(4): 921-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26808352

RESUMO

AIMS: In this study, the species indicator test was used to identify key bacterial taxa affected by changes in the soil environment as a result of conservation agriculture or conventional practices. METHODS AND RESULTS: Soils cultivated with wheat (Triticum spp. L.) and maize (Zea mays L.) under different raised bed planting systems for 20 years, that is, varying crop residue and fertilizer management, were used. Taxonomic- and divergence-based 16S-metagenomics, and IndVal analysis were used to study the bacterial communities and identify indicator taxa (genus and OTU97 ) affected by agricultural practices. Although, some phyla were affected significantly by different treatments, the taxonomic assemblages at phylum level were similar. Bacterial taxa related to different processes of the N-cycle were indicators of different fertilization rates, for example, Azorhizobium, Nostoc and Nitrosomonas. A large number of OTU97 were indicators for conventionally tilled beds and their distribution was defined by soil organic carbon. IndVal analysis identified different taxa in each of the residue management systems. This suggests that although the same organic material remains in the field, crop residue management affects specific taxa. The taxa indicator of the burned residues belonged mainly to the order SBR1031 (Anaerolineae, Chloroflexi), and the genera Bacillus and Alicyclobacillus. CONCLUSIONS: N-fertilizer application rates affected N-cycling taxa. Tillage affected Actinobacteria members and organic matter decomposers. Although the same crop residue was retained in the field, organic material management was important for specific taxa. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, we report that agricultural practice affected soil bacterial communities. We also identified distinctive taxa and related their distribution to changes in the soil environment resulting from different agricultural practices.


Assuntos
Agricultura/métodos , Bactérias/isolamento & purificação , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Fertilizantes/análise , Metagenômica , Filogenia , Solo/química
12.
Environ Geochem Health ; 38(3): 679-90, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26183039

RESUMO

The Mahaweli is the largest river basin in Sri Lanka that provides water to the dry zone region through multipurpose irrigation schemes . Selenium, arsenic, cadmium, and other bioimportant trace elements in surface waters of the upper Mahaweli River were measured using ICP-MS. Trace element levels were then compared with water from two other rivers (Maha Oya, Kalu Ganga) and from six dry zone irrigation reservoirs. Results showed that the trace metal concentrations in the Mahaweli upper catchment were detected in the order of Fe > Cu > Zn > Se > Cr > Mn > As > Ni > Co > Mo. Remarkably high levels of Ca, Cr, Co, Ni, Cu, As, and Se were observed in the Mahaweli Basin compared to other study rivers. Considerably high levels of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Se were found in upstream tributaries of the Mahaweli River. Such metals possibly originated from phosphate and organic fertilizers that are heavily applied for tea and vegetable cultivations within the drainage basin. Cadmium that is often attributed to the etiology of unknown chronic kidney diseases in certain parts of the dry zone is much lower than previously reported levels. Decrease in these metals in the lower part of the Mahaweli River could be due to adsorption of trace metals onto sediment and consequent deposition in reservoirs.


Assuntos
Irrigação Agrícola , Metais/análise , Insuficiência Renal Crônica , Poluentes Químicos da Água/análise , Fertilizantes , Humanos , Rios/química , Sri Lanka
13.
Heliyon ; 10(11): e32764, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912508

RESUMO

Enhancing selenium content in millet is a crucial strategy to address malnutrition due to selenium deficiency. Jingu 21 was used as the experimental material in this study. The effects of selenium fertilizer application amount, vertical position of fertilization, and horizontal position of fertilization on the selenium content in various millet organs were assessed using a three-factor, five-level quadratic rotation combination design. The results indicate that selenium fertilizer application amount, vertical fertilization position, and horizontal fertilization position significantly affected the selenium content in various millet organs. Analysis of the selenium accumulation for different millet organs show that the recommended optimal agronomic strategy for producing selenium-enriched millet comprises a selenium fertilizer application amount ranging from 100.65 to 120.15 kg/hm2, a vertical fertilization position of 10.28-11.76 cm, and a horizontal fertilization position of 6.74-7.29 cm. This study elucidates the patterns of selenium content accumulation under precise fertilization measures of millet and provides valuable insights for implementing selenium enhancement techniques in the production of selenium-enriched millet.

14.
Plants (Basel) ; 13(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39273918

RESUMO

Phosphate fertilizers are applied to the soil surface, especially in vineyards in production in subtropical regions. Nowadays, phosphorus (P) is not incorporated into the soil to avoid mechanical damage to the root system in orchards. However, over the years, successive surface P applications can increase the P content only in the topsoil, maintaining low P levels in the subsurface, which can reduce its use by grapevines. For this reason, there is a need to propose strategies to increase the P content in the soil profile of established orchards. The study aimed to evaluate the effect of management strategies to (i) increase the P content in the soil profile; (ii) enhance the grape production; and (iii) maintain the grape must composition. An experiment on the 'Pinot Noir' grape in full production was carried out over three crop seasons. The treatments were without P application (C), P on the soil surface without incorporation (SP), P incorporated at 20 cm (IP20), P incorporated at 40 cm (IP40), and twice the P dose incorporated at 40 cm (2IP40). The P concentration in leaves at flowering and veraison, P content in the soil, grape production and its components, and chemical parameters of the grape must (total soluble solids, total polyphenols, total titratable acidity, total anthocyanins, and pH) were evaluated. The P concentration in leaves did not differ among the P application modes. The application of P associated with soil mobilization, especially at 20 cm depth, increased grape production. The P application modes did not affect the values of the chemical parameters of the grape must except for the total anthocyanins, which had the highest values when the vines were subjected to 2IP40. Finally, the P application and incorporation into the soil profile was an efficient strategy for increasing the grape production in full production vineyards.

15.
Heliyon ; 10(8): e29837, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681536

RESUMO

Unmanned aerial vehicle (UAV) granular fertilizer spreading technology has been gradually applied in agricultural production. However, in the process of spreading operation, the actual influence effect of each factor in field operation is still unclear. Based on the self-developed UAV fertilizer spreading system, this paper explores the effects of three factors, the baffle retraction (B), spreading disc speed (D), and UAV flight altitude (H), on the granular fertilizer spreading effect in the actual field scenarios through the orthogonal test and taking the coefficient of variation (Cv) and relative error of fertilizer application rate (λ) as the evaluation indexes. The results showed that the optimal factor level combination of Cv was 11.23 % for BbDbHa (the baffle retraction is 6 %, spreading disc speed is 600r/min, and UAV flight height is 1.5 m) at UAV flight speed of 2 m/s. The best factor level combination for λ was BbDbHb of 7.99 % (the baffle retraction is 6 %, spreading disc speed is 600r/min, and UAV flight height is 2 m). In addition, by analysing the influence of the weather and the vortex of the rice canopy on the actual spreading effect, it was found that the weather has less influence on the spreading effect of this system, while the vortex caused by the airflow of the UAV rotor has a certain influence on the spreading effect, which is also relatively easy to ignore in fertilizer spreading operations. The results of the study can be used to explore the operational effects of actual fertilizer application by UAVs in rice field, which will help promote the development of UAV spreading technology and provide a reference for precision fertilizer application through agricultural aviation.

16.
Plants (Basel) ; 13(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39065468

RESUMO

Agroforestry management has immense potential in enhancing forest carbon sequestration and mitigating climate change. Yet the impact and response mechanism of compound fertilization rates on carbon sinks in agroforestry systems remain ambiguous. This study aims to elucidate the impact of different compound fertilizer rates on soil greenhouse gas (GHG) emissions, vegetation and soil organic carbon (SOC) sinks, and to illustrate the differences in agroforestry systems' carbon sinks through a one-year positioning test across 12 plots, applying different compound fertilizer application rates (0 (CK), 400 (A1), 800 (A2), and 1600 (A3) kg ha-1). The study demonstrated that, after fertilization, the total GHG emissions of A1 decreased by 4.41%, whereas A2 and A3 increased their total GHG emissions by 17.13% and 72.23%, respectively. The vegetation carbon sequestration of A1, A2, and A3 increased by 18.04%, 26.75%, and 28.65%, respectively, and the soil organic carbon sequestration rose by 32.57%, 42.27% and 43.29%, respectively. To sum up, in contrast with CK, the ecosystem carbon sequestration climbed by 54.41%, 51.67%, and 0.90%, respectively. Our study suggests that rational fertilization can improve the carbon sink of the ecosystem and effectively ameliorate climate change.

17.
Plants (Basel) ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337948

RESUMO

Innovative measures of nitrogen (N) fertilization to increase season-long N availability is essential for gaining the optimal foxtail millet (Setaria italica L. Beauv.) productivity and N use efficiency. A split plot field experiment was conducted using the foxtail millet variety Huayougu 9 in 2020 and 2021 in Northeast China to clarify the physiological mechanism of a novel polyaspartic acid-chitosan (PAC)-coated urea on N assimilation and utilization from foxtail millet. Conventional N fertilizer (CN) and the urea-coated -PAC treatments were tested under six nitrogen fertilizer application levels of 0, 75, 112.5, 150, 225, and 337.5 kg N ha-1. The results showed that compared to CN, PN increased the foxtail millet yield by 5.53-15.75% and 10.43-16.17% in 2020 and 2021, respectively. PN increased the leaf area index and dry matter accumulation by 7.81-18.15% and 12.91-41.92%, respectively. PN also enhanced the activities of nitrate reductase, glutamine synthetase, glutamic oxaloacetic transaminase, and glutamic-pyruvic transaminase, thereby increasing the soluble protein in the leaf, plant, and grain N content at harvest compared to CN. Consequently, partial factor productivity from applied N, the agronomic efficiency of applied N, recovery efficiency of applied N, and physiological efficiency of applied N of foxtail millet under PN treatments compared to CN were increased. The improvement effect of the items above was more noticeable under the low-middle N application levels (75, 112.5, and 150 kg N ha-1). In conclusion, the PAC could achieve the goal of high yield and high N use efficiency in foxtail millet under the background of a one-time basic fertilizer application.

18.
Environ Int ; 183: 108431, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38217904

RESUMO

Microplastic (MP) pollution is a rapidly growing global environmental concern that has led to the emergence of a new environmental compartment, the plastisphere, which is a hotspot for the accumulation of antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs). However, studies on the effects of long-term organic fertilizer application on the dispersal of ARGs and virulence factor genes (VFGs) in the plastisphere of farmland soil have been limited. Here, we performed a field culture experiment by burying nylon bags filled with MPs in paddy soil that had been treated with different fertilizers for over 30 years to explore the changes of ARGs and VFGs in soil plastisphere. Our results show that the soil plastisphere amplified the ARG and VFG pollution caused by organic fertilization by 1.5 and 1.4 times, respectively. And it also led to a 2.7-fold increase in the risk of horizontal gene transfer. Meanwhile, the plastisphere tended to promote deterministic process in the community assembly of HBPs, with an increase of 1.4 times. Network analysis found a significant correlation between ARGs, VFGs, and bacteria in plastisphere. Correlation analysis highlight the important role of mobile genetic elements (MGEs) and bacterial communities in shaping the abundance of ARGs and VFGs, respectively. Our findings provide new insights into the health risk associated with the soil plastisphere due ARGs and VFGs derived from organic fertilizers.


Assuntos
Antibacterianos , Solo , Humanos , Antibacterianos/farmacologia , Fertilizantes/análise , Genes Bacterianos , Plásticos , Esterco/microbiologia , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética , Bactérias/genética
19.
Heliyon ; 10(7): e28065, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560273

RESUMO

The effects of the German Fertilizer Application Ordinance (GFO) on crop yield, nitrogen use efficiency and economical performance are highly controversial in science and practice in Germany. This study presents the results of a multi-year field experiment conducted at an experimental farm in southern Germany, in which the effects of different fertilizer systems on crop yield, protein concentration and nitrogen balance were analyzed. At this study site, relatively low N mineralization from the soil N pool was detected. Wheat (triticum aestivum L.) and barley (hordeum vulgare L.) showed strong yield declines from annual to multi-annual unfertilized plots, for maize (zea mays L.), this yield decrease was not observed. The recommendations according to GFO meets the fertilizer requirement at the trial site well. A 20% reduction of fertilization compared to GFO resulted in a 5% yield reduction and a decrease in protein concentration of wheat and barley. According to the quadratic N response function, the GFO treatment was slightly below the economic optimum nitrogen rate (Nopt) for wheat, and close to Nopt for winter barley on average over the trial years. For maize, a relatively high yield variability has been observed in the trial period so far. Sensor-based fertilization resulted in very high yields with high N use efficiency (up to 85%). This fertilization system can help to reduce nitrogen input and minimize nitrogen surplus. For wheat and barley, N fertilization and N uptake were well balanced, for maize clearly negative N surpluses were calculated. Despite all the discussion and criticism of GFO, the results of the plot trial show that high yields with high N use efficiency can be achieved with fertilization according to GFO.

20.
Front Plant Sci ; 15: 1349180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481406

RESUMO

Appropriate nitrogen (N) management system is essential for effective crop productivity and minimizing agricultural pollution. However, the underlying mechanistic understanding of how N fertilizer regulates crop yield via soil properties in soils with different fertilities remains unresolved. Here, we used a field experiment that spanned 3 cropping seasons to evaluate the grain yield (GY), aboveground biomass and N recovery efficiency (NRE) after treatment with five N fertilizer application rates (N0, N75, N112, N150, and N187) in soils with three levels of fertility. Our results indicated that the highest GY across low, moderate, and high fertility soils were 1.5 t hm-2 (N150), 4.9 t hm-2 (N187), and 5.4 t hm-2 (N112), respectively. The highest aboveground biomass and NRE were observed at N150 for all three levels of soil fertility, while only the N uptake by aboveground biomass of low and high fertility soils decreased at N187, confirming that excessive N fertilization results in a further decline in crop N uptake. The relationship between GY, NRE and N fertilizer application rates fit the unary quadratic polynomial model. To achieve a balance between grain production and environmental benefits in N fertilizer, appropriate N fertilizer rates were determined to be 97.5 kg hm-2, 140 kg hm-2 and 131 kg hm-2 for low, moderate and high fertility soils, respectively. Structural equation modeling suggested that GY was significant correlated with soil microbial biomass carbon (SMBC) and N directly in low fertility field, with SMBC directly in moderate fertility field, and via SOC and NO3 -N in high fertility field. Therefore, a soil-based management strategy for N fertilizers could enhance food security while reducing agricultural N fertilizer inputs to mitigate environmental impacts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa