Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 189: 109915, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31722799

RESUMO

Jute (Corchorus capsularis L.) is the most commonly used natural fiber as reinforcement in green composites and, due to its huge biomass, deep rooting system, and metal tolerance in stressed environments, it is an excellent candidate for the phytoremediation of different heavy metals. Therefore, the present study was carried out to examine the growth, antioxidant capacity, gaseous exchange attributes, and phytoremediation potential of C. capsularis grown at different concentrations of Cu (0, 100, 200, 300, and 400 mg kg-1) in a glass house environment. The results illustrate that C. capsularis can tolerate Cu concentrations of up to 300 mg kg-1 without significant decreases in growth or biomass, but further increases in Cu concentration (i.e., 400 mg kg-1) lead to significant reductions in plant growth and biomass. The photosynthetic pigments and gaseous exchange attributes in the leaves of C. capsularis decreased as the Cu concentration in the soil increased. Furthermore, high concentrations of Cu in the soil caused lipid peroxidation by increasing the malondialdehyde content in the leaves. This implies that elevated Cu levels cause oxidative damage in C. capsularis. Antioxidants, such as superoxidase dismutase and peroxidase, come into play to scavenge the reactive oxygen species which are generated as a result of oxidative stress. In the present study, the concentrations of Cu in different parts of the plant (the roots, leaves, stem core, and fibers) were also investigated at four different stages of the life cycle of C. capsularis, i.e., 30, 60, 90, and 120 days after sowing (DAS). The results of this investigation reveal that, in the earlier stages of the growth, Cu was highly accumulated in the belowground parts of the plant while little was transported to the aboveground parts. Contrastingly, at a fully mature stage of the growth (120 DAS), it was observed that the majority of Cu was transported to the aboveground parts of the plant and very little accumulated in the belowground parts. The results also show a progressive increase in Cu uptake in response to increasing Cu concentrations in the soil, suggesting that C. capsularis is a potential bio-resource for the phytoremediation of Cu in Cu-contaminated soil.


Assuntos
Biodegradação Ambiental , Cobre/metabolismo , Corchorus/metabolismo , Poluentes do Solo/metabolismo , Antioxidantes , Biomassa , Cobre/análise , Malondialdeído , Metais Pesados , Estresse Oxidativo , Peroxidase/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Solo , Poluentes do Solo/análise
2.
Chemosphere ; 263: 128211, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297170

RESUMO

Soil cadmium (Cd) contamination has become a massive environmental problem. Kenaf is an industrial fiber crop with high tolerance to heavy metals and could be potentially used for soil phytoremediation. However, the molecular mechanism of Cd in kenaf tolerance remains largely unknown. In the present study, using two contrasting Cd sensitive kenaf (GH and YJ), the key factors accounting for differential Cd tolerance were investigated. GH has a stronger Cd transport and accumulation ability than YJ. In addition, physiological index investigation on malondialdehyde (MDA) contents and antioxidant enzyme (SOD, POD, and CAT) activities showed GH has a stronger detoxification capacity than YJ. Furthermore, the cell ultrastructure of GH is more stable than that of YJ under Cd stress. Transcriptome analysis revealed 2221 (689 up and 1532 down) and 3321 (2451 up and 870 down) genes were differentially expressed in GH and YJ, respectively. More DEGs (differentially expressed genes) were characterized as up-regulated in GH, indicating GH is inclined to activate gene expression to cope with cadmium stress. GO and KEGG analyses indicate that DEGs were assigned and enriched in different pathways. Plenty of critical Cd-induced DEGs such as SOD2, PODs, MT1, DTXs, NRT1, ABCs, CES, AP2/ERF, MYBs, NACs, and WRKYs were identified. The DEGs involved pathways, including antioxidant, heavy metal transport or detoxification, substance transport, plant hormone and calcium signals, ultrastructural component, and a wide range of transcription factors were suggested to play crucial roles in kenaf Cd tolerance, and accounting for the difference in Cd stress sensitivities.


Assuntos
Hibiscus , Metais Pesados , Biodegradação Ambiental , Cádmio/análise , Cádmio/toxicidade , Raízes de Plantas/química , Transcriptoma
3.
Front Plant Sci ; 12: 644904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868344

RESUMO

The breeding for varieties tolerant of adverse growing conditions is critical for sustainable agriculture, especially for ramie (Boehmeria nivea L.). However, a lack of information on the tolerance of ramie to nutrient-deficient conditions has hindered efforts to breed ramie varieties tolerant of such conditions. The main objective of this study was to explore the tolerance strategies of ramie plants under poor soil conditions using long-term (8-9 years) field trials. Genotypes of Duobeiti 1 and Xiangzhu XB were highly tolerant of poor soil conditions. The contributions of seasonal nutrient cycling and rhizobacteria to the ability of ramie to tolerate poor soil were tested. Nitrogen and phosphorus retranslocation to the root at the end of the growing season helped ramie adapt to poor soil conditions. The contribution of the microbial community was analyzed using high-throughput Illumina MiSeq sequencing technology. The enrichment of beneficial bacteria (mainly Bradyrhizobium, Gaiella, and norank_o_Gaiellales) and the reduction of harmful fungi (mainly Cladosporium and Aspergillus) also contributed to the ability of ramie to tolerate poor soils. The results of this study provide new insight into the ability of ramie to tolerate adverse conditions and aid future efforts to breed and cultivate ramie tolerant of adverse conditions.

4.
Environ Sci Pollut Res Int ; 27(24): 30367-30377, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32462620

RESUMO

Copper (Cu), with many documented cases of Cu toxicity in agriculture lands, is becoming an increasingly common issue in and elsewhere in China. However, fibrous crop such as jute is being used as phytoremediation candidate in Cu-contaminated soils due to its huge biomass. A pot experiment was conducted using four different varieties (HT, C-3, GC, and SH) of jute grown in highly Cu-contaminated soil (2221 mg kg-1), collected from Hubei Province, China. Results from this study showed that C-3 and HT were more resistant to Cu stress, while GC and SH had a serious effect due to high concentration of Cu and a significant decrease in growth and biomass. Furthermore, Cu in roots, leaves, stem core, and bast were higher in C-3 and HT compared with GC and SH. Likewise, at post-harvesting stage, maximum Cu concentration from Cu-contaminated soil was extracted by C-3 and HT while small amount was accumulated by GC and SH. The high content of malondialdehyde (MDA) in the leaves of GC and SH indicated that Cu induced oxidative damage while the antioxidative enzyme activities of superoxidase dismutase (SOD) and peroxidase (POD) were increased to scavenge reactive oxygen species (ROS) formed during oxidative stress in the plants. Conclusively, it can be identified that when grown in Cu-contaminated soil, C-3 and HT have greater ability to grow in polluted soils and possible phytoremediation materials to revoke a large amount of Cu.


Assuntos
Cobre/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Biomassa , China , Solo
5.
Environ Sci Pollut Res Int ; 27(29): 37121-37133, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32583108

RESUMO

Copper (Cu) is an abundant essential micronutrient element in various rocks and minerals and is required for a variety of metabolic processes in both prokaryotes and eukaryotes. However, excess Cu can disturb normal development by adversely affecting biochemical reactions and physiological processes in plants. The present study was conducted to explore the potential of gibberellic acid (GA3) on fibrous jute (Corchorus capsularis L.) seedlings grown on Cu mining soil obtained from Hubei Province China. Exogenous application of GA3 (10, 50, and 100 mg/L) on 60-day-old seedlings of C. capsularis which was able to grow in highly Cu-contaminated soil (2221 mg/kg) to study different morphological, physiological, and Cu uptake and accumulation in different parts of C. capsularis seedlings. According to the results, increasing concentration of GA3 (more likely 100 mg/L) alleviates Cu toxicity in C. capsularis seedlings by increasing plant growth, biomass, photosynthetic pigments, and gaseous exchange attributes. The results also showed that exogenous application of GA3 reduced oxidative stress in C. capsularis seedlings by the generation of extra reactive oxygen species (ROS). The reduction in oxidative stress in C. capsularis seedlings is because that plant has strong enzymatic antioxidants [superoxidase dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT)], which ultimately increased their activities to overcome oxidative damage in the cells/tissues. In addition to the plant growth, biomass, and photosynthesis, foliar application of GA3 also helps to increase metal (Cu) concentration in different parts of the plants when compared to 0 mg/L of application of GA3. From these findings, we can conclude that foliar application of GA3 plays a promising role in reducing ROS generation in the plant cells/tissues and increased phytoextraction of Cu in different plant parts. However, more investigation is needed on field experiments to find a combination of GA3 with a very higher concentration of Cu using fibrous C. capsularis.


Assuntos
Corchorus , Poluentes do Solo/análise , Antioxidantes , Biodegradação Ambiental , China , Cobre/análise , Giberelinas , Estresse Oxidativo , Raízes de Plantas/química , Solo
6.
Plants (Basel) ; 9(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560128

RESUMO

Copper (Cu) is an important micronutrient for a plant's normal growth and development. However, excess amount of Cu in the soil causes many severe problems in plants-which ultimately affect crop productivity and yield. Moreover, excess of Cu contents causes oxidative damage in the plant tissues by generating excess of reactive oxygen species (ROS). The present experiment was designed to investigate the phytoextraction potential of Cu, morpho-physiological features and biochemical reaction of jute (Corchorus capsularis L.) seedlings using ethylenediaminetetraacetic acid (EDTA) of 3 mM under different Cu levels (0 (control), 50 and 100 µM) in a hydroponic nutrient solution (Hoagland). Our results showed that elevated Cu rates (50 and 100 µM) in the nutrient solution significantly reduced plant height, fresh and dry biomass, total chlorophyll content and gaseous exchange attributes in C. capsularis seedlings. As the concentration of Cu in the medium increased (50 and 100 µM), the level of malondialdehyde (MDA) and oxidative stress in C. capsularis seedlings also increased, which could have been controlled by antioxidant activity in particular plant cells. In addition, rising Cu concentration in the nutrient solution also increased Cu uptake and accumulation in roots and leaves as well as affected the ultrastructure of chloroplast of C. capsularis seedlings. The addition of EDTA to the nutrient solution significantly alleviated Cu toxicity in C. capsularis seedlings, showing a significantly increase in plant growth and biomass. MDA contents was not significantly increased in EDTA-induced plants, suggesting that this treatment was helpful in capturing ROS and thereby reducing ROS in in C. capsularis seedlings. EDTA modification with Cu, although the bioaccumulation factor in roots and leaves and translocation factor for the leaves of C. capsularis seedlings has significantly increased. These results indicate that C. capsularis has considerable potential to cope with Cu stress and is capable of removing a large quantity of Cu from the Cu-contaminated soil while using EDTA is a useful strategy to increase plant growth and biomass with Cu absorption capabilities.

7.
Plants (Basel) ; 9(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079368

RESUMO

Jute (Corchorus capsularis) is a widely cultivated fibrous species with important physiological characteristics including biomass, a deep rooting system, and tolerance to metal stress. Furthermore, Corchorus species are indigenous leafy vegetables and show phytoremediation potential for different heavy metals. This species has been used for the phytoremediation of different toxic pollutants such as copper (Cu), cadmium (Cd), zinc (Zn), mercury (Hg) and lead (Pb). The current literature highlights the physiological and morphological characteristics of jute that are useful to achieve successful phytoremediation of different pollutants. The accumulation of these toxic heavy metals in agricultural regions initiates concerns regarding food safety and reductions in plant productivity and crop yield. We discuss some innovative approaches to increase jute phytoremediation using different chelating agents. There is a need to remediate soils contaminated with toxic substances, and phytoremediation is a cheap, effective, and in situ alternative, and jute can be used for this purpose.

8.
Chemosphere ; 248: 126032, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32018110

RESUMO

Soil in mining areas is typically highly contaminated with heavy metals and lack essential nutrients for plants. Phosphorus reduces oxidative stress, improves plant growth, composition, and cellular structure, as well as facilitates the phytoremediation potential of fibrous crop plant species. In this study, we investigated two jute (Corchorus capsularis) varieties HongTieGuXuan and GuBaChangJia cultivated in copper (Cu)-contaminated soil (2221 mg kg-1), under different applications of phosphorus (0, 30, 60, and 120 kg ha-1) at both anatomical and physiological levels. At the same Cu concentration, the tolerance index of HongTieGuXuan was higher than that of GuBaChangJia, indicating that HongTieGuXuan may be more tolerant to Cu stress. Although the normal concentration of P (60 kg ha-1) in the soil improved plant growth, biomass, chlorophyll content, fibre yield and quality, and gaseous exchange attributes. However, high concentration of P (120 kg ha-1) was toxic to both jute varieties affected morphological and physiological attributes of the plants under same level of Cu. Moreover, Cu toxicity increased the oxidative stress in the leaves of both jute varieties was overcome by the activities of antioxidant enzymes. Furthermore, the high concentration of Cu altered the ultrastructure of chloroplasts, plastoglobuli, mitochondria, and many other cellular organelles in both jute varieties. Thus, phytoextraction of Cu by both jute varieties increased with the increase in P application in the Cu-contaminated soil. This suggests that P application enhanced the phytoremediation potential jute plants and can be cultivated as fibrous crop in Cu-contaminated sites.


Assuntos
Cobre/isolamento & purificação , Corchorus/metabolismo , Fósforo/farmacologia , Poluentes do Solo/isolamento & purificação , Antioxidantes/metabolismo , Biodegradação Ambiental , Clorofila/metabolismo , Cobre/toxicidade , Corchorus/citologia , Corchorus/efeitos dos fármacos , Corchorus/crescimento & desenvolvimento , Enzimas/metabolismo , Fertilizantes , Mineração , Organelas , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa