Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Med Virol ; 96(2): e29469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38376919

RESUMO

The mpox outbreak has subdued with fewer reported cases at the present in high-income countries. It is known that mpox virus (MPXV) infection has been epidemic for more than 50 years in African countries. The ancestral MPXV strain has changed into multiple clades, indicating the ongoing evolution of MPXV, which reflects the historical neglect of mpox in Africa, especially after smallpox eradication, and bestows the danger of more severe mpox epidemics in the future. It is thus imperative to continue the development of mpox diagnostics and treatments so we can be prepared in the event of a new mpox epidemic. In this study, we have developed an MPXV detection tool that leverages the recombinase-aid amplification assay by integrating lateral flow strips (RAA-LF) and one-step sample DNA preparation, with visible readout, no need of laboratory instrument, and ready for field deployment. The detection limit reaches 10 copies per reaction. The performance of our RAA-FL assay in diagnosing mpox clinical samples is on par with that of the quantitative polymerase chain reaction (PCR) assay. Taken together, we have developed a point-of-care RAA-LF method of high accuracy and sensitivity, readily deployable for field detection of MPXV. This diagnostic tool is expected to improve and accelerate field- and self-diagnosis, allow timely isolation and treatment, reduce the spread of MPXV, thus effectively mitigate MPXV outbreak in the future.


Assuntos
Monkeypox virus , Mpox , Humanos , África , Bioensaio , Surtos de Doenças
2.
J Fish Dis ; 45(12): 1805-1816, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35946585

RESUMO

Acute Hepatopancreatic Necrosis Disease (AHPND), caused by bacterial isolates expressing PirAB binary toxins, represents the severest and most economically destructive disease affecting penaeid shrimp. Its rapid disease progression and associated massive mortalities call for vigilant monitoring and early diagnosis, but molecular detection methods that simultaneously satisfy the requirements of sensitivity, specificity, and portability are still scarce. In this work, the CRISPR-Cas12a technology was harnessed for the development of two fluorescent assays compatible with naked-eye visualization. The first assay, AP4-Cas12a, was based on the OIE-recommended AP4 two-tubed nested PCR method and was designed to bypass the time-consuming and potentially hazardous agarose gel electrophoresis step. Using AP4-Cas12a, the detection limit of 10 copies per reaction could be achieved within less than 30 minutes post-PCR. The second assay, RPA-Cas12a, utilized recombinase polymerase amplification (RPA) to rapidly and isothermally amplify the target DNA, followed by amplicon detection by Cas12a, resulting in a protocol that can be completed in less than an hour at a constant temperature of 37°C. The detection limit of RPA-Cas12a is 100 copies of plasmid DNA or 100 fg of bacterial genomic DNA per reaction. Importantly, we validated that both assays are compatible with a previously reported smartphone-based device for facile visualization of fluorescence, thereby providing an affordable option that requires less consumables than lateral flow detection. Using this portable device for readouts, the AP4-Cas12a and RPA-Cas12a methods showed excellent concordance with the AP4-agarose gel electrophoresis approach in the evaluation of clinical samples. Therefore, the developed Cas12a assays have the potential to streamline both in-laboratory and onsite diagnosis of AHPND.


Assuntos
Doenças dos Peixes , Smartphone , Animais , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA , Necrose
3.
J Clin Microbiol ; 59(4)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33293367

RESUMO

Management of the coronavirus disease 2019 (COVID-19) pandemic requires widespread testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A main limitation for widespread SARS-CoV-2 testing is the global shortage of essential supplies, among them RNA extraction kits. The need for commercial RNA extraction kits places a bottleneck on tests that detect SARS-CoV-2 genetic material, including PCR-based reference tests. Here, we propose an alternative method we call PEARL (precipitation-enhanced analyte retrieval) that addresses this limitation. PEARL uses a lysis solution that disrupts cell membranes and viral envelopes while simultaneously providing conditions suitable for alcohol-based precipitation of RNA, DNA, and proteins. PEARL is a fast, low-cost, and simple method that uses common laboratory reagents and offers performance comparable to that of commercial RNA extraction kits. PEARL offers an alternative method to isolate host and pathogen nucleic acids and proteins to streamline the detection of DNA and RNA viruses, including SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Teste para COVID-19 , Técnicas de Laboratório Clínico , DNA , Humanos , RNA Viral/genética
4.
Plant Dis ; 104(8): 2217-2224, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32530731

RESUMO

Dickeya spp. cause blackleg and soft rot diseases of potato and several other plant species worldwide, resulting in high economic losses. Rapid detection and identification of the pathogen is essential for facilitating efficient disease management. Our aim in this research was to develop a rapid and field-deployable recombinase polymerase amplification (RPA) assay coupled with a lateral flow device (LFD) that will accurately detect Dickeya spp. in infected plant tissues without the need for DNA isolation. A unique genomic region (mglA/mglC genes) conserved among Dickeya spp. was used to design highly specific robust primers and probes for an RPA assay. Assay specificity was validated with 34 representative strains from all Dickeya spp. and 24 strains from other genera and species; no false positives or negatives were detected. An RPA assay targeting the internal transcribed spacer region of the host genome was included to enhance the reliability and accuracy of the Dickeya assay. The detection limit of 1 fg was determined by both sensitivity and spiked sensitivity assays; no inhibitory effects were observed when 1 µl of host sap, macerated in Tris-EDTA buffer, was added to each reaction in the sensitivity tests. The developed RPA assay is rapid, highly accurate, sensitive, and fully field deployable. It has numerous applications in routine diagnostics, surveillance, biosecurity, and disease management.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Recombinases , Primers do DNA , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Anal Bioanal Chem ; 411(19): 4401-4414, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30707267

RESUMO

Rapid, low-cost, and sensitive nucleic acid detection and quantification assays enabled by microfluidic paper-based analytical devices (µPADs) hold great promise for point-of-care disease diagnostics and field-based molecular tests. Through the capillary action in µPAD, flexible manipulation of nucleic acid samples can be achieved without the need for external pumps or power supplies, making it possible to fabricate highly integrated sample-to-answer devices that streamline the nucleic acid extraction, separation, concentration, amplification, and detection. To detect minute amounts of genetic materials from clinical and biological samples, it is also critical to develop sensitive signal readouts that generate physically detectable signals for in-device nucleic acid detection and/or quantification. In this review, we will focus on µPAD approaches for the facile manipulation of nucleic acids and emerging signal transduction strategies allowing sensitive and specific nucleic acid detection in µPAD. Graphical abstract ᅟ.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Ácidos Nucleicos/análise , Papel , Corantes/química , Hibridização de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , Transdução de Sinais , Biologia Sintética
6.
Sensors (Basel) ; 19(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683921

RESUMO

In field applications currently used for health monitoring and nondestructive testing, ultrasonic transducers primarily employ PZT5-H as the piezoelectric element for ultrasound transmission and detection. This material has a Curie-Weiss temperature that limits its use to about 210 °C. Some industrial applications require much higher temperatures, i.e., 1000-1200 °C and possible nuclear radiation up to 1020 n/cm2 when performance is required in a reactor environment. The goal of this paper is the survey and review of piezoelectric elements for use in harsh environments for the ultimate purpose for structural health monitoring (SHM), non-destructive evaluation (NDE) and material characterization (NDMC). The survey comprises the following categories: 1. High-temperature applications with single crystals, thick-film ceramics, and composite ceramics, 2. Radiation-tolerant materials, and 3. Spray-on transducers for harsh-environment applications. In each category the known characteristics are listed, and examples are given of performance in harsh environments. Highlighting some examples, the performance of single-crystal lithium niobate wafers is demonstrated up to 1100 °C. The wafers with the C-direction normal to the wafer plane were mounted on steel cylinders with high-temperature Sauereisen and silver paste wire mountings and tested in air. In another example, the practical use in harsh radiation environments aluminum nitride (AlN) was found to be a good candidate operating well in two different nuclear reactors. The radiation hardness of AlN was evident from the unaltered piezoelectric coefficient after a fast and thermal neutron exposure in a nuclear reactor core (thermal flux = 2.12 × 1013 ncm-2; fast flux 2 (>1.0 MeV) = 4.05 × 1013 ncm-2; gamma dose rate: 1 × 109 r/h; temperature: 400-500 °C). Additionally, some of the high-temperature transducers are shown to be capable of mounting without requiring coupling material. Pulse-echo signal amplitudes (peak-to-peak) for the first two reflections as a function of the temperature for lithium niobate thick-film, spray-on transducers were observed to temperatures of about 900 °C. Guided-wave send-and-receive operation in the 2-4 MHz range was demonstrated on 2-3 mm thick Aluminum (6061) structures for possible field deployable applications where standard ultrasonic coupling media do not survive because of the harsh environment. This approach would benefit steam generators and steam pipes where temperatures are above 210 °C. In summary, there are several promising approaches to ultrasonic transducers for harsh environments and this paper presents a survey based on literature searches and in-house laboratory observations.

7.
Sensors (Basel) ; 19(14)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336796

RESUMO

The development and uptake of field deployable hyperspectral imaging systems within environmental monitoring represents an exciting and innovative development that could revolutionize a number of sensing applications in the coming decades. In this article we focus on the successful miniaturization and improved portability of hyperspectral sensors, covering their application both from aerial and ground-based platforms in a number of environmental application areas, highlighting in particular the recent implementation of low-cost consumer technology in this context. At present, these devices largely complement existing monitoring approaches, however, as technology continues to improve, these units are moving towards reaching a standard suitable for stand-alone monitoring in the not too distant future. As these low-cost and light-weight devices are already producing scientific grade results, they now have the potential to significantly improve accessibility to hyperspectral monitoring technology, as well as vastly proliferating acquisition of such datasets.

8.
Sci Justice ; 59(2): 199-202, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30798869

RESUMO

Observations of modern day forensic science has prompted asking the question of whether this field is in danger of extinction. Although there have undoubtedly been meaningful advancements in analytical capabilities, we have overlooked several unintended practical and philosophical consequences. This article addresses three main areas of concern: the declining role of the generalist in an era of increased specialization, the role of education in preparing the next generation of forensic scientists, and the implementation of advanced instrumentation with a focus on statistical significance and field deployable instrumentation.


Assuntos
Ciências Forenses/tendências , Competência Profissional , Papel Profissional , Ciências Forenses/educação , Ciências Forenses/instrumentação , Especialização , Tecnologia/instrumentação
9.
J Clin Microbiol ; 56(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29436418

RESUMO

Dengue virus (DENV) infection, a mosquito-borne disease, is a major public health problem in tropical countries. Point-of-care DENV detection with good sensitivity and specificity enables timely early diagnosis of DENV infection, facilitating effective disease management and control, particularly in regions of low resources. The Pockit dengue virus reagent set (GeneReach Biotech), a reverse transcription insulated isothermal PCR (RT-iiPCR), is available to detect all four serotypes of DENV on the field-deployable Pockit system, which is ready for on-site applications. In this study, analytical and clinical performances of the assay were evaluated. The index assay did not react with 14 non-DENV human viruses, indicating good specificity. Compared to the U.S. CDC DENV-1-4 real-time quantitative RT-PCR (qRT-PCR) assay, testing with serial dilutions of virus-spiked human sera demonstrated that the index assay had detection endpoints that were separately comparable with the 4 serotypes. Excellent reproducibility was observed among repeat tests done by six operators at three sites. In clinical performance, 195 clinical sera collected around Kaohsiung city in 2012 and 21 DENV-4-spiked sera were tested with the RT-iiPCR and qRT-PCR assays in parallel. The 121 (11 DENV-1, 78 DENV-2, 11 DENV-3, and 21 DENV-4) qRT-PCR-positive and 95 qRT-PCR-negative samples were all positive and negative by the RT-iiPCR reagent results, respectively, demonstrating high (100%) interrater agreement (95% confidence interval [CI95%], ∼98.81% to 100%; κ = 1). With analytical and clinical performance equivalent to those of the reference qRT-PCR assay, the index PCR assay on the field-deployable system can serve as a highly sensitive and specific on-site tool for DENV detection.


Assuntos
Vírus da Dengue/isolamento & purificação , Dengue/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Dengue/sangue , Vírus da Dengue/genética , Humanos , Técnicas de Diagnóstico Molecular/normas , RNA Viral/genética , Kit de Reagentes para Diagnóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sorogrupo
10.
Diagnostics (Basel) ; 14(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667466

RESUMO

A laboratory-based lateral flow (LF) test that utilizes up-converting reporter particles (UCP) for ultrasensitive quantification of Schistosoma circulating anodic antigen (CAA) in urine is a well-accepted test to identify active infection. However, this UCP-LF CAA test requires sample pre-treatment steps not compatible with field applications. Flow, a new low-cost disposable, allows integration of large-volume pre-concentration of urine analytes and LF detection into a single field-deployable device. We assessed a prototype Flow-Schistosoma (Flow-S) device with an integrated UCP-LF CAA test strip, omitting all laboratory-based steps, to enable diagnosis of active Schistosoma infection in the field using urine. Flow-S is designed for large-volume (5-20 mL) urine, applying passive paper-based filtration and antibody-based CAA concentration. Samples tested for schistosome infection were collected from women of reproductive age living in a Tanzania region where S. haematobium infection is endemic. Fifteen negative and fifteen positive urine samples, selected based on CAA levels quantified in paired serum, were analyzed with the prototype Flow-S. The current Flow-S prototype, with an analytical lower detection limit of 1 pg CAA/mL, produced results correlated with the laboratory-based UCP-LF CAA test. Urine precipitates occurred in frozen banked samples and affected accurate quantification; however, this should not occur in fresh urine. Based on the findings of this study, Flow-S appears suitable to replace the urine pre-treatment required for the laboratory-based UCP-LF CAA test, thus allowing true field-based applications with fresh urine samples. The urine precipitates observed with frozen samples, though less important given the goal of testing fresh urines, warrant additional investigation to evaluate methods for mitigation. Flow-S devices permit testing of pooled urine samples with applications for population stratified testing. A field test with fresh urine samples, a further optimized Flow-S device, and larger statistical power has been scheduled.

11.
Biotechnol J ; 19(2): e2300521, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403439

RESUMO

Here, we developed a field-deployable molecular diagnostic kit for the detection of RNA viruses that operates in a pipette-free manner. The kit is composed of acrylic sticks, PCR tubes, and palm-sized three-dimensional(3D)-printed heaters operated by batteries. The kit performs RNA extraction, reverse transcriptase loop-mediated isothermal amplification (RT-LAMP), and visual detection in one kit. An acrylic stick was engraved with one shallow and one deep cylindrical chamber at each end for the insertion of an FTA card and ethidium homodimer-1 (EthD-1), respectively, to perform RNA extraction/purification and bimodal visual detection of the target amplicons. First, an intercalation of EthD-1 into the target DNA initially produces fluorescence upon UV illumination. Next, the addition of a strong oxidant, in this case sodium (meta) periodate (NaIO4 ), produces intense aggregates in the presence of EthD-1-intercalated DNA, realized by electrostatic interaction. In the absence of the target amplicon, no fluorescence or aggregates are observed. Using this kit, two major infectious viruses-severe fever with thrombocytopenia syndrome virus (SFTSV) and severe acute respiratory syndrome coronavirus (SARS-CoV-2)-were successfully detected in 1 h, and the limits of detection (LOD) were approximately 1 virus µL-1 for SFTSV and 103 copies µL-1 for SARS-CoV-2 RNA. The introduced kit is portable, end-user-friendly, and can be operated in a pipette-free manner, paving the way for simple and convenient virus detection in resource-limited settings.


Assuntos
COVID-19 , Viroses , Humanos , RNA Viral/genética , Patologia Molecular , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico , DNA , Teste para COVID-19
12.
J Hazard Mater ; 459: 132077, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37473568

RESUMO

CRISPR-based nucleic acid detection is easy to implement, field deployable, and always coupled with isothermal amplification to improve the sensitivity. However, the conventional detection requires two separate steps, which can cause long-lasting amplicon aerosol contaminants, hence leading to false-positive results. To address this problem, we proposed a one-tube assay based on CRISPR-Cas13a coupled with reverse transcription-recombinase polymerase amplification to avoid aerosol pollution. The one-tube assay could be completed within 40 min with a sensitivity of up to 180 copies of RNA per reaction, and exhibited no cross reactivity with two related coronaviruses. Our technology showed reproducibility with relative standard deviation of 4.6% responding to 1 fM nucleic acid for three times. It could be used to detect SARS-CoV-2 nucleic acids in raw wastewater with a limit of detection of 103 copies/mL. We also validated the practicability of this technique for viral detection in environmental water samples by detecting SARS-CoV-2 in wastewater, which were not detectable by RT-qPCR technology, showing resistance of this technology to wastewater matrix. It is anticipated that the robustness and high sensitivity will significantly promote the development of a point-of-care method in environmental virus monitoring.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Águas Residuárias , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade
13.
Res Rep Trop Med ; 14: 61-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492219

RESUMO

Leishmaniasis is a neglected tropical disease endemic primarily to low- and middle-income countries, for which there has been inadequate development of affordable, safe, and efficacious therapies. Clinical manifestations of leishmaniasis range from self-healing skin lesions to lethal visceral infection with chances of relapse. Although treatments are available, secondary effects limit their use outside the clinic and negatively impact the quality of life of patients in endemic areas. Other non-medicinal treatments, such as thermotherapies, are limited to use in patients with cutaneous leishmaniasis but not with visceral infection. Recent studies shed light to mechanisms through which Leishmania can persist by hiding in cellular safe havens, even after chemotherapies. This review focuses on exploring the cellular niches that Leishmania parasites may be leveraging to persist within the host. Also, the cellular, metabolic, and molecular implications of Leishmania infection and how those could be targeted for therapeutic purposes are discussed. Other therapies, such as those developed against cancer or for manipulation of the ferroptosis pathway, are proposed as possible treatments against leishmaniasis due to their mechanisms of action. In particular, treatments that target hematopoietic stem cells and monocytes, which have recently been found to be necessary components to sustain the infection and provide a safe niche for the parasites are discussed in this review as potential field-deployable treatments against leishmaniasis.

14.
Adv Sci (Weinh) ; 10(11): e2205217, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36797206

RESUMO

Point-of-care testing (POCT) can be the method of choice for detecting infectious pathogens; these pathogens are responsible for not only infectious diseases such as COVID-19, but also for certain types of cancers. For example, infections by human papillomavirus (HPV) or Helicobacter pylori (H. pylori) are the main cause of cervical and stomach cancers, respectively. COVID-19 and many cancers are treatable with early diagnoses using POCT. A variety of nucleic acid testing have been developed for use in resource-limited environments. However, questions like unintegrated nucleic acid extraction, open detection systems increase the risk of cross-contamination, and dependence on expensive equipment and alternating current (AC) power supply, significantly limit the application of POCT, especially for on-site testing. In this paper, a simple portable platform is reported capable of rapid sample-to-answer testing within 30 min based on recombinase polymerase amplification (RPA) at a lower temperature, to detect SARS-CoV-2 virus and H. pylori bacteria with a limit of detection as low as 4 × 102 copies mL-1 . The platform used a battery-powered portable reader for on-chip one-pot amplification and fluorescence detection, and can test for multiple (up to four) infectious pathogens simultaneously. This platform can provide an alternative method for fast and reliable on-site diagnostic testing.


Assuntos
COVID-19 , Doenças Transmissíveis , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Sistemas Automatizados de Assistência Junto ao Leito
15.
Front Robot AI ; 10: 1116005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008983

RESUMO

Soft robotics technology can aid in achieving United Nations' Sustainable Development Goals (SDGs) and the Paris Climate Agreement through development of autonomous, environmentally responsible machines powered by renewable energy. By utilizing soft robotics, we can mitigate the detrimental effects of climate change on human society and the natural world through fostering adaptation, restoration, and remediation. Moreover, the implementation of soft robotics can lead to groundbreaking discoveries in material science, biology, control systems, energy efficiency, and sustainable manufacturing processes. However, to achieve these goals, we need further improvements in understanding biological principles at the basis of embodied and physical intelligence, environment-friendly materials, and energy-saving strategies to design and manufacture self-piloting and field-ready soft robots. This paper provides insights on how soft robotics can address the pressing issue of environmental sustainability. Sustainable manufacturing of soft robots at a large scale, exploring the potential of biodegradable and bioinspired materials, and integrating onboard renewable energy sources to promote autonomy and intelligence are some of the urgent challenges of this field that we discuss in this paper. Specifically, we will present field-ready soft robots that address targeted productive applications in urban farming, healthcare, land and ocean preservation, disaster remediation, and clean and affordable energy, thus supporting some of the SDGs. By embracing soft robotics as a solution, we can concretely support economic growth and sustainable industry, drive solutions for environment protection and clean energy, and improve overall health and well-being.

16.
Biology (Basel) ; 10(7)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34356474

RESUMO

Rathayibacter toxicus is a toxigenic bacterial pathogen of several grass species and is responsible for massive livestock deaths in Australia and South Africa. Due to concern for animal health and livestock industries, it was designated a U.S. Select Agent. A rapid, accurate, and sensitive in-field detection method was designed to assist biosecurity surveillance surveys and to support export certification of annual ryegrass hay and seed. Complete genomes from all known R. toxicus populations were explored, unique diagnostic sequences identified, and target-specific primers and a probe for recombinase polymerase amplification (RPA) and endpoint PCR were designed. The RPA reaction ran at 37 °C and a lateral flow device (LFD) was used to visualize the amplified products. To enhance reliability and accuracy, primers and probes were also designed to detect portions of host ITS regions. RPA assay specificity and sensitivity were compared to endpoint PCR using appropriate inclusivity and exclusivity panels. The RPA assay sensitivity (10 fg) was 10 times more sensitive than endpoint PCR with and without a host DNA background. In comparative tests, the RPA assay was unaffected by plant-derived amplification inhibitors, unlike the LAMP and end-point PCR assays. In-field validation of the RPA assay at multiple sites in South Australia confirmed the efficiency, specificity, and applicability of the RPA assay. The RPA assay will support disease management and evidence-based in-field biosecurity decisions.

17.
Genes (Basel) ; 12(1)2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467183

RESUMO

For the past two decades, microbial monitoring of the International Space Station (ISS) has relied on culture-dependent methods that require return to Earth for analysis. This has a number of limitations, with the most significant being bias towards the detection of culturable organisms and the inherent delay between sample collection and ground-based analysis. In recent years, portable and easy-to-use molecular-based tools, such as Oxford Nanopore Technologies' MinION™ sequencer and miniPCR bio's miniPCR™ thermal cycler, have been validated onboard the ISS. Here, we report on the development, validation, and implementation of a swab-to-sequencer method that provides a culture-independent solution to real-time microbial profiling onboard the ISS. Method development focused on analysis of swabs collected in a low-biomass environment with limited facility resources and stringent controls on allowed processes and reagents. ISS-optimized procedures included enzymatic DNA extraction from a swab tip, bead-based purifications, altered buffers, and the use of miniPCR and the MinION. Validation was conducted through extensive ground-based assessments comparing current standard culture-dependent and newly developed culture-independent methods. Similar microbial distributions were observed between the two methods; however, as expected, the culture-independent data revealed microbial profiles with greater diversity. Protocol optimization and verification was established during NASA Extreme Environment Mission Operations (NEEMO) analog missions 21 and 22, respectively. Unique microbial profiles obtained from analog testing validated the swab-to-sequencer method in an extreme environment. Finally, four independent swab-to-sequencer experiments were conducted onboard the ISS by two crewmembers. Microorganisms identified from ISS swabs were consistent with historical culture-based data, and primarily consisted of commonly observed human-associated microbes. This simplified method has been streamlined for high ease-of-use for a non-trained crew to complete in an extreme environment, thereby enabling environmental and human health diagnostics in real-time as future missions take us beyond low-Earth orbit.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Sequenciamento por Nanoporos , Análise de Sequência de DNA , Astronave , Manejo de Espécimes , Humanos
18.
Front Chem ; 9: 782252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917590

RESUMO

Using pesticides is a common agricultural and horticultural practice to serve as a control against weeds, fungi, and insects in plant systems. The application of these chemical agents is usually by spraying them on the crop or plant. However, this methodology is not highly directional, and so only a fraction of the pesticide actually adsorbs onto the plant, and the rest seeps through into the soil base contaminating its composition and eventually leaching into groundwater sources. Electrochemical sensors which are more practical for in situ analysis used for pesticide detection in soil runoff systems are still in dearth, while the ones published in the literature are attributed with complex sensor modification/functionalization and preprocessing of samples. Hence, in this work, we present a highly intuitive electroanalytical sensor approach toward rapid (10 min), on-demand screening of commonly used pesticides-glyphosate and atrazine-in soil runoff. The proposed sensor functions based on the affinity biosensing mechanism driven via thiol cross-linker and antibody receptors that holistically behaves as a recognition immunoassay stack that is specific and sensitive to track test pesticide analytes. Then, this developed sensor is integrated further to create a pesticide-sensing ecosystem using a front-end field-deployable smart device. The method put forward in this work is compared and validated against a standard laboratory potentiostat instrument to determine efficacy, feasibility, and robustness for a point-of-use (PoU) setting yielding LoD levels of 0.001 ng/ml for atrazine and 1 ng/ml for glyphosate. Also, the ML model integration resulted in an accurate prediction rate of ≈80% in real soil samples. Therefore, a universal pesticide screening analytical device is designed, fabricated, and tested for pesticide assessment in real soil runoff samples.

19.
Animals (Basel) ; 11(7)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34359278

RESUMO

The global equine industry provides significant economic contributions worldwide, producing approximately USD $300 billion annually. However, with the continuous national and international movement and importation of horses, there is an ongoing threat of a viral outbreak causing large epidemics and subsequent significant economic losses. Additionally, horses serve as a host for several zoonotic diseases that could cause significant human health problems. The ability to rapidly diagnose equine viral diseases early could lead to better management, treatment, and biosecurity strategies. Current serological and molecular methods cannot be field-deployable and are not suitable for resource-poor laboratories due to the requirement of expensive equipment and trained personnel. Recently, isothermal nucleic acid amplification technologies, such as loop-mediated isothermal amplification (LAMP) and insulated isothermal polymerase chain reaction (iiPCR), have been developed to be utilized in-field, and provide rapid results within an hour. We will review current isothermal diagnostic techniques available to diagnose equine viruses of biosecurity and zoonotic concern and provide insight into their potential for in-field deployment.

20.
J Imaging ; 7(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34460772

RESUMO

Recent advances in smartphone technologies have opened the door to the development of accessible, highly portable sensing tools capable of accurate and reliable data collection in a range of environmental settings. In this article, we introduce a low-cost smartphone-based hyperspectral imaging system that can convert a standard smartphone camera into a visible wavelength hyperspectral sensor for ca. £100. To the best of our knowledge, this represents the first smartphone capable of hyperspectral data collection without the need for extensive post processing. The Hyperspectral Smartphone's abilities are tested in a variety of environmental applications and its capabilities directly compared to the laboratory-based analogue from our previous research, as well as the wider existing literature. The Hyperspectral Smartphone is capable of accurate, laboratory- and field-based hyperspectral data collection, demonstrating the significant promise of both this device and smartphone-based hyperspectral imaging as a whole.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa