RESUMO
Viruses have a potential to modify the ruminal digestion via infection and cell lysis of prokaryotes, suggesting that viruses are related to animal performance and methane production. This study aimed to elucidate the genome-based diversity of rumen viral communities and the differences in virus structure between individuals and cattle breeds and to understand how viruses influence on the rumen. To these ends, a metagenomic sequencing of virus-like particles in the rumen of 22 Japanese cattle, including Japanese Black (JB, n = 8), Japanese Shorthorn (n = 2), and Japanese Black sires × Holstein dams crossbred steers (F1, n = 12) was conducted. Additionally, the rumen viromes of six JB and six F1 that were fed identical diets and kept in a single barn were compared. A total of 8,232 non-redundant viral genomes (≥5-kb length and ≥50% completeness), including 982 complete genomes, were constructed, and rumen virome exhibited lysogenic signatures. Furthermore, putative hosts of 1,223 viral genomes were predicted using tRNA and clustered regularly interspaced short palindromic repeat (CRISPR)-spacer matching. The genomes included 1 and 10 putative novel complete genomes associated with Fibrobacter and Ruminococcus, respectively, which are the main rumen cellulose-degrading bacteria. Additionally, the hosts of 22 viral genomes, including 2 complete genomes, were predicted as methanogens, such as Methanobrevibacter and Methanomethylophilus. Most rumen viruses were highly rumen and individual specific and related to rumen-specific prokaryotes. Furthermore, the rumen viral community structure was significantly different between JB and F1 steers, indicating that cattle breed is one of the factors influencing the rumen virome composition.IMPORTANCEHere, we investigated the individual and breed differences of the rumen viral community in Japanese cattle. In the process, we reconstructed putative novel complete viral genomes related to rumen fiber-degrading bacteria and methanogen. The finding strongly suggests that rumen viruses contribute to cellulose and hemicellulose digestion and methanogenesis. Notably, this study also found that rumen viruses are highly rumen and individual specific, suggesting that rumen viruses may not be transmitted through environmental exposure. More importantly, we revealed differences of viral communities between JB and F1 cattle, indicating that cattle breed is a factor that influences the establishment of rumen virome. These results suggest the possibility of rumen virus transmission from mother to offspring and its potential to influence beef production traits. These rumen viral genomes and findings provide new insights into the characterizations of the rumen viruses.
Assuntos
Euryarchaeota , Rúmen , Humanos , Bovinos , Animais , Fermentação , Rúmen/microbiologia , Bactérias/genética , Dieta/veterinária , Celulose/metabolismo , Metano/metabolismo , DigestãoRESUMO
3-Nitrooxypropanol (3-NOP) is an investigational compound that acts as an enzyme inhibitor to decrease ruminal methanogenesis. We hypothesized that when feeding 3-NOP to cattle fed a high-forage diet, H2 would accumulate in the rumen, which could suppress microbial colonization of feed particles and fiber degradation. Therefore, the study investigated the effects of supplementing a high-forage diet with 3-NOP on ruminal fiber degradability and microbial colonization of feed particles using the in situ technique. Eight ruminally cannulated beef cattle were allocated to 2 groups (4 cattle/group) in a crossover design with 2 periods and 2 dietary treatments. The treatments were control (basal diet) and 3-NOP (basal diet supplemented with 3-NOP, 150 mg/kg of dry matter). The basal diet consisted of 45% barley silage, 45% chopped grass hay, and 10% concentrate (dry matter basis). Samples of dried, ground barley silage and grass hay were incubated in the rumen of each animal for 0, 4, 12, 24, 36, 48, 96, 120, 216, and 288 h to determine neutral detergent fiber (NDF) degradation kinetics. An additional 2 bags were incubated for 4 and 48 h to evaluate the bacterial community attached to the incubated forages. Dietary supplementation of 3-NOP decreased (-53%) the dissolved methane concentration and increased (+780%) the dissolved H2 concentration in ruminal fluid, but did not substantially alter in situ NDF degradation. The addition of 3-NOP resulted in a decrease in the α-diversity of the microbial community with colonizing communities showing reduced numbers of amplicon sequence variants and phylogenetic diversity compared with control diets. Principal coordinate analysis plots indicated that forages incubated in animals fed 3-NOP resulted in highly specific changes to targeted microbes compared with control diets based on unweighted analysis (considering only absence and presence of taxa), but did not alter the overall composition of the colonizing community based on weighted UniFrac distances; unchanged relative abundances of major taxa included phyla Bacteroidetes, Firmicutes, and Fibrobacteres. The effect of 3-NOP on colonizing methanogenic microbes differed depending upon the forage incubated, as abundance of genus Methanobrevibacter was decreased for barley silage but not for grass hay. In conclusion, 3-NOP supplementation of a high-forage diet decreased ruminal methanogenesis and increased dissolved H2 concentration, but had no negative effects on ruminal fiber degradation and only minor effects on relative abundances of the major taxa of bacteria adhered to forage substrates incubated in the rumen.
Assuntos
Fibras na Dieta/metabolismo , Propanóis/farmacologia , Rúmen/metabolismo , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais/análise , Digestão , Feminino , Fermentação , Hordeum/metabolismo , Metano/metabolismo , Filogenia , Silagem/análiseRESUMO
Ruminal digestion of neutral detergent fiber (NDF) is affected in part by the proportion of NDF that is indigestible (iNDF), and the rate at which the potentially digestible NDF (pdNDF) is digested. Indigestible NDF in forages is commonly determined as the NDF residue remaining after long-term in situ or in vitro incubations. Rate of pdNDF digestion can be determined by measuring the degradation of NDF in ruminal in vitro or in situ incubations at multiple time points, and fitting the change in residual pdNDF by time with log-transformed linear first order or nonlinear mathematical treatments. The estimate of indigestible fiber is important because it sets the pool size of potentially digestible fiber, which in turn affects the estimate of the proportion of potentially digestible fiber remaining in the time series analysis. Our objective was to compare estimates of iNDF based on in vitro (IV) and in situ (IS) measurements at 2 fermentation end points (120 and 288h). Further objectives were to compare the subsequent rate, lag, and estimated total-tract NDF digestibility (TTNDFD) when iNDF from each method was used with a 7 time point in vitro incubation of NDF to model fiber digestion. Thirteen corn silage samples were dried and ground through a 1-mm screen in a Wiley mill. A 2×2 factorial trial was conducted to determine the effect of time of incubation and method of iNDF analysis on iNDF concentration; the 2 factors were method of iNDF analysis (IS vs. IV) and incubation time (120 vs. 288h). Four sample replicates were used, and approximately 0.5g/sample was weighed into each Ankom F 0285 bag (Ankom Technology, Macedon, NY; pore size=25 µm) for all techniques. The IV-120 had a higher estimate of iNDF (37.8% of NDF) than IS-120 (32.1% of NDF), IV-288 (31.2% of NDF), or IS-288 technique (25.7% of NDF). Each of the estimates of iNDF was then used to calculate the rate of degradation of pdNDF from a 7 time point in vitro incubation. When the IV-120 NDF residue was used, the subsequent rates of pdNDF digestion were fastest (2.8% h(-1)) but the estimate of lag was longest (10.3h), compared with when iNDF was based on the IS-120 or IV-288 NDF residues (rates of 2.3%h(-1) and 2.4%h(-1); lag times of 9.7 and 9.8 h, respectively). Rate of pdNDF degradation was slowest (2.1% h(-1)) when IS-288 NDF residue was used as the estimate of iNDF. The estimate of lag based on IS-288 (9.4h) was similar to lag estimates calculated when IS-120 or IV-288 were used as the estimate of iNDF. The TTNDFD estimates did not differ between treatments (35.5%), however, because differences in estimated pools of iNDF resulted in subsequent changes in rates and lag times of fiber digestion that tended to cancel out. Estimates of fiber digestion kinetic parameters and TTNDFD were similar when fit to either the linear or nonlinear fiber degradation models. All techniques also yielded estimates of iNDF that were higher than predicted iNDF based on the commonly used ratio of 2.4 × lignin.
Assuntos
Bovinos/fisiologia , Indústria de Laticínios/métodos , Fibras na Dieta/análise , Técnicas In Vitro/veterinária , Silagem/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Digestão , Feminino , Fermentação , Técnicas In Vitro/métodos , Cinética , Modelos Teóricos , Rúmen/metabolismo , Fatores de TempoRESUMO
Our objective was to evaluate the effects of replacing either corn or alfalfa silage with tall fescue hay on total-tract neutral detergent fiber (NDF) digestibility and lactation performance in dairy cows. Twenty-four primiparous (75±35 d in milk) and 40 multiparous (68±19 d in milk) Holstein cows were blocked by parity and randomly assigned to 1 of 4 treatment groups in a pen equipped with 32 feeding gates to record intake by cow. Each gate was randomly assigned to 1 treatment group; thus, each cow had access to all 8 gates within the respective treatment and cow was the experimental unit. Treatments were formulated to replace either corn silage (CS) or alfalfa silage (AS) with tall fescue hay (TF) as follows (DM basis): 33% AS and 67% CS (control; 33AS67CS), 60% TF and 40% AS (60TF40AS), 60% TF and 40% CS (60TF40CS), and 33% TF and 67% CS (33TF67CS). The experiment was a 7-wk continuous lactation trial with a 2-wk covariate period. Milk production did not differ among treatments and averaged 40.4 kg/d. Fat yield and concentration and protein yield and concentration did not differ among treatments and averaged 1.58 kg/d, 3.94%, 1.28 kg/d, and 3.15%, respectively. Dry matter intake was greater for 33AS67CS (24.5 kg/d) compared with 60TF40CS (22.1 kg/d) and 33TF67CS (22.7 kg/d), and tended to be greater than 60TF40AS (23.2 kg/d). In vivo total-tract dry matter digestibility did not differ among treatments and averaged 66.2%. In vivo total-tract NDF digestibility was lower for 33AS67CS (37.8%) compared with 60TF40AS (44.4%) and 33TF67CS (45.3%), and similar to 60TF40CS (42.4%). In vivo total-tract NDF digestibility and an estimate of in situ total-tract NDF digestibility were similar between techniques across all treatment diets (42.3 vs. 42.6%, respectively). Inclusion of tall fescue grass hay increased the total-tract NDF digestibility of the diet and has the potential to replace corn silage and alfalfa silage and maintain milk production if economically feasible based on current market prices.
Assuntos
Bovinos/fisiologia , Digestão/efeitos dos fármacos , Festuca/química , Lactação/efeitos dos fármacos , Silagem/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Indústria de Laticínios , Dieta/veterinária , Fibras na Dieta/análise , Feminino , Medicago sativa/química , Leite/metabolismo , Modelos Biológicos , Distribuição Aleatória , Zea mays/químicaRESUMO
Two in vitro experiments were conducted to evaluate the effect of methylcellulose (MC) on i) bacterial detachment from rice straw as well as ii) inhibition of bacterial attachment and fiber digestibility. To evaluate the effect of MC on fibrolytic bacterial detachment (Exp 1), in vitro bacterial cultures with 0.1% (w/v) MC solution were compared with cultures without MC after 8 h incubation. The effect of MC on inhibition of bacterial attachment was determined by comparing with real-time PCR the populations of F. succinogenes, R. flavefaciens and R. albus established on rice straw pre-treated with 0.1% MC with those on untreated straw after incubation for 0, 6 and 12 h (Exp 2). The major fibrolytic bacterial attachment on rice straw showed significantly lower populations with either the addition of MC to the culture or pre-treated rice straw compared to controls (p<0.05). Also, the digestibility of rice straw with MC was significantly lower compared with control (p<0.05). The F. succinogenes population did not show detachment from rice straw, but showed an inhibition of attachment and proliferation on rice straw in accordance with a decrease of fiber digestion. The detachments of Ruminococcus species co-existed preventing the proliferations with subsequent reduction of fiber degradation by MC during the incubation. Their detachments were induced from stable colonization as well as the initial adhesion on rice straw by MC in in vitro ruminal fermentation. Furthermore, the detachment of R. albus was more sensitive to MC than was R. flavefaciens. These results showed the certain evidence that attachment of major fibrolytic bacteria had an effect on fiber digestion in the rumen, and each of fibrolytic bacteria, F. succinogenes, R. flavefaciens and R. albus had a specific mechanism of attachment and detachment to fiber.
RESUMO
This study assessed the impact of a mixture of garlic (Allium sativum) and oregano (Origanum vulgare) essential oils (EOGOs) on in vitro dry matter digestibility (IVDMD) and in vivo apparent nutrient digestibility. Different EOGO inclusion levels were evaluated to assess the dose response and potential effects of the mixture. Three EOGO inclusion levels (0.5, 0.75, and 1 mL/kg of incubated dry matter) were evaluated in vitro, while four treatments (0.5, 0.75, and 1 mL/day of EOGO and a control group) were tested in vivo on 12 West African sheep. A randomized controlled trial was conducted using a 4 × 4 design. Blood parameters (glucose, blood urea nitrogen, and ß-hydroxybutyrate) were measured to observe the effect of EOGO on the metabolism. The results showed that the inclusion of EOGO significantly enhanced IVDMD at low levels (p < 0.052) compared with the highest levels in treatments containing 0.5 and 0.75 mL/kg of EOGO dry matter. A higher intake of dry matter (DM), crude protein (CP), and neutral detergent fiber (NDF) (p < 0.05) was observed in the in vivo diets with the inclusion of EOGO. In terms of in vivo apparent digestibility, significant differences were found among treatments in the digestibility coefficients of DM, CP, and NDF. EOGO inclusion increased the digestibility of DM. CP digestibility displayed a cubic effect (p < 0.038), with the lowest values of digestibility observed at 1 mL EOGO inclusion. Additionally, NDF digestibility showed a cubic effect (p < 0.012), with the highest value obtained at 0.75 mL of EOGO inclusion. The inclusion levels above 0.75 mL EOGO showed a cubic effect, which indicates that higher concentrations of EOGO may not be beneficial for the digestibility of CP and NDF. Although no significant difference was observed in total digestible nutrients, a linear trend was observed (p < 0.059). EOGO improved the intake of DM, CP, and NDF. EOGO supplementation improved the digestibility of DM and NDF, with optimal levels observed at 0.5 mL/day. No significant effects were observed in the blood parameters. These results suggest that EOGO has the potential as an additive in ruminal nutrition to improve food digestibility and serve as an alternative to antibiotic additives. The use of EOGO potentially improves fiber digestion and may reduce the use of antibiotics in livestock production. Garlic (A. sativum) and oregano (O. vulgare) essential oils effectively modulated fiber digestibility at 0.75 mL/day. Garlic (A. sativum) and oregano (O. vulgare) essential oils have the potential to improve digestibility at low inclusion levels and serve as an alternative to antibiotic additives. The effectiveness of essential oils is greater in a mixture and at lower doses.
RESUMO
The aim of this experiment was to study the effects of different selenium supplemental levels on rumen fermentation microflora of sika deer at the velvet antler growth stage. A total of 20 5-year-old, healthy sika deer at the velvet antler growth stage with an average body weight of (98.08 ± 4.93) kg were randomly divided into 4 groups, and each group was fed in a single house. The SY1 group was the control group, and the SY2 group, SY3 group and SY4 group were fed a basal diet supplemented with 0.3, 1.2 and 4.8 mg/kg selenium, respectively. The pretest lasted for 7 days, and the formal trial period lasted for 110 days. The results show that: At the velvet antler growth stage, the digestibility of neutral detergent fiber and acid detergent fiber of sika deer in the SY2 group was significantly higher than that in the control group (p < 0.01). The digestibility of cellulose and crude fiber of sika deer in the SY2 group was significantly higher than those in the SY3 and SY4 groups (p < 0.01) and significantly higher than that in the control group (p < 0.05). The contents of acetic acid and propionic acid in the rumen fluid of sika deer in the SY2 group were significantly higher than those in the SY1 group (p < 0.05). Digestive enzyme analysis of rumen fluid at the velvet antler growth stage showed that the activity of protease in rumen fluid in the SY2 group was significantly lower than those in the SY1 group and SY4 group (p < 0.05). The relative abundance of Fibrobacter succinogenes in the SY2 group was significantly higher than that in the SY1 group (p < 0.05) and extremely significantly higher than those in the SY3 and SY4 groups (p < 0.01). Correlation analysis between yeast selenium level and bacterial abundance showed that the yeast selenium content in rumen fluid was significantly positively correlated with Butyrivibrio and Succiniclasticum (p < 0.01). Further verification of bacterial flora functioning showed that the SY2 group was more inclined to the degradation and utilization of fiber. In conclusion, 0.3 mg/kg selenium supplementation can increase the abundance of Prevotella ruminicola and Fibrobacter succinogenes in the rumen of sika deer and improve the degradation of fibrous substances by mediating the catabolite repression process.
RESUMO
BACKGROUND: Goat is an important livestock worldwide, which plays an indispensable role in human life by providing meat, milk, fiber, and pelts. Despite recent significant advances in microbiome studies, a comprehensive survey on the goat microbiomes covering gastrointestinal tract (GIT) sites, developmental stages, feeding styles, and geographical factors is still unavailable. Here, we surveyed its multi-kingdom microbial communities using 497 samples from ten sites along the goat GIT. RESULTS: We reconstructed a goat multi-kingdom microbiome catalog (GMMC) including 4004 bacterial, 71 archaeal, and 7204 viral genomes and annotated over 4,817,256 non-redundant protein-coding genes. We revealed patterns of feeding-driven microbial community dynamics along the goat GIT sites which were likely associated with gastrointestinal food digestion and absorption capabilities and disease risks, and identified an abundance of large intestine-enriched genera involved in plant fiber digestion. We quantified the effects of various factors affecting the distribution and abundance of methane-producing microbes including the GIT site, age, feeding style, and geography, and identified 68 virulent viruses targeting the methane producers via a comprehensive virus-bacterium/archaea interaction network. CONCLUSIONS: Together, our GMMC catalog provides functional insights of the goat GIT microbiota through microbiome-host interactions and paves the way to microbial interventions for better goat and eco-environmental qualities. Video Abstract.
Assuntos
Cabras , Microbiota , Animais , Archaea/genética , Bactérias/genética , Trato Gastrointestinal/microbiologia , MetanoRESUMO
Ferulic acid (FA) is one of the most abundant hydroxycinnamic acids in the plant world, especially in the cell wall of grain bran, in comparison with forage and crop residues. Previous studies noted that FA was mainly linked with arabinoxylans and lignin in plant cell walls in ester and ether covalent forms. After forages were ingested by ruminant animals or encountered rumen microbial fermentation in vitro, these cross-linkages form physical and chemical barriers to protect cell-wall carbohydrates from microbial attack and enzymatic hydrolysis. Additionally, increasing studies noted that FA presented some toxic effect on microbial growth in the rumen. In recent decades, many studies have addressed the relationships of ester and/or ether-linked FA with rumen nutrient digestibility, and there is still some controversy whether these linkages could be used as a predicator of forage digestibility in ruminants. The authors in this review summarized the possible relationships between ester and/or ether-linked FA and fiber digestion in ruminants. Rumen microbes, especially bacteria and fungi, were found capable of breaking down the ester linkages within plant cell walls by secreting feruloyl and p-coumaroyl esterase, resulting in the release of free FA and improvement of cell wall digestibility. The increasing evidence noted that these esterases secreted by rumen microbes presented synergistic effects with xylanase and cellulase to effectively hydrolyze forage cell walls. Some released FA were absorbed through the rumen wall directly and entered into blood circulation and presented antioxidant effects on host animals. The others were partially catabolized into volatile fatty acids by rumen microbes, and the possible catabolic pathways discussed. To better understand plant cell wall degradation in the rumen, the metabolic fate of FA along with lignin decomposition mechanisms are needed to be explored via future microbial isolation and incubation studies with aims to maximize dietary fiber intake and enhance fiber digestion in ruminant animals.
RESUMO
The objective of this study was to compare the nutritional composition and the neutral detergent fiber (NDF) degradation kinetics of brown midrib (BMR) and non-BMR genotypes within and across warm-season annual grasses. Four commercial varieties (two non-BMR and two BMR) of corn, sorghum, and pearl millet were planted in plots. Forage samples were incubated in the rumen of three rumen-cannulated cows for 0, 3, 6, 12, 24, 48, 96, and 240 h. On an NDF basis, all forage types showed lower acid detergent lignin (ADL) concentrations for BMR genotypes, but the magnitude of the difference differed among forage types. The concentration of undegraded NDF (uNDF; NDF basis) differed among forage types and between genotypes. Corn had the least, pearl millet had the intermediate, and sorghum had the greatest concentration of uNDF. Non-BMR genotypes had greater concentrations of uNDF than BMR genotypes. No interaction existed between forage type and genotype for the concentration of uNDF. In conclusion, although BMR forages may show lower ADL concentrations in the cell wall and greater NDF degradability than non-BMR forages of the same forage type, BMR forages do not always have the least ADL concentration or the greatest NDF degradability when comparing different forage types.
RESUMO
Environmental pressures of ruminant production could be reduced by improving digestive efficiency. Previous in vivo attempts to manipulate the rumen microbial community have largely been unsuccessful probably due to the influencing effect of the host. Using an in vitro consecutive batch culture technique, the aim of this study was to determine whether manipulation was possible once the bacterial community was uncoupled from the host. Two cross inoculation experiments were performed. Rumen fluid was collected at time of slaughter from 11 Holstein-Friesian steers from the same herd for Experiment 1, and in Experiment 2 were collected from 11 Charolais cross steers sired by the same bull and raised on a forage only diet on the same farm from birth. The two fluids that differed most in their in vitro dry matter disappearance (IVDMD; "Good," "Bad") were selected for their respective experiment. The fluids were also mixed (1:1, "Mix") and used to inoculate the model. In Experiment 1, the mixed rumen fluid resulted in an IVDMD midway between that of the two rumen fluids from which it was made for the first 24 h batch culture (34, 29, 20 g per 100 g DM for the Good, Mix, and Bad, respectively, P < 0.001) which was reflected in fermentation parameters recorded. No effect of cross inoculation was seen for Experiment 2, where the Mix performed most similarly to the Bad. In both experiments, IVDMD increased with consecutive culturing as the microbial population adapted to the in vitro conditions and differences between the fluids were lost. The improved performance with each consecutive batch culture was associated with reduced bacterial diversity. Increases in the genus Pseudobutyrivibrio were identified, which may be, at least in part, responsible for the improved digestive efficiency observed, whilst Prevotella declined by 50% over the study period. It is likely that along with host factors, there are individual factors within each community that prevent other microbes from establishing. Whilst we were unable to manipulate the bacterial community, uncoupling the microbiota from the host resulted in changes in the community, becoming less diverse with time, likely due to environmental heterogeneity, and more efficient at digesting DM.
RESUMO
This study examines the colonization of barley straw (BS) and corn stover (CS) by rumen bacteria and how this is impacted by ammonia fiber expansion (AFEX) pre-treatment. A total of four ruminally cannulated beef heifers were used to investigate in situ microbial colonization in a factorial design with two crop residues, pre-treated with or without AFEX. Crop residues were incubated in the rumen for 0, 2, 4, 8 and 48 h and the colonizing profile was determined using 16 s rRNA gene sequencing. The surface colonizing community clustered based on incubation time and pre-treatment. Fibrobacter, unclassified Bacteroidales, and unclassified Ruminococcaceae were enriched during late stages of colonization. Prevotella and unclassified Lachnospiraceae were enriched in the early stages of colonization. The microbial community colonizing BS-AFEX and CS was less diverse than the community colonizing BS and CS-AFEX. Prevotella, Coprococcus and Clostridium were enriched in both AFEX crop residues, while untreated crop residues were enriched with Methanobrevibacter. Several pathways associated with simple carbohydrate metabolism were enriched in the primary colonizing community of AFEX crop residues. This study suggests that AFEX improves the degradability of crop residues by increasing the accessibility of polysaccharides that can be metabolized by the dominant taxa responsible for primary colonization.
Assuntos
Amônia , Rúmen , Ração Animal/análise , Animais , Bovinos , Fibras na Dieta , Feminino , Zea maysRESUMO
Microbiota inhabiting the gastrointestinal (GI) tract of animals has important impacts on many host physiological processes. Although host diet is a major factor influencing the composition of the gut micro-organismal community, few comparative studies have considered how differences in diet influence community composition across the length of the GI tract. We used 16S sequencing to compare the microbiota along the length of the GI tract in Abert's (Sciurus aberti) and fox squirrels (S. niger) living in the same habitat. While fox squirrels are generalist omnivores, the diet of Abert's squirrels is unusually high in plant fiber, particularly in winter when they extensively consume fiber-rich inner bark of ponderosa pine (Pinus ponderosa). Consistent with previous studies, microbiota of the upper GI tract of both species consisted primarily of facultative anaerobes and was less diverse than that of the lower GI tract, which included mainly obligate anaerobes. While we found relatively little differentiation between the species in the microbiota of the upper GI tract, the community composition of the lower GI tract was clearly delineated. Notably, the Abert's squirrel lower GI community was more stable in composition and enriched for microbes that play a role in the degradation of plant fiber. In contrast, overall microbial diversity was higher in fox squirrels. We hypothesize that these disparities reflect differences in diet quality and diet breadth between the species.
RESUMO
Rumen digesta was obtained from wild Hokkaido sika deer to compare bacterial flora between summer and winter. Bacterial flora was characterized with molecular-based approaches and enrichment cultivation. Bacteroidetes was shown as a major phylum followed by Firmicutes, with similar proportions in both seasons. However, two phylogenetically unique groups in Bacteroidetes were found in each season: unknown group A in winter and unknown group B in summer. The ruminal abundance of unknown group A was the highest followed by Ruminococcus flavefaciens in winter. Moreover, the abundance of these two was higher in winter than in summer. In contrast, the abundance of unknown group B was higher in summer than in winter. In addition, this group showed the highest abundance in summer among the bacteria quantified. Unknown group A was successfully enriched by cultivating with oak bark and sterilized rumen fluid, particularly that from deer. Bacteria of this group were distributed in association with the solid rather than the liquid rumen fraction, and were detected as small cocci. Accordingly, unknown group A is assumed to be involved in degradation of fibrous materials. These results suggest that wild Hokkaido sika deer develop a rumen bacterial flora in response to changes in dietary conditions.
Assuntos
Animais Selvagens/microbiologia , Temperatura Baixa , Cervos/microbiologia , Fibras na Dieta/metabolismo , Digestão/fisiologia , Microbioma Gastrointestinal/fisiologia , Rúmen/microbiologia , Estações do Ano , Animais , Animais Selvagens/fisiologia , Bacteroidetes/fisiologia , Cervos/fisiologia , Dieta , Japão , Rúmen/fisiologia , Ruminococcus/fisiologiaRESUMO
Several studies have evaluated the effects of complete or partial ruminal protozoa (RP) inhibition; however, to this date, no practical suppressant has been identified and used in large scale. This meta-analysis quantitatively evaluates the effectiveness of multiple strategies on inhibiting RP numbers and their influence on ruminal fermentation and animal performance. This study compared 66 peer-reviewed articles (16 manuscripts for complete and 50 manuscripts for partial RP inhibition that used supplemental phytochemicals and lipids, published from 2000 to 2018, to inhibit RP in vivo. Data were structured to allow a meta-analytical evaluation of differences in response to different treatments (complete RP inhibition, phytochemicals, and lipids). Data were analyzed using mixed models with the random effect of experiment and weighted by the inverse of pooled standard error of the mean (SEM) squared. Supplemental phytochemicals and LCFA had no effects on inhibiting RP numbers; however, supplemental MCFA had a potent antiprotozoal effect. Both complete and partial RP (supplemental phytochemicals and lipids) inhibition decreased methane production, total tract digestibility of OM and NDF, and ruminal NH3-N concentration and increased propionate molar proportion. Methane production, molar proportions of acetate and propionate, total tract NDF digestibility were affected by the interaction of treatment (supplemental phytochemicals and lipids) and RP numbers. Supplemental phytochemicals and lipids can be effective in reducing methane production when RP numbers is below 7 Log10 cells/mL, especially by supplemental saponins, tannins, and MCFA. In terms of animal performance, supplemental tannins could be recommended to control methane emissions without affecting animal performance. However, their negative effects on total tract digestibility could be a drawback when feeding tannins to ruminants. The negative effects of supplemental lipids on milk fat composition should be considered when feeding lipids to ruminants. In conclusion, ruminal protozoa play important roles on methanogenesis, fiber digestion, and ruminal NH3-N concentration, regardless of experimental diets and conditions; supplemental phytochemicals and lipids can be effective on reducing methane production when RP numbers is below 7 Log10 cells/mL. Among these partial RP inhibition strategies, supplemental tannins could be recommended to control methane production.
RESUMO
The fibrolytic rumen bacterium Ruminococcus flavefaciensOS14 was isolated from swamp buffalo and its phylogenetic, ecological and digestive properties were partially characterized. Isolates from rumen contents of four swamp buffalo were screened for fibrolytic bacteria; one of the 40 isolates showed a distinctive feature of solubilizing cellulose powder in liquid culture and was identified as R. flavefaciens based on its 16S ribosomal DNA sequence. This isolate, OS14, was employed for detection and digestion studies, for which a quantitative PCR assay was developed and defined cultures were tested with representative forages in Thailand. OS14 was phylogenetically distant from other isolated and uncultured R. flavefaciens and showed limited distribution among Thai ruminants but was absent in Japanese cattle. OS14 digested rice straw and other tropical forage to a greater extent than the type strain C94 of R. flavefaciens. OS14 produced more lactate than C94, and digested para grass to produce propionate more extensively in co-culture with lactate-utilizing Selenomonas ruminantium S137 than a co-culture of C94 with S137. These results indicate that phylogenetically distinct OS14 could digest Thai local forage more efficiently than the type strain, possibly forming a symbiotic cross-feeding relationship with lactate-utilizing bacteria. This strain might be useful for future animal and other industrial applications.
Assuntos
Búfalos/microbiologia , Fibras na Dieta/metabolismo , Filogenia , Rúmen/microbiologia , Ruminococcus/genética , Ruminococcus/fisiologia , Animais , Celulose/metabolismo , Técnicas de Cocultura , DNA Bacteriano/genética , Lactatos/metabolismo , Oryza/metabolismo , Propionatos/metabolismo , RNA Ribossômico 16S/genética , Ruminococcus/isolamento & purificação , Ruminococcus/metabolismo , Selenomonas/metabolismo , Selenomonas/fisiologiaRESUMO
The aim of this review is to identify the origin and implications of a nondietary material present in digesta and feces that interferes with the determination of dietary fiber in gastrointestinal contents. Negative values for ileal and fecal digestibility of dietary fiber are commonly reported in the literature for monogastric animal species, including humans. As negative values are not possible physiologically, this suggests the existence of a nondietary material in the gastrointestinal contents and feces that interferes with the accurate determination of dietary fiber digestibility when conventional methods of fiber determination are applied. To date, little attention has been given to this nondietary interfering material, which appears to be influenced by the type and concentration of fiber in the diet. Interestingly, estimates of dietary fiber digestibility increase substantially when corrected for the nondietary interfering material, which suggests that currently reported values underestimate the digestibility of dietary fiber and may misrepresent where, in the digestive tract, fermentation of fiber occurs. A new perspective of dietary fiber digestion in the gastrointestinal tract is developing, leading to a better understanding of the contribution of dietary fiber to health.
Assuntos
Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Digestão , Valor Nutritivo , Ração Animal , Animais , Dieta , Reações Falso-Negativas , Fezes/química , Fermentação , Trato Gastrointestinal/química , Humanos , Íleo/químicaRESUMO
The purpose of this study was to determine the effect of rumen inoculum from heifers with fast vs. slow rate of in situ fiber digestion on the fermentation of complex versus easily digested fiber sources in the forms of untreated and Ammonia Fiber Expansion (AFEX) treated barley straw, respectively, using an artificial rumen simulation technique (Rusitec). In situ fiber digestion was measured in a previous study by incubating untreated barley straw in the rumen of 16 heifers fed a diet consisting of 700 g/kg barley straw and 300 g/kg concentrate. The two heifers with fastest rate of digestion (Fast ≥ 4.18% h-1) and the two heifers with the slowest rate of digestion (Slow ≤ 3.17% h-1) were chosen as inoculum donors for this study. Two Rusitec apparatuses each equipped with eight fermenters were used in a completely randomized block design with two blocks (apparatus) and four treatments in a 2 × 2 factorial arrangement of treatments (Fast or Slow rumen inoculum and untreated or AFEX treated straw). Fast rumen inoculum and AFEX straw both increased (P < 0.05) disappearance of dry matter (DMD), organic matter, true DMD, neutral detergent fiber, acid detergent fiber, and nitrogen (N) with an interactive effect between the two (P < 0.05). Fast rumen inoculum increased (P > 0.05) methane production per gram of digested material for both untreated and AFEX straw, and reduced (interaction, P < 0.05) acetate: propionate ratio for untreated straw. Greater relative populations of Ruminococcus albus (P < 0.05) and increased microbial N production (P = 0.045) were observed in Fast rumen inoculum. AFEX straw in Fast inoculum had greater total bacterial populations than Slow, but for untreated straw this result was reversed (interaction, P = 0.013). These findings indicate that differences in microbial populations in rumen fluid contribute to differences in the capacity of rumen inoculum to digest fiber.
RESUMO
Colonization patterns of representative rumen bacteria were compared between untreated rice straw (UTS) and sodium hydroxide-treated rice straw (SHTS). UTS and SHTS were incubated in the rumen of sheep for 10 min, 1, 2, 6, 12, 24, 48 and 96 h using the nylon bag method. The population sizes of 13 representative bacterial species or groups were quantified by real-time PCR. The total bacterial population size (abundance) was similar in both UTS and SHTS. Fibrobacter succinogenes showed a higher population size compared to other fibrolytic species and was detected at a higher level in SHTS (3.7%) than in UTS (2.6%). Ruminococcus albus and Ruminococcus flavefaciens were also detected at higher levels in SHTS (0.15% and 0.29%) than in UTS (0.03% and 0.18%). Population sizes of non-fibrolytic species, such as Selenomonas ruminantium, Anaerovibrio lipolytica and Succinivibrio dextrinosolvens were higher in UTS than in SHTS. Coefficient of determination (r(2) ) on population changes between bacterial species or groups were higher in UTS than in SHTS, suggesting the necessity of stronger bacterial interactions for UTS digestion. Therefore, not only colonization of fibrolytic species, but also synergistic interactions between different bacterial species may be key to the ruminal digestion of rice straw.