Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Small ; 20(31): e2312206, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38483011

RESUMO

Incorporating dilute doping and controlled synthesis provides a means to modulate the microstructure, defect density, and transport properties. Transmission electron microscopy (TEM) and geometric phase analysis (GPA) have revealed that hot-pressing can increase defect density, which redistributes strain and helps prevent unwanted Ge precipitates formation. An alloy of GeTe with a minute amount of indium added has shown remarkable TE properties compared to its undoped counterpart. Specifically, it achieves a maximum figure-of-merit zT of 1.3 at 683 K and an exceptional TE conversion efficiency of 2.83% at a hot-side temperature of 723 K. Significant zT and conversion efficiency improvements are mainly due to domain density engineering facilitated by an effective hot-pressing technique applied to lightly doped GeTe. The In-GeTe alloy exhibits superior TE properties and demonstrates notable stability under significant thermal gradients, highlighting its promise for use in mid-temperature TE energy generation systems.

2.
Nanotechnology ; 35(19)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38306692

RESUMO

Motivated by the excellent thermoelectric (TE) performance of bulk SnSe, extensive attention has been drawn to the TE properties of the monolayer SnSe. To uncover the fundamental mechanism of manipulating the TE performance of the SnSe monolayer, we perform a systematic study on the TE properties of five monolayer SnSe allotropes such asα-,ß-,γ-,δ-, andε-SnSe based on the density functional theory and the non-equilibrium Green's functions. By comparing the TE properties of the Na-doped SnSe allotropes with the undoped ones, the influences of the Na doping and the temperature on the TE properties are deeply investigated. It is shown that the figure of meritZTwill increase as the temperature increases, which is the same for almost all the Na-doped and undoped cases. The Na doping can enhance or suppress theZTin different SnSe allotropes at different temperatures, implying the presence of the anomalous suppression of theZT. The Na doping inducedZTsuppression may be caused basically by the sharp decrease of the power factor and the weak decrease of the electronic thermal conductance, rather than by the decrease of the phononic thermal conductance. We hope this work will be able to enrich the understanding of the manipulation of TE properties by means of dimensions, structurization, doping, and temperature.

3.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38064741

RESUMO

Gallium oxide (Ga2O3) is a promising wide bandgap semiconductor that is viewed as a contender for the next generation of high-power electronics due to its high theoretical breakdown electric field and large Baliga's figure of merit. Here, we report a facile route of synthesizingß-Ga2O3via direct oxidation conversion using solution-processed two-dimensional (2D) GaS semiconducting nanomaterial. Higher order of crystallinity in x-ray diffraction patterns and full surface coverage formation in scanning electron microscopy images after annealing were achieved. A direct and wide bandgap of 5 eV was calculated, and the synthesizedß-Ga2O3was fabricated as thin film transistors (TFT). Theß-Ga2O3TFT fabricated exhibits remarkable electron mobility (1.28 cm2Vs-1) and a good current ratio (Ion/Ioff) of 2.06 × 105. To further boost the electrical performance and solve the structural imperfections resulting from the exfoliation process of the 2D nanoflakes, we also introduced and doped graphene inß-Ga2O3TFT devices, increasing the electrical device mobility by ∼8-fold and thereby promoting percolation pathways for the charge transport. We found that electron mobility and conductivity increase directly with the graphene doping concentration. From these results, it can be proved that theß-Ga2O3networks have excellent carrier transport properties. The facile and convenient synthesis method successfully developed in this paper makes an outstanding contribution to applying 2D oxide materials in different and emerging optoelectronic applications.

4.
Nanotechnology ; 35(39)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38906122

RESUMO

In this study, we have investigated the thermal transport characteristics of single-layer tungsten disulfide, WS2nanoribbons (SLTDSNRs) using equilibrium molecular dynamics simulations with the help of Green-Kubo formulation. Using Stillinger-Weber (SW) inter-atomic potential, the calculated room temperature thermal conductivities of 15 nm × 4 nm pristine zigzag and armchair SLTDSNRs are 126 ± 10 W m-1K-1and 110 ± 6 W m-1K-1, respectively. We have explored the dependency of thermal conductivity on temperature, width, and length of the nanoribbon. The study shows that the thermal conductivity of the nanoribbon decreases with the increase in temperature, whereas the thermal conductivity increases with an increase in either the width or length of the ribbon. The thermal conductivity does not increase uniformly as the size of the ribbon changes. We have also observed that the thermal conductivity of SLTDSNRs depends on edge orientations; the zigzag nanoribbon has greater thermal conductivity than the armchair nanoribbon, regardless of temperature or dimension variations. Our study additionally delves into the tunable thermal properties of SLTDSNRs by incorporating defects, namely vacancies such as point vacancy, edge vacancy, and bi-vacancy. The thermal conductivities of nanoribbons with defects have been found to be considerably lower than their pristine counterparts, which aid in enhanced values for the thermoelectric figure of merit (zT). We have varied the vacancy concentration within a range of 0.1% to 0.9% and found that a point vacancy concentration of 0.1% leads to a 64% reduction in the thermal conductivity of SLTDSNRs. To elucidate these phenomena, we have calculated the phonon density of states for WS2under different aspects. The findings of our work provide important understandings of the prospective applications of WS2in nanoelectronic and thermoelectric devices by tailoring the thermal transport properties of WS2nanoribbons.

5.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339677

RESUMO

Guided-mode resonance (GMR) gratings have emerged as a promising sensing technology, with a growing number of applications in diverse fields. This study aimed to identify the optimal design parameters of a simple-to-fabricate and high-performance one-dimensional GMR grating. The structural parameters of the GMR grating were optimized, and a high-refractive-index thin film was simulated on the grating surface, resulting in efficient confinement of the electric field energy within the waveguide. Numerical simulations demonstrated that the optimized GMR grating exhibited remarkable sensitivity (252 nm/RIU) and an extremely narrow full width at half maximum (2 × 10-4 nm), resulting in an ultra-high figure of merit (839,666) at an incident angle of 50°. This performance is several orders of magnitude higher than that of conventional GMR sensors. To broaden the scope of the study and to make it more relevant to practical applications, simulations were also conducted at incident angles of 60° and 70°. This holistic approach sought to develop a comprehensive understanding of the performance of the GMR-based sensor under diverse operational conditions.

6.
Sensors (Basel) ; 24(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38793995

RESUMO

A broadband differential-MMIC low-noise amplifier (DLNA) using metamorphic high-electron-mobility transistors of 70 nm in Gallium Arsenide (70 nm GaAs mHEMT technology) is presented. The design and results of the performance measurements of the DLNA in the frequency band from 1 to 16 GHz are shown, with a high dynamic range, and a noise figure (NF) below 1.3 dB is obtained. In this work, two low-noise amplifiers (LNAs) were designed and manufactured in the OMMIC foundry: a dual LNA, which we call balanced, and a differential LNA, which we call DLNA. However, the paper focuses primarily on DLNA because of its differential architecture. Both use a 70 nm GaAs mHEMT space-qualified technology with a cutoff frequency of 300 GHz. With a low power bias Vbias/Ibias (5 V/40.5 mA), NF < 1.07 dB "on wafer" was achieved, from 2 to 16 GHz; while with the measurements made "on jig", NF = 1.1 dB, from 1 to 10 GHz. Furthermore, it was obtained that NF < 1.5 dB, from 1 to 16 GHz, with a figure of merit equal to 145.5 GHz/mW. Finally, with the proposed topology, several LNAs were designed and manufactured, both in the OMMIC process and in other foundries with other processes, such as UMS. The experimental results showed that the NF of the DLNA MMIC with multioctave bandwidth that was built in the frequency range of the L-, S-, C-, and X-bands was satisfactory.

7.
Sensors (Basel) ; 23(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447898

RESUMO

A comparative study of figure-of-merit fiber sensors of the mass concentration of NaCl solutions based on single-mode and multi-mode fibers was carried out. Lossy mode resonance is realized on chemically thinned sections of optical fibers to various diameters (from 26 to 100 µm) coated with ZnTe. Thin-film coatings were applied using the method of metalorganic chemical vapor deposition (MOCVD). Samples of single-mode and multi-mode fiber sensors were created in such a way that the depth and spectral position of resonances in aqueous NaCl solutions coincided. Sensors implemented on a single-mode fiber have a higher sensitivity (5930 nm/refractive index unit (RIU)) compared to those on a multi-mode fiber (4860 nm/RIU) and a smaller half-width of the resonance in the transmission spectrum. According to the results of experiments, figure-of-merit sensors are in the range of refractive indices of 1.33-1.35 for: multi-mode fiber-25 RIU-1, single-mode fiber-75 RIU-1. The sensitivity of the resulting sensors depends on the surface roughness of the ZnTe coating. The roughness of films synthesized on a single-mode fiber is four times higher than this parameter for a coating on a multi-mode fiber. For the first time, in the transmission spectrum during the synthesis of a thin-film coating on a multi-mode fiber, the possibility of separating the first nine orders of resonances into electric and magnetic transverse components has been demonstrated. The characteristics of sensors with the operating wavelength range in the visible (500-750 nm) and infrared (1350-1550 nm) regions of the spectrum are compared. The characteristics of multi-mode lossy mode resonance sensors are demonstrated, which make them more promising for use in applied devices than for laboratory research.


Assuntos
Fibras Ópticas , Cloreto de Sódio , Refratometria , Água , Eletricidade
8.
Sensors (Basel) ; 23(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37514706

RESUMO

This paper presents experimental investigations on aerodynamic performance of a ducted coaxial-rotor system to evaluate its potential application as a small unmanned aerial vehicle (SUAV). Aimed at determining the influence of design parameters (rotor spacing, tip clearance and rotor position within the duct) on hover performance, a variety of systematic measurements for several correlative configurations (single/coaxial rotor with or without a duct) in terms of thrust and torque, as well as power, were conducted in an attempt to identify a better aerodynamic configuration. The experimental results for the coaxial-rotor system indicated that varying rotor spacing affected the thrust-sharing proportion between the two rotors, but this had no significant effect on the propulsive efficiency. The optimal H/R ratio was identified as being 0.40, due to a larger thrust and stronger stability in the case of identical rotation speeds. As for the ducted single-rotor configuration, the tip clearance played a dominant role in improving its thrust performance, especially for smaller gaps (뫲0.015R), while the rotor position made subordinate contributions. The maximum performance was obtained with the rotor located at the P5 position (0.31Cd from the duct lip), which resulted in an enhancement of approximately 20% in power loading over the isolated single rotor. When the coaxial rotors were surrounded within the duct, the system thrust for a given power degraded with the increasing rotor spacing, which was mainly attributed to the upper rotor suffering from heavier leakage losses. And hence, the ducted coaxial-rotor system with S1 spacing had the best propulsion efficiency and hover performance with a figure of merit of 0.61.

9.
Entropy (Basel) ; 25(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37998232

RESUMO

Thomson heat absorption corresponding to changes in the Seebeck coefficient with respect to temperature enables the design of thermoelectric coolers wherein Thomson cooling is the dominant term, i.e., the Thomson coolers. Thomson coolers extend the working range of Peltier coolers to larger temperature differences and higher electrical currents. The Thomson coefficient is small in most materials. Recently, large Thomson coefficient values have been measured attributed to thermally induced phase change during magnetic and structural phase transitions. The large Thomson coefficient observed can result in the design of highly efficient Thomson coolers. This work analyzes the performance of Thomson coolers analytically and sets the metrics for evaluating the performance of materials as their constituent components. The maximum heat flux when the Thomson coefficient is constant is obtained and the performance is compared to Peltier coolers. Three dimensionless parameters are introduced which determine the performance of the Thomson coolers and can be used to analyze the coefficient of performance, the maximum heat flux, and the maximum temperature difference of a Thomson cooler.

10.
Small ; 18(12): e2104922, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921579

RESUMO

The enormous demand for waste heat utilization and burgeoning eco-friendly wearable materials has triggered huge interest in the development of thermoelectric materials that can harvest low-cost energy resources by converting waste heat to electricity efficiently. In particular, due to their high flexibility, nontoxicity, cost-effectivity, and promising applicability in various fields, organic thermoelectric materials are drawing more attention compared with their toxic, expensive, heavy, and brittle inorganic counterparts. Organic thermoelectric materials are approaching the figure of merit of the inorganic ones via the construction and optimization of unique transport pathways and device geometries. This review presents the recent development of the interdependence and decoupling principles of the thermoelectric efficiency parameters as well as the new achievements of high performance organic thermoelectric materials. Moreover, this review also discusses the advances in the thermoelectric devices with emphasis on their energy-related applications. It is believed that organic thermoelectric materials are emerging as green energy alternatives rivaling their conventional inorganic counterparts in the efficient and pure electricity harvesting from waste heat and solar thermal energy.


Assuntos
Eletricidade , Temperatura Alta
11.
Nanotechnology ; 33(17)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021165

RESUMO

We propose a method of improving the thermoelectric properties of graphene using defect engineering through plasma irradiation and atomic layer deposition (ALD). We intentionally created atomic blemishes in graphene by oxygen plasma treatment and subsequently healed the atomistically defective places using Pt-ALD. After healing, the thermal conductivity of the initially defective graphene increased slightly, while the electrical conductivity and the square of the Seebeck coefficient increased pronouncedly. The thermoelectric figure of merit of the Pt-ALD treated graphene was measured to be over 4.8 times higher than the values reported in the literature. We expect that our study could provide a useful guideline for the development of graphene-based thermoelectric devices.

12.
Sensors (Basel) ; 22(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35632032

RESUMO

Spectral-domain resonances for cavities formed by two distributed Bragg reflectors (DBRs) were analyzed theoretically and experimentally. We model the reflectance and transmittance spectra of the cavity at the normal incidence of light when DBRs are represented by a one-dimensional photonic crystal (1DPhC) comprising six bilayers of TiO2/SiO2 with a termination layer of TiO2. Using a new approach based on the reference reflectance, we model the reflectance ratio as a function of both the cavity thickness and its refractive index (RI) and show that narrow dips within the 1DPhC band gap can easily be resolved. We revealed that the sensitivity and figure of merit (FOM) are as high as 610 nm/RIU and 938 RIU-1, respectively. The transmittance spectra include narrow peaks within the 1DPhC band gap and their amplitude and spacing depend on the cavity's thickness. We experimentally demonstrated the sensitivity to variations of relative humidity (RH) of moist air and FOM as high as 0.156 nm/%RH and 0.047 %RH-1, respectively. In addition, we show that, due to the transmittance spectra, the DBRs with air cavity can be employed as spectral filters, and this is demonstrated for two LED sources for which their spectra are filtered at wavelengths 680 nm and 780 nm, respectively, to widths as narrow as 2.3 nm. The DBR-based resonators, thus, represent an effective alternative to both sensors and optical filters, with advantages including the normal incidence of light and narrow-spectral-width resonances.

13.
Entropy (Basel) ; 24(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37420465

RESUMO

According to the established model of a single resonance energy selective electron refrigerator with heat leakage in the previous literature, this paper performs multi-objective optimization with finite-time thermodynamic theory and NSGA-II algorithm. Cooling load (R¯), coefficient of performance (ε), ecological function (ECO¯), and figure of merit (χ¯) of the ESER are taken as objective functions. Energy boundary (E'/kB) and resonance width (ΔE/kB) are regarded as optimization variables and their optimal intervals are obtained. The optimal solutions of quadru-, tri-, bi-, and single-objective optimizations are obtained by selecting the minimum deviation indices with three approaches of TOPSIS, LINMAP, and Shannon Entropy; the smaller the value of deviation index, the better the result. The results show that values of E'/kB and ΔE/kB are closely related to the values of the four optimization objectives; selecting the appropriate values of the system can design the system for optimal performance. The deviation indices are 0.0812 with LINMAP and TOPSIS approaches for four-objective optimization (ECO¯-R¯-ε-χ¯), while the deviation indices are 0.1085, 0.8455, 0.1865, and 0.1780 for four single-objective optimizations of maximum ECO¯, R¯, ε, and χ¯, respectively. Compared with single-objective optimization, four-objective optimization can better take different optimization objectives into account by choosing appropriate decision-making approaches. The optimal values of E'/kB and ΔE/kB range mainly from 12 to 13, and 1.5 to 2.5, respectively, for the four-objective optimization.

14.
Nanotechnology ; 32(33)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33721857

RESUMO

Bismuth sulfide (Bi2S3) is a promising material for thermoelectric applications owing to its non-toxicity and high abundance of bismuth (Bi) and sulfur (S) elements on earth. However, its low electrical conductivity drastically reduces the value of the figure of merit (ZT). In this work, we have synthesized three-dimensional (3D) hierarchical Bi2S3nanoflowers (NFs) by the hydrothermal route and further incorporated them with conducting polymer polyaniline (PANI) by simple chemisorption method. We have investigated the thermoelectric properties of the as-prepared Bi2S3NFs and PANI/Bi2S3nanocomposite samples and it is demonstrated that the incorporation of the PANI matrix with the 3D hierarchical Bi2S3NFs provides a conducting substrate for the easy transport of the electrons and reduces the barrier height at the interface, resulting in ∼62% increment in the electrical conductivity as compared to Bi2S3NFs. Moreover, a decrement in the thermal conductivity of the PANI/Bi2S3nanocomposite is observed as compared to pristine Bi2S3NFs due to the increased phonon scattering at the interfaces facilitated by the hierarchical morphology of the NFs. Furthermore, an increment in the electrical conductivity and simultaneous decrement in the thermal conductivity results in an overall ∼20% increment in the figure of merit (ZT) for PANI/Bi2S3nanocomposite as compared to pristine Bi2S3NFs. The work highlights an effective strategy of coupling 3D hierarchical metal chalcogenide with conducting polymer for optimizing their thermoelectric properties.

15.
Sci Technol Adv Mater ; 22(1): 280-284, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33907527

RESUMO

The efficiency of a thermoelectric generator and the coefficient of performance (COP) of a thermoelectric heat pump are related to the hot and cold junction temperatures and a quantity known as the figure of merit, zT. During the second half of the twentieth century the figure of merit has gradually improved. This has come about through the selection of semiconducting materials with improved electronic properties and a small lattice thermal conductivity. Further advancements have been achieved by enhancing the scattering of phonons. There is also the possibility of improving the so-called power factor, that is the part of the figure of merit that contains the Seebeck coefficient and the electrical conductivity. However, it appears that it will be increasingly difficult to make further advances because of the manner in which these quantities vary with the Fermi energy. It is shown that this may set a practical limit on zT. Nevertheless, it may be possible to reach an efficiency or COP of about 40% of that of an ideal thermodynamic machine.

16.
Sensors (Basel) ; 21(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920116

RESUMO

Plasmonic slot waveguides have attracted much attention due to the possibility of high light confinement, although they suffer from relatively high propagation loss originating from the presence of a metal. Although the tightly confined light in a small gap leads to a high confinement factor, which is crucial for sensing applications, the use of plasmonic guiding at the same time results in a low propagation length. Therefore, the consideration of a trade-off between the confinement factor and the propagation length is essential to optimize the waveguide geometries. Using silicon nitride as a platform as one of the most common material systems, we have investigated free-standing and asymmetric gold-based plasmonic slot waveguides designed for sensing applications. A new figure of merit (FOM) is introduced to optimize the waveguide geometries for a wavelength of 4.26 µm corresponding to the absorption peak of CO2, aiming at the enhancement of the confinement factor and propagation length simultaneously. For the free-standing structure, the achieved FOM is 274.6 corresponding to approximately 42% and 868 µm for confinement factor and propagation length, respectively. The FOM for the asymmetric structure shows a value of 70.1 which corresponds to 36% and 264 µm for confinement factor and propagation length, respectively.

17.
Sensors (Basel) ; 21(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466483

RESUMO

A voltage-controlled oscillator (VCO) is a key component to generate high-speed clock of mixed-mode circuits and local oscillation signals of the frequency conversion in wired and wireless application systems. In particular, the recent evolution of new high-speed wireless systems in the millimeter-wave frequency band calls for the implementation of the VCO with high oscillation frequency and low close-in phase noise. The effect of the flicker noise on the phase noise of the VCO should be minimized because the flicker noise dramatically increases as the deep-submicron complementary metal-oxide-semiconductor (CMOS) process is scaled down, and the flicker corner frequency also increases, up to several MHz, in the up-to-date CMOS process. The flicker noise induced by the current source is a major factor affecting the phase noise of the VCO. Switched-biasing techniques have been proposed to minimize the effect of the flicker noise at the output of the VCO with biasing AC-coupled signals at the current source of the VCO. Reviewing the advantages and disadvantages reported in the previous studies, it is analyzed which topology to implement the switched-biasing technique is advantageous for improving the performance of the CMOS VCOs.

18.
Sensors (Basel) ; 21(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34883867

RESUMO

Lately, wearable applications featuring photonic on-chip sensors are on the rise. Among many ways of controlling and/or modulating, the acousto-optic technique is seen to be a popular technique. This paper undertakes the study of different multilayer structures that can be fabricated for realizing an acousto-optic device, the objective being to obtain a high acousto-optic figure of merit (AOFM). By varying the thicknesses of the layers of these materials, several properties are discussed. The study shows that the multilayer thin film structure-based devices can give a high value of electromechanical coupling coefficient (k2) and a high AOFM as compared to the bulk piezoelectric/optical materials. The study is conducted to find the optimal normalised thickness of the multilayer structures with a material possessing the best optical and piezoelectric properties for fabricating acousto-optic devices. Based on simulations and studies of SAW propagation characteristics such as the electromechanical coupling coefficient (k2) and phase velocity (v), the acousto-optic figure of merit is calculated. The maximum value of the acousto-optic figure of merit achieved is higher than the AOFM of all the individual materials used in these layer structures. The suggested SAW device has potential application in wearable and small footprint acousto-optic devices and gives better results than those made with bulk piezoelectric materials.


Assuntos
Transdutores , Dispositivos Eletrônicos Vestíveis , Desenho de Equipamento , Análise de Falha de Equipamento , Óptica e Fotônica
19.
Sensors (Basel) ; 21(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577373

RESUMO

Gold nanoantennas have been used in a variety of biomedical applications due to their attractive electronic and optical properties, which are shape- and size-dependent. Here, a periodic paired gold nanostructure exploiting surface plasmon resonance is proposed, which shows promising results for Refractive Index (RI) detection due to its high electric field confinement and diffraction limit. Here, single and paired gold nanostructured sensors were designed for real-time RI detection. The Full-Width at Half-Maximum (FWHM) and Figure-Of-Merit (FOM) were also calculated, which relate the sensitivity to the sharpness of the peak. The effect of different possible structural shapes and dimensions were studied to optimise the sensitivity response of nanosensing structures and identify an optimised elliptical nanoantenna with the major axis a, minor axis b, gap between the pair g, and heights h being 100 nm, 10 nm, 10 nm, and 40 nm, respectively. In this work, we investigated the bulk sensitivity, which is the spectral shift per refractive index unit due to the change in the surrounding material, and this value was calculated as 526-530 nm/RIU, while the FWHM was calculated around 110 nm with a FOM of 8.1. On the other hand, the surface sensing was related to the spectral shift due to the refractive index variation of the surface layer near the paired nanoantenna surface, and this value for the same antenna pair was calculated as 250 nm/RIU for a surface layer thickness of 4.5 nm.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Ouro , Refratometria , Ressonância de Plasmônio de Superfície
20.
Sensors (Basel) ; 20(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261084

RESUMO

In this paper, we present a new type of guided-mode resonance (GMR)-based sensor that utilizes a planar waveguide structure (PWS). We employed a PWS with an asymmetric three-layer waveguide structure consisting of substrate/Au/photoresist. The ellipsometric characterization of the structure layers, the simulated reflectance spectra, and optical field distributions under GMR conditions showed that multiple waveguide modes can be excited in the PWS. These modes can be used for refractive index sensing, and the theoretical analysis of the designed PWS showed a sensitivity to the refractive index up to 6600 nm per refractive index unit (RIU) and a figure of merit (FOM) up to 224 RIU-1. In response to these promising theoretical results, the PWS was used to measure the relative humidity (RH) of moist air with a sensitivity up to 0.141 nm/%RH and a FOM reaching 3.7 × 10-3%RH-1. The results demonstrate that this highly-sensitive and hysteresis-free sensor based on GMR has the potential to be used in a wide range of applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa