Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.086
Filtrar
1.
Cell ; 171(1): 179-187.e10, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890085

RESUMO

Expression of many disease-related aggregation-prone proteins results in cytotoxicity and the formation of large intracellular inclusion bodies. To gain insight into the role of inclusions in pathology and the in situ structure of protein aggregates inside cells, we employ advanced cryo-electron tomography methods to analyze the structure of inclusions formed by polyglutamine (polyQ)-expanded huntingtin exon 1 within their intact cellular context. In primary mouse neurons and immortalized human cells, polyQ inclusions consist of amyloid-like fibrils that interact with cellular endomembranes, particularly of the endoplasmic reticulum (ER). Interactions with these fibrils lead to membrane deformation, the local impairment of ER organization, and profound alterations in ER membrane dynamics at the inclusion periphery. These results suggest that aberrant interactions between fibrils and endomembranes contribute to the deleterious cellular effects of protein aggregation. VIDEO ABSTRACT.


Assuntos
Doença de Huntington/patologia , Corpos de Inclusão/patologia , Neurônios/patologia , Neurônios/ultraestrutura , Peptídeos/metabolismo , Amiloide/química , Animais , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Células HeLa , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Corpos de Inclusão/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mutação , Agregação Patológica de Proteínas , Tomografia/métodos
2.
Mol Cell ; 84(10): 1980-1994.e8, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759629

RESUMO

Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.


Assuntos
Amiloide , Autofagossomos , Autofagia , Proteína Huntingtina , Doença de Huntington , Peptídeos , Agregados Proteicos , Proteína Sequestossoma-1 , Peptídeos/metabolismo , Peptídeos/química , Peptídeos/genética , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/química , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética , Amiloide/metabolismo , Amiloide/química , Amiloide/genética , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Microscopia Crioeletrônica , Animais , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/genética
3.
Proc Natl Acad Sci U S A ; 121(23): e2401458121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38809711

RESUMO

Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two ß-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.


Assuntos
Amiloide , Insulina , Humanos , Amiloide/química , Amiloide/metabolismo , Insulina/química , Insulina/metabolismo , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas , Diabetes Mellitus Tipo 1/tratamento farmacológico , Conformação Proteica , Espectroscopia de Ressonância Magnética
4.
Trends Biochem Sci ; 47(8): 641-644, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35193796

RESUMO

α-Synuclein (a-syn) oligomers and fibrils are behind neurodegeneration in Parkinson's disease (PD), but therapeutically targeting them is challenging. Amphipathic and cationic helical peptides inhibit amyloid formation and suppress neurotoxicity by selectively binding the solvent-accessible regions in these toxic species. Can endogenous peptides, like LL-37, constitute a new therapeutic paradigm in PD?


Assuntos
Doença de Parkinson , Amiloide , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(21): e2305823120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186848

RESUMO

The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Alzheimer's amyloid-ß42 (Aß42) peptide using a variety of biophysical techniques. Hsp104 is highly effective at suppressing the formation of Thioflavin T (ThT) reactive mature fibrils that are readily observed by atomic force (AFM) and electron (EM) microscopies. Quantitative kinetic analysis and global fitting was performed on serially recorded 1H-15N correlation spectra to monitor the disappearance of Aß42 monomers during the course of aggregation over a wide range of Hsp104 concentrations. Under the conditions employed (50 µM Aß42 at 20 °C), Aß42 aggregation occurs by a branching mechanism: an irreversible on-pathway leading to mature fibrils that entails primary and secondary nucleation and saturating elongation; and a reversible off-pathway to form nonfibrillar oligomers, unreactive to ThT and too large to be observed directly by NMR, but too small to be visualized by AFM or EM. Hsp104 binds reversibly with nanomolar affinity to sparsely populated Aß42 nuclei present in nanomolar concentrations, generated by primary and secondary nucleation, thereby completely inhibiting on-pathway fibril formation at substoichiometric ratios of Hsp104 to Aß42 monomers. Tight binding to sparsely populated nuclei likely constitutes a general mechanism for substoichiometric inhibition of fibrillization by a variety of chaperones. Hsp104 also impacts off-pathway oligomerization but to a much smaller degree initially reducing and then increasing the rate of off-pathway oligomerization.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Cinética , Peptídeos beta-Amiloides/metabolismo , Amiloide/química , Dobramento de Proteína , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo
6.
J Biol Chem ; 300(6): 107326, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679331

RESUMO

In the Alzheimer's disease (AD) brain, the microtubule-associated protein tau aggregates into paired helical filaments in which each protofilament has a C-shaped conformation. In vitro assembly of tau fibrils adopting this fold is highly valuable for both fundamental and applied studies of AD without requiring patient-brain extracted fibrils. To date, reported methods for forming AD-fold tau fibrils have been irreproducible and sensitive to subtle variations in fibrillization conditions. Here, we describe a route to reproducibly assemble tau fibrils adopting the AD fold on the multi-milligram scale. We investigated the fibrillization conditions of two constructs and found that a tau (297-407) construct that contains four AD phospho-mimetic glutamate mutations robustly formed the C-shaped conformation. 2D and 3D correlation solid-state NMR spectra show a single predominant set of chemical shifts, indicating a single molecular conformation. Negative-stain electron microscopy and cryo-EM data confirm that the protofilament formed by 4E-tau (297-407) adopts the C-shaped conformation, which associates into paired, triple, and quadruple helical filaments. In comparison, NMR spectra indicate that a previously reported construct, tau (297-391), forms a mixture of a four-layered dimer structure and the C-shaped structure, whose populations are sensitive to the environmental conditions. The determination of the NMR chemical shifts of the AD-fold tau opens the possibility for future studies of tau fibril conformations and ligand binding by NMR. The quantitative assembly of tau fibrils adopting the AD fold should facilitate the development of diagnostic and therapeutic compounds that target AD tau.


Assuntos
Doença de Alzheimer , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Humanos , Dobramento de Proteína , Ressonância Magnética Nuclear Biomolecular , Mutação , Amiloide/química , Amiloide/metabolismo
7.
J Biol Chem ; 300(1): 105585, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141760

RESUMO

Fluorescent protein tags are convenient tools for tracking the aggregation states of amyloidogenic or phase separating proteins, but the effect of the tags is often not well understood. Here, we investigated the impact of a C-terminal red fluorescent protein (RFP) tag on the phase separation of huntingtin exon-1 (Httex1), an N-terminal portion of the huntingtin protein that aggregates in Huntington's disease. We found that the RFP-tagged Httex1 rapidly formed micron-sized, phase separated states in the presence of a crowding agent. The formed structures had a rounded appearance and were highly dynamic according to electron paramagnetic resonance and fluorescence recovery after photobleaching, suggesting that the phase separated state was largely liquid in nature. Remarkably, the untagged protein did not undergo any detectable liquid condensate formation under the same conditions. In addition to strongly promoting liquid-liquid phase separation, the RFP tag also facilitated fibril formation, as the tag-dependent liquid condensates rapidly underwent a liquid-to-solid transition. The rate of fibril formation under these conditions was significantly faster than that of the untagged protein. When expressed in cells, the RFP-tagged Httex1 formed larger aggregates with different antibody staining patterns compared to untagged Httex1. Collectively, these data reveal that the addition of a fluorescent protein tag significantly impacts liquid and solid phase separations of Httex1 in vitro and leads to altered aggregation in cells. Considering that the tagged Httex1 is commonly used to study the mechanisms of Httex1 misfolding and toxicity, our findings highlight the importance to validate the conclusions with untagged protein.


Assuntos
Artefatos , Éxons , Proteína Huntingtina , Doença de Huntington , Medições Luminescentes , Separação de Fases , Agregados Proteicos , Proteína Vermelha Fluorescente , Humanos , Espectroscopia de Ressonância de Spin Eletrônica , Éxons/genética , Fluorescência , Recuperação de Fluorescência Após Fotodegradação , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Medições Luminescentes/métodos , Proteína Vermelha Fluorescente/genética , Proteína Vermelha Fluorescente/metabolismo , Reprodutibilidade dos Testes
8.
Brain ; 147(5): 1644-1652, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38428032

RESUMO

The pathological misfolding and aggregation of soluble α-synuclein into toxic oligomers and insoluble amyloid fibrils causes Parkinson's disease, a progressive age-related neurodegenerative disease for which there is no cure. HET-s is a soluble fungal protein that can form assembled amyloid fibrils in its prion state. We engineered HET-s(218-298) to form four different fibrillar vaccine candidates, each displaying a specific conformational epitope present on the surface of α-synuclein fibrils. Vaccination with these four vaccine candidates prolonged the survival of immunized TgM83+/- mice challenged with α-synuclein fibrils by 8% when injected into the brain to model brain-first Parkinson's disease or by 21% and 22% when injected into the peritoneum or gut wall, respectively, to model body-first Parkinson's disease. Antibodies from fully immunized mice recognized α-synuclein fibrils and brain homogenates from patients with Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Conformation-specific vaccines that mimic epitopes present only on the surface of pathological fibrils but not on soluble monomers, hold great promise for protection against Parkinson's disease, related synucleinopathies and other amyloidogenic protein misfolding disorders.


Assuntos
Camundongos Transgênicos , Doença de Parkinson , alfa-Sinucleína , Animais , Doença de Parkinson/imunologia , Doença de Parkinson/patologia , Camundongos , alfa-Sinucleína/imunologia , alfa-Sinucleína/metabolismo , Humanos , Amiloide/imunologia , Amiloide/metabolismo , Vacinação , Proteínas Fúngicas/imunologia , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/imunologia , Feminino , Camundongos Endogâmicos C57BL
9.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078934

RESUMO

The formation of ordered cross-ß amyloid protein aggregates is associated with a variety of human disorders. While conventional infrared methods serve as sensitive reporters of the presence of these amyloids, the recently discovered amyloid secondary structure of cross-α fibrils presents new questions and challenges. Herein, we report results using Fourier transform infrared spectroscopy and two-dimensional infrared spectroscopy to monitor the aggregation of one such cross-α-forming peptide, phenol soluble modulin alpha 3 (PSMα3). Phenol soluble modulins (PSMs) are involved in the formation and stabilization of Staphylococcus aureus biofilms, making sensitive methods of detecting and characterizing these fibrils a pressing need. Our experimental data coupled with spectroscopic simulations reveals the simultaneous presence of cross-α and cross-ß polymorphs within samples of PSMα3 fibrils. We also report a new spectroscopic feature indicative of cross-α fibrils.


Assuntos
Amiloide/genética , Toxinas Bacterianas/genética , Polimorfismo Genético/genética , Espectrofotometria Infravermelho/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Staphylococcus aureus/genética
10.
J Struct Biol ; : 108109, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964522

RESUMO

Parkinson's disease (PD) is a category of neurodegenerative disorders (ND) that currently lack comprehensive and definitive treatment strategies. The etiology of PD can be attributed to the presence and aggregation of a protein known as α-synuclein. Researchers have observed that the application of an external electrostatic field holds the potential to induce the separation of the fibrous structures into peptides. To comprehend this phenomenon, our investigation involved simulations conducted on the α-synuclein peptides through the application of Molecular Dynamics (MD) simulation techniques under the influence of a 0.1 V/nm electric field. The results obtained from the MD simulations revealed that in the presence of external electric field, the monomer and oligomeric forms of α-synuclein are experienced significant conformational changes which could prevent them from further aggregation. However, as the number of peptide units in the model system increases, forming trimers and tetramers, the stability against the electric field also increases. This enhanced stability in larger aggregates indicates a critical threshold in α-synuclein assembly where the electric field's effectiveness in disrupting the aggregation diminishes. Therefore, our findings suggest that early diagnosis and intervention could be crucial in preventing PD progression. When α-synuclein predominantly exists in its monomeric or dimeric form, applying even a lower electric field could effectively disrupt the initial aggregation process. Inhibition of α-synuclein fibril formation at early stages might serve as a viable solution to combat PD by halting the formation of more stable and pathogenic α-synuclein fibrils.

11.
J Biol Chem ; 299(7): 104891, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286038

RESUMO

Fibrils of the microtubule-associated protein tau are intimately linked to the pathology of Alzheimer's disease (AD) and related neurodegenerative disorders. A current paradigm for pathology spreading in the human brain is that short tau fibrils transfer between neurons and then recruit naive tau monomers onto their tips, perpetuating the fibrillar conformation with high fidelity and speed. Although it is known that the propagation could be modulated in a cell-specific manner and thereby contribute to phenotypic diversity, there is still limited understanding of how select molecules are involved in this process. MAP2 is a neuronal protein that shares significant sequence homology with the repeat-bearing amyloid core region of tau. There is discrepancy about MAP2's involvement in pathology and its relationship with tau fibrillization. Here, we employed the entire repeat regions of 3R and 4R MAP2, to investigate their modulatory role in tau fibrillization. We find that both proteins block the spontaneous and seeded aggregation of 4R tau, with 4R MAP2 being slightly more potent. The inhibition of tau seeding is observed in vitro, in HEK293 cells, and in AD brain extracts, underscoring its broader scope. MAP2 monomers specifically bind to the end of tau fibrils, preventing recruitment of further tau and MAP2 monomers onto the fibril tip. The findings uncover a new function for MAP2 as a tau fibril cap that could play a significant role in modulating tau propagation in disease and may hold promise as a potential intrinsic protein inhibitor.


Assuntos
Doença de Alzheimer , Proteínas Associadas aos Microtúbulos , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Citoesqueleto/metabolismo , Células HEK293 , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
12.
J Biol Chem ; 299(4): 104566, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871760

RESUMO

Synucleinopathies like Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple systems atrophy (MSA), have the same pathologic feature of misfolded α-synuclein protein (α-syn) accumulation in the brain. PD patients who carry α-syn hereditary mutations tend to have earlier onset and more severe clinical symptoms than sporadic PD patients. Therefore, revealing the effect of hereditary mutations to the α-syn fibril structure can help us understand these synucleinopathies' structural basis. Here, we present a 3.38 Å cryo-electron microscopy structure of α-synuclein fibrils containing the hereditary A53E mutation. The A53E fibril is symmetrically composed of two protofilaments, similar to other fibril structures of WT and mutant α-synuclein. The new structure is distinct from all other synuclein fibrils, not only at the interface between proto-filaments, but also between residues packed within the same proto-filament. A53E has the smallest interface with the least buried surface area among all α-syn fibrils, consisting of only two contacting residues. Within the same protofilament, A53E reveals distinct residue re-arrangement and structural variation at a cavity near its fibril core. Moreover, the A53E fibrils exhibit slower fibril formation and lower stability compared to WT and other mutants like A53T and H50Q, while also demonstrate strong cellular seeding in α-synuclein biosensor cells and primary neurons. In summary, our study aims to highlight structural differences - both within and between the protofilaments of A53E fibrils - and interpret fibril formation and cellular seeding of α-synuclein pathology in disease, which could further our understanding of the structure-activity relationship of α-synuclein mutants.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/metabolismo , Microscopia Crioeletrônica , Amiloide/química , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Mutação
13.
J Biol Chem ; 299(12): 105445, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949224

RESUMO

The metabolic processes that link Alzheimer's disease (AD) to elevated cholesterol levels in the brain are not fully defined. Amyloid beta (Aß) plaque accumulation is believed to begin decades prior to symptoms and to contribute significantly to the disease. Cholesterol and its metabolites accelerate plaque formation through as-yet-undefined mechanisms. Here, the mechanism of cholesterol (CH) and cholesterol 3-sulfate (CS) induced acceleration of Aß42 fibril formation is examined in quantitative ligand binding, Aß42 fibril polymerization, and molecular dynamics studies. Equilibrium and pre-steady-state binding studies reveal that monomeric Aß42•ligand complexes form and dissociate rapidly relative to oligomerization, that the ligand/peptide stoichiometry is 1-to-1, and that the peptide is likely saturated in vivo. Analysis of Aß42 polymerization progress curves demonstrates that ligands accelerate polymer synthesis by catalyzing the conversion of peptide monomers into dimers that nucleate the polymerization reaction. Nucleation is accelerated ∼49-fold by CH, and ∼13,000-fold by CS - a minor CH metabolite. Polymerization kinetic models predict that at presumed disease-relevant CS and CH concentrations, approximately half of the polymerization nuclei will contain CS, small oligomers of neurotoxic dimensions (∼12-mers) will contain substantial CS, and fibril-formation lag times will decrease 13-fold relative to unliganded Aß42. Molecular dynamics models, which quantitatively predict all experimental findings, indicate that the acceleration mechanism is rooted in ligand-induced stabilization of the peptide in non-helical conformations that readily form polymerization nuclei.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Doença de Alzheimer/metabolismo , Amiloide/química , Peptídeos beta-Amiloides/metabolismo , Colesterol , Ligantes , Fragmentos de Peptídeos/metabolismo , Esteróis , Estrutura Secundária de Proteína
14.
Eur J Neurosci ; 59(7): 1585-1603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38356120

RESUMO

Parkinson's disease (PD) is characterized by the accumulation of misfolded alpha-synuclein (α-syn) protein, forming intraneuronal Lewy body (LB) inclusions. The α-syn preformed fibril (PFF) model of PD recapitulates α-syn aggregation, progressive nigrostriatal degeneration and motor dysfunction; however, little is known about the time course of PFF-induced alterations in basal and evoked dopamine (DA). In vivo microdialysis is well suited for identifying small changes in neurotransmitter levels over extended periods. In the present study, adult male Fischer 344 rats received unilateral, intrastriatal injections of either α-syn PFFs or phosphate-buffered saline (PBS). At 4 or 8 months post-injection (p.i.), animals underwent in vivo microdialysis to evaluate basal extracellular striatal DA and metabolite levels, local KCl-evoked striatal DA release and the effects of systemic levodopa (l-DOPA). Post-mortem analysis demonstrated equivalent PFF-induced reductions in tyrosine hydroxylase (TH) immunoreactive nigral neurons (~50%) and striatal TH (~20%) at both time points. Compared with reduction in striatal TH, reduction in striatal dopamine transporter (DAT) was more pronounced and progressed between the 4- and 8-month p.i. intervals (36% âž” 46%). Significant PFF-induced deficits in basal and evoked striatal DA, as well as deficits in motor performance, were not observed until 8 months p.i. Responses to l-DOPA did not differ regardless of PBS or PFF treatment. These results suggest that basal and evoked striatal DA are maintained for several months following PFF injection, with loss of both associated with motor dysfunction. Our studies provide insight into the time course and magnitude of PFF-induced extracellular dopaminergic deficits in the striatum.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Ratos , Masculino , Animais , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Levodopa/farmacologia , Microdiálise , Substância Negra/metabolismo , Doença de Parkinson/metabolismo
15.
J Cell Sci ; 135(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35851804

RESUMO

Fibronectin (Fn1) fibrils have long been viewed as continuous fibers composed of extended, periodically aligned Fn1 molecules. However, our live-imaging and single-molecule localization microscopy data are inconsistent with this traditional view and show that Fn1 fibrils are composed of roughly spherical nanodomains containing six to eleven Fn1 dimers. As they move toward the cell center, Fn1 nanodomains become organized into linear arrays, in which nanodomains are spaced with an average periodicity of 105±17 nm. Periodical Fn1 nanodomain arrays can be visualized between cells in culture and within tissues; they are resistant to deoxycholate treatment and retain nanodomain periodicity in the absence of cells. The nanodomain periodicity in fibrils remained constant when probed with antibodies recognizing distinct Fn1 epitopes or combinations of antibodies recognizing epitopes spanning the length of Fn1. Treatment with FUD, a peptide that binds the Fn1 N-terminus and disrupts Fn1 fibrillogenesis, blocked the organization of Fn1 nanodomains into periodical arrays. These studies establish a new paradigm of Fn1 fibrillogenesis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Fibronectinas , Microscopia , Epitopos , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Peptídeos/metabolismo
16.
J Mol Recognit ; 37(4): e3085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38599335

RESUMO

Many proteins could aggregate into amyloid fibrils under certain conditions. However, the aggregation process and morphology of the fibrils may be significantly different because of the distinct protein structure. In this article, the hydrophilic carbon dots (Lys-CA-CDs) were prepared using lysine (Lys) and citric acid (CA) as reactant under the assistance of a microwave. The dissimilar modulation effect of Lys-CA-CDs on the aggregation process of distinct structure protein was further investigated, where bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were chosen as model proteins. All results showed that Lys-CA-CDs displayed the contrary influence on the aggregation process of BSA and HEWL. Lys-CA-CDs could induce BSA to aggregate into more wormlike fibrils and inhibit the aggregation of HEWL into hair-like fibrils. The influence on the aggregation process of BSA may be assigned to the increased concentration of BSA around the Lys-CA-CDs caused by their interaction. However, inserting of Lys-CA-CDs into the inner structure of HEWL led to the change of protein secondary structure. The change of secondary structure further made it difficult for HEWL to aggregate into fibrils and Lys-CA-CDs showed the inhibition effect on HEWL aggregation.


Assuntos
Amiloide , Carbono , Interações Hidrofóbicas e Hidrofílicas , Muramidase , Agregados Proteicos , Soroalbumina Bovina , Muramidase/química , Muramidase/metabolismo , Carbono/química , Soroalbumina Bovina/química , Amiloide/química , Animais , Agregados Proteicos/efeitos dos fármacos , Bovinos , Lisina/química , Estrutura Secundária de Proteína , Pontos Quânticos/química , Galinhas , Ácido Cítrico/química
17.
Biopolymers ; 115(2): e23558, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37399327

RESUMO

The well-known phenomenon of phase separation in synthetic polymers and proteins has become a major topic in biophysics because it has been invoked as a mechanism of compartment formation in cells, without the need for membranes. Most of the coacervates (or condensates) are composed of Intrinsically Disordered Proteins (IDPs) or regions that are structureless, often in interaction with RNA and DNA. One of the more intriguing IDPs is the 526-residue RNA-binding protein, Fused in Sarcoma (FUS), whose monomer conformations and condensates exhibit unusual behavior that are sensitive to solution conditions. By focussing principally on the N-terminus low-complexity domain (FUS-LC comprising residues 1-214) and other truncations, we rationalize the findings of solid-state NMR experiments, which show that FUS-LC adopts a non-polymorphic fibril structure (core-1) involving residues 39-95, flanked by fuzzy coats on both the N- and C-terminal ends. An alternate structure (core-2), whose free energy is comparable to core-1, emerges only in the truncated construct (residues 110-214). Both core-1 and core-2 fibrils are stabilized by a Tyrosine ladder as well as hydrophilic interactions. The morphologies (gels, fibrils, and glass-like) adopted by FUS seem to vary greatly, depending on the experimental conditions. The effect of phosphorylation is site-specific. Simulations show that phosphorylation of residues within the fibril has a greater destabilization effect than residues that are outside the fibril region, which accords well with experiments. Many of the peculiarities associated with FUS may also be shared by other IDPs, such as TDP43 and hnRNPA2. We outline a number of problems for which there is no clear molecular explanation.


Assuntos
Proteínas Intrinsicamente Desordenadas , Sarcoma , Humanos , Domínios Proteicos , Espectroscopia de Ressonância Magnética , Conformação Proteica , Fosforilação , Proteínas Intrinsicamente Desordenadas/química , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo
18.
FASEB J ; 37(7): e23017, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272890

RESUMO

Cell-to-cell spreading of misfolded α-synuclein (αSYN) is supposed to play a key role in the pathological progression of Parkinson's disease (PD) and other synucleinopathies. Receptor-mediated endocytosis has been shown to contributes to the uptake of αSYN in both neuronal and glial cells. To determine the receptor involved in αSYN endocytosis on the cell surface, we performed unbiased, and comprehensive screening using a membrane protein library of the mouse whole brain combined with affinity chromatography and mass spectrometry. The candidate molecules hit in the initial screening were validated by co-immunoprecipitation using cultured cells; sortilin, a vacuolar protein sorting 10 protein family sorting receptor, exhibited the strongest binding to αSYN fibrils. Notably, the intracellular uptake of fibrillar αSYN was slightly but significantly altered, depending on the expression level of sortilin on the cell surface, and time-lapse image analyses revealed the concomitant internalization and endosomal sorting of αSYN fibrils and sortilin. Domain deletion in the extracellular portion of sortilin revealed that the ten conserved cysteines (10CC) segment of sortilin was involved in the binding and endocytosis of fibrillar αSYN; importantly, pretreatment with a 10CC domain-specific antibody significantly hindered αSYN fibril uptake. The presence of sortilin in the core structure of Lewy bodies and glial cytoplasmic inclusions in the brain of synucleinopathy patients was confirmed via immunohistochemistry, and the expression level of sortilin in mesencephalic dopaminergic neurons may be altered with disease progression. These results provide compelling evidence that sortilin acts as an endocytic receptor for pathogenic form of αSYN, and yields important insight for the development of disease-modifying targets for synucleinopathies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Doença de Parkinson , Sinucleinopatias , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , alfa-Sinucleína/metabolismo , Proteínas de Transporte , Doença de Parkinson/metabolismo
19.
Cell Mol Life Sci ; 80(12): 376, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010414

RESUMO

Apolipoproteins co-deposit with amyloids, yet apolipoprotein-amyloid interactions are enigmatic. To understand how apoE interacts with Alzheimer's amyloid-ß (Aß) peptide in fibrillary deposits, the NMR structure of full-length human apoE was docked to four structures of patient-derived Aß1-40 and Aß1-42 fibrils determined previously using cryo-electron microscopy or solid-state NMR. Similar docking was done using the NMR structure of human apoC-III. In all complexes, conformational changes in apolipoproteins were required to expose large hydrophobic faces of their amphipathic α-helices for sub-stoichiometric binding to hydrophobic surfaces on sides or ends of fibrils. Basic residues flanking the hydrophobic helical faces in apolipoproteins interacted favorably with acidic residue ladders in some amyloid polymorphs. Molecular dynamics simulations of selected apoE-fibril complexes confirmed their stability. Amyloid binding via cryptic sites, which became available upon opening of flexibly linked apolipoprotein α-helices, resembled apolipoprotein-lipid binding. This mechanism probably extends to other apolipoprotein-amyloid interactions. Apolipoprotein binding alongside fibrils could interfere with fibril fragmentation and secondary nucleation, while binding at the fibril ends could halt amyloid elongation and dissolution in a polymorph-specific manner. The proposed mechanism is supported by extensive prior experimental evidence and helps reconcile disparate reports on apoE's role in Aß aggregation. Furthermore, apoE domain opening and direct interaction of Arg/Cys158 with amyloid potentially contributes to isoform-specific effects in Alzheimer's disease. In summary, current modeling supported by prior experimental studies suggests similar mechanisms for apolipoprotein-amyloid and apolipoprotein-lipid interactions; explains why apolipoproteins co-deposit with amyloids; and helps reconcile conflicting reports on the chaperone-like apoE action in Aß aggregation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Apolipoproteínas E , Humanos , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo
20.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33790016

RESUMO

Receptor-interacting protein kinases 3 (RIPK3), a central node in necroptosis, polymerizes in response to the upstream signals and then activates its downstream mediator to induce cell death. The active polymeric form of RIPK3 has been indicated as the form of amyloid fibrils assembled via its RIP homotypic interaction motif (RHIM). In this study, we combine cryogenic electron microscopy and solid-state NMR to determine the amyloid fibril structure of RIPK3 RHIM-containing C-terminal domain (CTD). The structure reveals a single protofilament composed of the RHIM domain. RHIM forms three ß-strands (referred to as strands 1 through 3) folding into an S shape, a distinct fold from that in complex with RIPK1. The consensus tetrapeptide VQVG of RHIM forms strand 2, which zips up strands 1 and 3 via heterozipper-like interfaces. Notably, the RIPK3-CTD fibril, as a physiological fibril, exhibits distinctive assembly compared with pathological fibrils. It has an exceptionally small fibril core and twists in both handedness with the smallest pitch known so far. These traits may contribute to a favorable spatial arrangement of RIPK3 kinase domain for efficient phosphorylation.


Assuntos
Amiloide/química , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Motivos de Aminoácidos , Amiloide/metabolismo , Microscopia Crioeletrônica , Humanos , Necroptose , Fosforilação , Domínios Proteicos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa