RESUMO
Bite force measurements are crucial in the realm of biomedical research, particularly in the areas of dentistry and orthodontic care. Various intraoral devices have been used to assess biting force, but each has limitations and drawbacks. Fiber optic sensors (FOSs) offer advantages such as electrical inertness, immunity to electromagnetic interference, and high sensitivity. Distributed fiber optic sensing allows an increase in the number of sensing points and can interrogate numerous reflections from scattering events within an optical fiber. We present four dental bites with heights of 6 mm, which enabled bilateral measurements. U-shaped sensors were prepared by embedding fibers into silicone by folding a single-mode fiber into four lines and multiplexing eight parallel nanoparticle-doped fibers. Dental bite models were created using two silicone materials (Sorta Clear 18 and Sorta Clear 40). The developed sensors were calibrated by applying weights up to 900 g, resulting in a linear response. Experiments were conducted to compare the efficacy of the dental bites. The collection of massive data was enabled by constructing a 2D map of the dental bites during multi-point sensing.
RESUMO
Salinity is a very important parameter from an environmental perspective, and therefore, efficient and accurate systems are required for marine environmental monitoring and productive industries. A plasmonic sensor based on doubly deposited tapered optical fibers (DLUWTs-double-layer uniform-waist tapers) for the measurement of salinity is presented. The physical principle of the sensor, as well as its structure, is discussed, and its performance is experimentally demonstrated, obtaining very good sensitivities. The possibility of shifting towards higher wavelength measuring ranges associated with DLUWTs is also exploited. At the same time, we have considered the necessity of an extensive characterization of the behavior of the refractive index of salty water, both with variations in temperature and the composition of the salts dissolved. This is important due to the somehow changing reality of salinity measurements and the possibility of establishing new approaches for the determination of absolute salinity as opposed to practical salinity based on electrical conductivity measurements. The results obtained, which show high sensitivity and a good performance in general without the need for the use of semi-empirical algorithms, permit, in our opinion, an advance in the tendency towards refractometric determination of salinity with optical sensors apt for in situ, real-time, accurate measurements in realistic measuring conditions.
RESUMO
PURPOSE: Radiofrequency ablation is an increasingly used surgical option for ablation, resection and coagulation of soft tissues in joint arthroscopy. One of the major issues of thermal ablation is the temperature monitoring across the target areas, as cellular mortality is a direct consequence of thermal dosimetry. Temperatures from 45 °C to 50 °C are at risk of damage to chondrocytes. One of the most reliable tools for temperature monitoring is represented by fiber optic sensors, as they allow accurate and real-time temperature measurement via a minimally invasive approach. The aim of this study was to determine, by fiber Bragg grating sensors (FBGs), the safety of radiofrequency ablation in tissue heating applied to ex-vivo bovine hip joints. METHODS: Ex vivo bovine hips were subjected to radiofrequency ablation, specifically in the acetabular labrum, for a total of two experiments. The WEREWOLF System (Smith + Nephew, Watford, UK) was employed in high operating mode and in a controlled ablation way. One optical fiber embedding seven FBGs was used to record multipoint temperature variations. Each sensor was 1 mm in length with a distance from edge to edge with each other of 2 mm. RESULTS: The maximum variation was recorded in both the tests by the FBG1 (i.e., the closest one to the electrode tip) and was lower than to 2.8 °C. The other sensors (from FBG2 to FBG7) did not record a significant temperature change throughout the duration of the experiment (maximum up to 0.7 °C for FBG7). CONCLUSIONS: No significant increase in temperature was observed at any of the seven sites. The sensor nearest to the radiofrequency source exhibited the highest temperature rise, but the variation was only 3 °C. The minimal temperature increase registered at the measurement sites, according to existing literature, is not expected to be cytotoxic. FBGs demonstrate the potential to fulfil the strict requirements for temperature measurements during arthroscopic surgery.
Assuntos
Articulação do Quadril , Ablação por Radiofrequência , Humanos , Bovinos , Animais , Temperatura , Artroscopia , CondrócitosRESUMO
A ratiometric fiber optic temperature sensor based on a highly coupled seven-core fiber (SCF) is proposed and experimentally demonstrated. A theoretical analysis of the SCF's sinusoidal spectral response in transmission configuration is presented. The proposed sensor comprises two SCF devices exhibiting anti-phase transmission spectra. Simple fabrication of the devices is shown by just splicing a segment of a 2 cm long SCF between two single-mode fibers (SMFs). The sensor proved to be robust against light source fluctuations, as a standard deviation of 0.2% was registered in the ratiometric measurements when the light source varied by 12%. Its low-cost detection system (two photodetectors) and the range of temperature detection (25 °C to 400 °C) make it a very attractive and promising device for real industrial applications.
RESUMO
The present research exposes a novel methodology to manufacture fiber optic sensors following the etching process by Hydrofluoric Acid deposition through a real-time monitoring diameter measurement by computer vision. This is based on virtual instrumentation developed with the National Instruments® technology and a conventional digital microscope. Here, the system has been tested proving its feasibility by the SMS structure diameter reduction from its original diameter of 125 µ until approximately 42.5 µm. The results obtained have allowed us to demonstrate a stable state behavior of the developed system during the etching process through diameter measurement at three different structure sections. Therefore, this proposal will contribute to the etched fiber optic sensor development that requires reaching an enhanced sensitivity. Finally, to demonstrate the previously mentioned SMS without chemical corrosion, and the etched manufactured SMS, both have been applied as glucose concentration sensors.
Assuntos
Tecnologia de Fibra Óptica , Fibras Ópticas , Tecnologia de Fibra Óptica/métodosRESUMO
Submarine optical cables, utilized as fiber-optic sensors for seismic monitoring, are gaining increasing interest because of their advantages of extending the detection coverage, improving the detection quality, and enhancing long-term stability. The fiber-optic seismic monitoring sensors are mainly composed of the optical interferometer, fiber Bragg grating, optical polarimeter, and distributed acoustic sensing, respectively. This paper reviews the principles of the four optical seismic sensors, as well as their applications of submarine seismology over submarine optical cables. The advantages and disadvantages are discussed, and the current technical requirements are concluded, respectively. This review can provide a reference for studying submarine cable-based seismic monitoring.
Assuntos
Acústica , Tecnologia de Fibra ÓpticaRESUMO
Distributed fiber optic sensors (DFOS) have become a new method for continuously monitoring infrastructure status. However, the fiber's fragility and the installation's complexity are some of the main drawbacks of this monitoring approach. This paper aims to overcome this limitation by embedding a fiber optic sensor into a textile for a faster and easier installation process. To demonstrate its feasibility, the smart textile was installed on a pedestrian bridge at the University of Massachusetts Lowell. In addition, dynamic strain data were collected for two different years (2021 and 2022) using Optical Frequency Domain Reflectometry (OFDR) and compared, to determine the variability of the data after one year of installation. We determined that no significant change was observed in the response pattern, and the difference between the amplitude of both datasets was 14% (one person jumping on the bridge) and 43% (two people jumping) at the first frequency band. This result shows the proposed system's functionality after one year of installation, as well as its potential use for traffic monitoring.
RESUMO
Graphene-based materials have been increasingly incorporated to optical fiber plasmonic sensors due to the peculiar physical and chemical properties of these materials (hardness and flexibility, high electrical and thermal conductivity, and very good adsorption for many substances, etc.). In this paper, we theoretically and experimentally showed how the addition of graphene oxide (GO) to optical fiber refractometers permits the development of surface plasmon resonance (SPR) sensors with very good characteristics. We used doubly deposited uniform-waist tapered optical fibers (DLUWTs) as supporting structures because of their already proven good performance. The presence of GO as an effective third layer is useful to tune the wavelength of the resonances. In addition, the sensitivity was improved. We depict the procedures for the production of the devices and characterize the GO+DLUWTs produced in this way. We also showed how the experimental results are in agreement with the theoretical predictions and used these to estimate the thickness of deposited GO. Finally, we compared the performance of our sensors with other ones that have been recently reported, showing that our results are among the best reported. Using GO as the medium in contact with the analyte, in addition to the good overall performance of devices, permit consideration of this option as an interesting possibility for the future development of SPR-based fiber sensors.
RESUMO
We report on a study of the temperature dependence of the response of a BSO crystal based polarimetric current sensor with spectral interrogation. Two possible interrogation schemes are discussed. The spectral dependence of the optical rotation along the crystal caused by temperature and current changes is investigated, and approximate dependences for the sensitivities to current SI and temperature ST are derived. A mixed term in the response with spectral interrogation is revealed, the elimination of which is achieved by tracking wavelength shifts Δλ1 and Δλ2 of two distinct extrema in the polarimetric response. A temperature independent second degree equation for the current changes ΔI as a function of the measured spectral shifts is derived and tested.
RESUMO
This paper presents reported machine learning approaches in the field of Brillouin distributed fiber optic sensors (DFOSs). The increasing popularity of Brillouin DFOSs stems from their capability to continuously monitor temperature and strain along kilometer-long optical fibers, rendering them attractive for industrial applications, such as the structural health monitoring of large civil infrastructures and pipelines. In recent years, machine learning has been integrated into the Brillouin DFOS signal processing, resulting in fast and enhanced temperature, strain, and humidity measurements without increasing the system's cost. Machine learning has also contributed to enhanced spatial resolution in Brillouin optical time domain analysis (BOTDA) systems and shorter measurement times in Brillouin optical frequency domain analysis (BOFDA) systems. This paper provides an overview of the applied machine learning methodologies in Brillouin DFOSs, as well as future perspectives in this area.
Assuntos
Tecnologia de Fibra Óptica , Dispositivos Ópticos , Fibras Ópticas , Umidade , Aprendizado de MáquinaRESUMO
In the paper, the effect of spontaneous Brillouin scattering (SpBS) is analyzed as a noise source in distributed acoustic sensors (DAS). The intensity of the SpBS wave fluctuates over time, and these fluctuations increase the noise power in DAS. Based on experimental data, the probability density function (PDF) of the spectrally selected SpBS Stokes wave intensity is negative exponential, which corresponds to the known theoretical conception. Based on this statement, an estimation of the average noise power induced by the SpBS wave is given. This noise power equals the square of the average power of the SpBS Stokes wave, which in turn is approximately 18 dB lower than the Rayleigh backscattering power. The noise composition in DAS is determined for two configurations, the first for the initial backscattering spectrum and the second for the spectrum in which the SpBS Stokes and anti-Stokes waves are rejected. It is established that in the analyzed particular case, the SpBS noise power is dominant and exceeds the powers of the thermal, shot, and phase noises in DAS. Accordingly, by rejecting the SpBS waves at the photodetector input, it is possible to reduce the noise power in DAS. In our case, this rejection is carried out by an asymmetric Mach-Zehnder interferometer (MZI). The rejection of the SpBS wave is most relevant for broadband photodetectors, which are associated with the use of short probing pulses to achieve short gauge lengths in DAS.
Assuntos
Fertilização , Frequência Cardíaca , Funções VerossimilhançaRESUMO
In the domain of optical fiber distributed acoustic sensing, the persistent challenge of extending sensing distances while concurrently improving spatial resolution and frequency response range has been a complex endeavor. The amalgamation of pulse compression and frequency division multiplexing methodologies has provided certain advantages. Nevertheless, this approach is accompanied by the drawback of significant bandwidth utilization and amplified hardware investments. This study introduces an innovative distributed optical fiber acoustic sensing system aimed at optimizing the efficient utilization of spectral resources by combining compressed pulses and frequency division multiplexing. The system continuously injects non-linear frequency modulation detection pulses spanning various frequency ranges. The incorporation of non-uniform frequency division multiplexing augments the vibration frequency response spectrum. Additionally, nonlinear frequency modulation adeptly reduces crosstalk and enhances sidelobe suppression, all while maintaining a favorable signal-to-noise ratio. Consequently, this methodology substantially advances the spatial resolution of the sensing system. Experimental validation encompassed the multiplexing of eight frequencies within a 120 MHz bandwidth. The results illustrate a spatial resolution of approximately 5 m and an expanded frequency response range extending from 1 to 20 kHz across a 16.3 km optical fiber. This achievement not only enhances spectral resource utilization but also reduces hardware costs, making the system even more suitable for practical engineering applications.
RESUMO
Gold nanoparticles (Au-NPs) are readily used nanoparticles which finds applications in fields like biosensors, drug delivery, optical bioimaging and many state of art systems used for detection. In the recent years fiber optic sensors have seen utilization of Au-NPs along with other nanoparticles for implementation of sensors for sensing various biomolecules like cholesterol, glucose, and uric acid. The cancer cells, creatinine and bacteria can also be detected with the fiber optic sensors. Given the significance of Au-NPs in fiber optic sensors, the current work is a review of the synthesis, the common methods used for characterization, and the applications of Au-NPs. It is important to discuss and analyse the work reported in the literature to understand the trend and gaps in developing plasmonic optical fiber sensors.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Fibras Ópticas , Ressonância de Plasmônio de Superfície , Técnicas Biossensoriais/métodosRESUMO
Magnetic resonance imaging (MRI) can provide high-quality 3-D visualization of target anatomy, surrounding tissue, and instrumentation, but there are significant challenges in harnessing it for effectively guiding interventional procedures. Challenges include the strong static magnetic field, rapidly switching magnetic field gradients, high-power radio frequency pulses, sensitivity to electrical noise, and constrained space to operate within the bore of the scanner. MRI has a number of advantages over other medical imaging modalities, including no ionizing radiation, excellent soft-tissue contrast that allows for visualization of tumors and other features that are not readily visible by other modalities, true 3-D imaging capabilities, including the ability to image arbitrary scan plane geometry or perform volumetric imaging, and capability for multimodality sensing, including diffusion, dynamic contrast, blood flow, blood oxygenation, temperature, and tracking of biomarkers. The use of robotic assistants within the MRI bore, alongside the patient during imaging, enables intraoperative MR imaging (iMRI) to guide a surgical intervention in a closed-loop fashion that can include tracking of tissue deformation and target motion, localization of instrumentation, and monitoring of therapy delivery. With the ever-expanding clinical use of MRI, MRI-compatible robotic systems have been heralded as a new approach to assist interventional procedures to allow physicians to treat patients more accurately and effectively. Deploying robotic systems inside the bore synergizes the visual capability of MRI and the manipulation capability of robotic assistance, resulting in a closed-loop surgery architecture. This article details the challenges and history of robotic systems intended to operate in an MRI environment and outlines promising clinical applications and associated state-of-the-art MRI-compatible robotic systems and technology for making this possible.
RESUMO
The results of measuring gradient strain fields by embedded or mounted point fiber-optic sensors based on Bragg gratings and distributed fiber-optic sensors based on Rayleigh scattering are discussed. Along with the experiment, the results of numerical modeling of strain measurement errors associated with the assumption of uniaxial stress state in the area of the embedded Bragg grating and measurement errors by distributed fiber-optic sensors associated with gage length are presented. Experimental results are presented for 3D printed samples and samples made of polymer composite material. The geometry of the samples was chosen based on the results of numerical simulations, and provides different variants of non-uniform strain distribution under uniaxial tension, including the variant in which the derivative of the strain distribution function changes its sign. A good agreement of numerical results and experimental data obtained by distributed and point fiber-optic sensors in areas where the derivative of the strain distribution function keeps a sign and an increase in the error of strain measurement results by distributed fiber-optic sensors in areas where this derivative changes sign are demonstrated.
RESUMO
On-time monitoring and condition assessments of steel cables provide mission-critical data for informed decision making, ensuring the structural safety of post-tensioned concrete structures. This study aimed to develop a spiral deployment scheme of distributed fiber optic sensors (DFOS) and to monitor/assess the post-tensioned force in seven-wire twisted steel cables, based on the pulse-pre-pump Brillouin optical time domain analysis. Each DFOS was placed in a spiral shape between two surface wires of a steel cable and glued to the steel cable by epoxy. Image observations were conducted to investigate the entireness and bonding condition between the optical fiber and the steel wires. Eight concrete bar specimens were cast, each with a pre-embedded plastic or metal duct at its center and each was post-tensioned by a steel strand through the duct once they were instrumented with two strain and two temperature sensors. The strand was loaded/unloaded and monitored by measuring the Brillouin frequency shifts and correlating them with the applied strains and the resulting cable force after temperature compensation. The maximum, minimum, and average cable forces integrated from the measured stain data were compared and validated with those from a load cell. The maximum (or average) cable force was linearly related to the ground truth data with a less than 10% error between them, after any initial slack had been removed from the test setup. The post-tensioned force loss was bounded by approximately 30%, using the test setup designed in this study.
Assuntos
Fibras Ópticas , Aço , Fios Ortopédicos , PlásticosRESUMO
Here, we experimentally demonstrate a wedged fiber optic surface plasmon resonance (SPR) sensor enabling high-sensitivity temperature detection. The sensing probe has a geometry with two asymmetrical bevels, with one inclined surface coated with an optically thin film supporting propagating plasmons and the other coated with a reflecting metal film. The angle of incident light can be readily tuned through modifying the beveled angles of the fiber tip, which has a remarkable impact on the refractive index sensitivity of SPR sensors. As a result, we measure a high refractive index sensitivity as large as 8161 nm/RIU in a wide refractive index range of 1.333-1.404 for the optimized sensor. Furthermore, we carry out a temperature-sensitivity measurement by packaging the SPR probe into a capillary filled with n-butanol. This showed a temperature sensitivity reaching up to -3.35 nm/°C in a wide temperature range of 20 °C-100 °C. These experimental results are well in agreement with those obtained from simulations, thus suggesting that our work may be of significance in designing reflective fiber optic SPR sensing probes with modified geometries.
Assuntos
Refratometria , Ressonância de Plasmônio de Superfície , Ressonância de Plasmônio de Superfície/métodos , Refratometria/métodos , Desenho de Equipamento , Tecnologia de Fibra Óptica/métodos , Fibras ÓpticasRESUMO
A simple and cost-effective architecture of a distributed acoustic sensor (DAS) or a phase-OTDR for engineering geology is proposed. The architecture is based on the dual-pulse acquisition principle, where the dual probing pulse is formed via an unbalanced Michelson interferometer (MI). The necessary phase shifts between the sub-pulses of the dual-pulse are introduced using a 3 × 3 coupler built into the MI. Laser pulses are generated by direct modulation of the injection current, which obtains optical pulses with a duration of 7 ns. The use of an unbalanced MI for the formation of a dual-pulse reduces the requirements for the coherence of the laser source, as the introduced delay between sub-pulses is compensated in the fiber under test (FUT). Therefore, a laser with a relatively broad spectral linewidth of about 1 GHz can be used. To overcome the fading problem, as well as to ensure the linearity of the DAS response, the averaging of over 16 optical frequencies is used. The performance of the DAS was tested by recording a strong vibration impact on a horizontally buried cable and by the recording of seismic waves in a borehole in the seabed.
Assuntos
Engenharia , Geologia , Análise Custo-Benefício , Frequência Cardíaca , AcústicaRESUMO
This work presents a detailed review of the development of distributed acoustic sensors (DAS) and their newest scientific applications. It covers most areas of human activities, such as the engineering, material, and humanitarian sciences, geophysics, culture, biology, and applied mechanics. It also provides the theoretical basis for most well-known DAS techniques and unveils the features that characterize each particular group of applications. After providing a summary of research achievements, the paper develops an initial perspective of the future work and determines the most promising DAS technologies that should be improved.
Assuntos
Acústica , Tecnologia de Fibra Óptica , HumanosRESUMO
High-temperature measurements above 1000 °C are critical in harsh environments such as aerospace, metallurgy, fossil fuel, and power production. Fiber-optic high-temperature sensors are gradually replacing traditional electronic sensors due to their small size, resistance to electromagnetic interference, remote detection, multiplexing, and distributed measurement advantages. This paper reviews the sensing principle, structural design, and temperature measurement performance of fiber-optic high-temperature sensors, as well as recent significant progress in the transition of sensing solutions from glass to crystal fiber. Finally, future prospects and challenges in developing fiber-optic high-temperature sensors are also discussed.