RESUMO
BACKGROUND: FLNC (filamin C), a member of the filamin family predominantly expressed in striated muscles, plays a crucial role in bridging the cytoskeleton and ECM (extracellular matrix) in cardiomyocytes, thereby maintaining heart integrity and function. Although genetic variants within the N-terminal ABD (actin-binding domain) of FLNC have been identified in patients with cardiomyopathy, the precise contribution of the actin-binding capability to FLNC's function in mammalian hearts remains poorly understood. METHODS: We conducted in silico analysis of the 3-dimensional structure of mouse FLNC to identify key amino acid residues within the ABD that are essential for FLNC's actin-binding capacity. Subsequently, we performed coimmunoprecipitation and immunofluorescent assays to validate the in silico findings and assess the impact of these mutations on the interactions with other binding partners and the subcellular localization of FLNC. Additionally, we generated and analyzed knock-in mouse models in which the FLNC-actin interaction was completely disrupted by these mutations. RESULTS: Our findings revealed that F93A/L98E mutations completely disrupted FLNC-actin interaction while preserving FLNC's ability to interact with other binding partners ITGB1 (ß1 integrin) and γ-SAG (γ-sarcoglycan), as well as maintaining FLNC subcellular localization. Loss of FLNC-actin interaction in embryonic cardiomyocytes resulted in embryonic lethality and cardiac developmental defects, including ventricular wall malformation and reduced cardiomyocyte proliferation. Moreover, disruption of FLNC-actin interaction in adult cardiomyocytes led to severe dilated cardiomyopathy, enhanced lethality and dysregulation of key cytoskeleton components. CONCLUSIONS: Our data strongly support the crucial role of FLNC as a bridge between actin filaments and ECM through its interactions with actin, ITGB1, γ-SAG, and other associated proteins in cardiomyocytes. Disruption of FLN-actin interaction may result in detachment of actin filaments from the extracellular matrix, ultimately impairing normal cardiac development and function. These findings also provide insights into mechanisms underlying cardiomyopathy associated with genetic variants in FLNC ABD and other regions.
Assuntos
Actinas , Cardiomiopatias , Camundongos , Animais , Filaminas/genética , Filaminas/metabolismo , Actinas/genética , Actinas/metabolismo , Músculo Esquelético/metabolismo , Cardiomiopatias/genética , Miócitos Cardíacos/metabolismo , Mutação , MamíferosRESUMO
AIMS: Target skeletal muscle fibres - defined by different concentric areas in oxidative enzyme staining - can occur in patients with neurogenic muscular atrophy. Here, we used our established hypothesis-free proteomic approach with the aim of deciphering the protein composition of targets. We also searched for potential novel interactions between target proteins. METHODS: Targets and control areas were laser microdissected from skeletal muscle sections of 20 patients with neurogenic muscular atrophy. Samples were analysed by a highly sensitive mass spectrometry approach, enabling relative protein quantification. The results were validated by immunofluorescence studies. Protein interactions were investigated by yeast two-hybrid assays, coimmunoprecipitation experiments and bimolecular fluorescence complementation. RESULTS: More than 1000 proteins were identified. Among these, 55 proteins were significantly over-represented and 40 proteins were significantly under-represented in targets compared to intraindividual control samples. The majority of over-represented proteins were associated with the myofibrillar Z-disc and actin dynamics, followed by myosin and myosin-associated proteins, proteins involved in protein biosynthesis and chaperones. Under-represented proteins were mainly mitochondrial proteins. Functional studies revealed that the LIM domain of the over-represented protein LIMCH1 interacts with isoform A of Xin actin-binding repeat-containing protein 1 (XinA). CONCLUSIONS: In particular, proteins involved in myofibrillogenesis are over-represented in target structures, which indicate an ongoing process of sarcomere assembly and/or remodelling within this specific area of the muscle fibres. We speculate that target structures are the result of reinnervation processes in which filamin C-associated myofibrillogenesis is tightly regulated by the BAG3-associated protein quality system.
Assuntos
Doenças do Sistema Nervoso Periférico , Humanos , Doenças do Sistema Nervoso Periférico/metabolismo , Actinas/análise , Actinas/metabolismo , Proteômica , Proteínas Musculares/metabolismo , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/metabolismoRESUMO
Cardiomyopathy affects approximately 1 in 500 adults and is the leading cause of death. Familial cases are common, and mutations in many genes are involved in cardiomyopathy, especially those in genes encoding cytoskeletal, sarcomere, and nuclear envelope proteins. Filamin C is an actin-binding protein encoded by filamin C (FLNC) gene and participates in sarcomere stability maintenance. FLNC was first demonstrated to be a causal gene of myofibrillar myopathy; recently, it has been found that FLNC mutation plays a critical role in the pathogenesis of cardiomyopathy. In this review, we summarized the physiological roles of filamin C in cardiomyocytes and the genetic evidence for links between FLNC mutations and cardiomyopathies. Truncated FLNC is enriched in dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. Non-truncated FLNC is enriched in hypertrophic cardiomyopathy and restrictive cardiomyopathy. Two major pathomechanisms in FLNC-related cardiomyopathy have been described: protein aggregation resulting from non-truncating mutations and haploinsufficiency triggered by filamin C truncation. Therefore, it is important to understand the cellular biology and molecular regulation of FLNC to design new therapies to treat patients with FLNC-related cardiomyopathy.
Assuntos
Cardiomiopatias , Filaminas , Miopatias Congênitas Estruturais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , DNA/genética , Filaminas/genética , Filaminas/metabolismo , Humanos , MutaçãoRESUMO
OBJECTIVE: Here, we provide evidence for the role of FLNA (filamin A) in the modulation of store-operated calcium entry (SOCE). APPROACH AND RESULTS: SOCE is a major mechanism for calcium influx controlled by the intracellular Ca2+ stores. On store depletion, the endoplasmic reticulum calcium sensor STIM1 (stromal interaction molecule 1) redistributes into puncta at endoplasmic reticulum/plasma membrane junctions, a process supported by the cytoskeleton, where it interacts with the calcium channels; however, the mechanism for fine-tuning SOCE is not completely understood. Our results demonstrate that STIM1 interacts with FLNA on calcium store depletion in human platelets. The interaction is dependent on the phosphorylation of FLNA at Ser2152 by the cAMP-dependent protein kinase. Impairment of FLNA phosphorylation and knockdown of FLNA expression using siRNA increased SOCE in platelets. Similarly, SOCE was significantly greater in FLNA-deficient melanoma M2 cells than in the FLNA-expressing M2 subclone A7. Expression of FLNA in M2 cells attenuated SOCE, an effect prevented when the cells were transfected with the nonphosphorylatable FLNA S2152A mutant. Transfection of M2 cells with the STIM1(K684,685E) mutant reduced the STIM1-FLNA interaction. In platelets, attenuation of FLNA expression using siRNA resulted in enhanced association of STIM1 with the cytoskeleton, greater STIM1-Orai1 interaction, and SOCE. Introduction of an anti-FLNA (2597-2647) antibody attenuated the STIM1-FLNA interaction and enhanced thrombin-induced platelet aggregation. CONCLUSIONS: Our results indicate that FLNA modulates SOCE and then the correct platelet function, by fine-tuning the distribution of STIM1 in the cytoskeleton and the interaction with Orai1 channels.
Assuntos
Plaquetas/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Filaminas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Filaminas/genética , Humanos , Ativação do Canal Iônico , Melanoma/genética , Melanoma/metabolismo , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Fosforilação , Agregação Plaquetária , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Serina , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Molécula 1 de Interação Estromal/genéticaRESUMO
OBJECTIVE: This study aims to investigate the association of filamin A with the function and morphology of prostate cancer (PCa) cells, and explore the role of filamin A in the development of PCa, in order to analyze its significance in the evolvement of PCa. MATERIALS AND METHODS: A stably transfected cell line, in which filamin A expression was suppressed by RNA interference, was first established. Then, the effects of the suppression of filamin A gene expression on the biological characteristics of human PCa LNCaP cells were observed through cell morphology, in vitro cell growth curve, soft agar cloning assay, and scratch test. RESULTS: A cell line model with a low expression of filamin A was successfully constructed on the basis of LNCaP cells. The morphology of cells transfected with plasmid pSilencer-filamin A was the following: Cells were loosely arranged, had less connection with each other, had fewer tentacles, and presented a fibrous look. The growth rate of LNCap cells was faster than cells transfected with plasmid pSilencer-filamin A (P<0.05). The clones of LNCap cells in the soft agar cloning assay was significantly fewer than that of cells stably transfected with plasmid pSilencer-filamin A (P<0.05). Cells stably transfected with plasmid pSilencer-filamin A presented with a stronger healing and migration ability compared to LNCap cells (healing rate was 32.2% and 12.1%, respectively; P<0.05). CONCLUSION: The expression of the filamin A gene inhibited the malignant development of LNCap cells. Therefore, the filamin A gene may be a tumor suppressor gene.
Assuntos
Filaminas/análise , Filaminas/fisiologia , Neoplasias da Próstata/patologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Colorimetria/métodos , Filaminas/genética , Formazans , Humanos , Masculino , Plasmídeos , Neoplasias da Próstata/genética , Sais de Tetrazólio , Fatores de Tempo , Transfecção/métodos , Cicatrização/fisiologiaAssuntos
Cardiomiopatia Dilatada/genética , Filaminas/metabolismo , Desenvolvimento Muscular/genética , Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibrose/genética , Filaminas/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/fisiologia , Mutação/genética , Contração Miocárdica/genética , Miócitos Cardíacos/patologiaRESUMO
Periventricular nodular heterotopia (PNH) is a neuronal migration defect characterized by the presence of ectopic grey matter nodules adjacent to the walls of the lateral ventricles. The main genetic etiology of PNH are variants in the Filamin A gene (FLNA, MIM #300049), located in the X chromosome. It affects mostly females (embryonic lethality in males), with about 50% of cases inherited from healthy mothers or with a mild phenotype. It is associated with epilepsy (75%-90%), cardiovascular (65%) and pulmonary pathologies (25%). A 28-year-old primigravida was referred for prenatal care in obstetrics department because of personal history of obliterative bronchiolitis. She has a family history of asthma (mother and sister) and adulthood-onset epilepsy (father). The pregnancy was uneventful up to 20 weeks and 3 days when bilateral periventricular irregularities and mega cisterna magna were identified on ultrasound in a female fetus. Neurosonography was performed, which led to the hypothesis of diffuse PNH, supported by MRI. The hypothesis of PNH associated to the FLNA gene was made. Brain MRI on the pregnant woman was requested, which confirmed a similar pattern of PNH. The arrayCGH (PerkinElmer, Prenatal filter 37K) was normal, and whole exome sequencing identified the likely pathogenic c.1554del p.(Val519fs*) variant in the FLNA gene. We present a case of X-linked hereditary PNH that highlights the value of fetal neurosonography in making a putative diagnosis. The diagnosis was supported by MRI in both fetus and mother. The investigation was supplemented by genetic studies, which confirmed the diagnosis.
RESUMO
Background and Objective: The molecular mechanisms that underpin platelet granule secretion remain poorly defined. Filamin A (FLNA) is an actin-crosslinking and signaling scaffold protein whose role in granule exocytosis has not been explored despite evidence that FLNA gene mutations confer platelet defects in humans. Methods and Results: Using platelets from platelet-specific conditional Flna-knockout mice, we showed that the loss of FLNA confers a severe defect in alpha (α)- and dense (δ)-granule exocytosis, as measured based on the release of platelet factor 4 (aka CXCL4) and adenosine triphosphate (ATP), respectively. This defect was observed following activation of both immunoreceptor tyrosine-based activation motif (ITAM) signaling by collagen-related peptide (CRP) and G protein-coupled receptor (GPCR) signaling by thrombin and the thromboxane mimetic U46619. CRP-induced spikes in intracellular calcium [Ca2+]i were impaired in FLNA-null platelets relative to controls, confirming that FLNA regulates ITAM-driven proximal signaling. In contrast, GPCR-mediated spikes in [Ca2+]i in response to thrombin and U46619 were unaffected by FLNA. Normal platelet secretion requires complexing of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins synaptosomal-associated protein 23 (SNAP23) and syntaxin-11 (STX11). We determined that FLNA coimmunoprecipitates with both SNAP23 and STX11 upon platelet stimulation. Conclusion: FLNA regulates GPCR-driven platelet granule secretion and associates with SNAP23 and STX11 in an activation-dependent manner.
RESUMO
INTRODUCTION AND OBJECTIVES: Missense mutations in the filamin C (FLNC) gene have been reported as cause of inherited cardiomyopathy. Knowledge of the pathogenicity and genotype-phenotype correlation remains scarce. Our aim was to describe a distinctive cardiac phenotype related to rare missense FLNC variants in the ROD2 domain. METHODS: We recruited 21 unrelated families genetically evaluated because of hypertrophic cardiomyopathy (HCM)/restrictive cardiomyopathy (RCM) phenotype carrying rare missense variants in the ROD2 domain of FLNC (FLNC-mRod2). Carriers underwent advanced cardiac imaging and genetic cascade screening. Myocardial tissue from 3 explanted hearts of a missense FLNC carrier was histologically analyzed and compared with an FLNC-truncating variant heart sample and a healthy control. Plasmids independently containing 3 FLNC missense variants were transfected and analyzed using confocal microscopy. RESULTS: Eleven families (52%) with 20 assessed individuals (37 [23.7-52.7]) years showed 15 cases with a cardiac phenotype consisting of an overlap of HCM-RCM and left ventricular hypertrabeculation (saw-tooth appearance). During a median follow-up of 6.49 years, they presented with advanced heart failure: 16 (80%) diastolic dysfunction, 3 heart transplants, 3 heart failure deaths) and absence of cardiac conduction disturbances or skeletal myopathy. A total of 6 families had moderate genotype-phenotype segregation, and the remaining were de novo variants. Differential extracellular matrix remodeling and FLNC distribution among cardiomyocytes were confirmed on histology. HT1080 and H9c2 cells did not reveal cytoplasmic aggregation of mutant FLNC. CONCLUSIONS: FLNC-mRod2 variants show a high prevalence of an overlapped phenotype comprising RCM, HCM and deep hypertrabeculation with saw-tooth appearance and distinctive cardiac histopathological remodeling.
Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Cardiomiopatia Restritiva , Insuficiência Cardíaca , Humanos , Cardiomiopatia Restritiva/genética , Mutação de Sentido Incorreto , Mutação , Filaminas/genética , Fenótipo , Miocárdio , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genéticaRESUMO
Filamins (FLNs) are actin cross-linking proteins, and as scaffolding proteins, FLNs are closely associated with the stabilization of the cytoskeleton. Nevertheless, the biological importance of FLNs in aortic dissection (AD) has not been well-elucidated. In this study, we first reanalyzed datasets downloaded from the Gene Expression Omnibus (GEO) database, and we found that in addition to the extracellular matrix, the actin cytoskeleton is a key structure associated with AD. Given that FLNs are involved in remodeling the cytoskeleton to affect cellular functions, we measured their expression levels in the aortas of patients with Stanford type A AD (TAAD). Our results showed that the mRNA and protein levels of FLNA were consistently decreased in dissected aortas of both humans and mice, while the FLNB protein level was upregulated despite decreased FLNB mRNA levels, and comparable expression levels of FLNC were observed between groups. Furthermore, the immunohistochemistry results demonstrated that FLNA was highly expressed in smooth muscle cells (SMCs) of aorta in non-AD samples, and downregulated in the medial layer of the dissected aortas of humans and mice. Moreover, we revealed that FOS and JUN, forming a dimeric transcription factor called AP-1 (activating protein-1), were positively correlated with the expression of FLNA in aorta. Either overexpression of FOS or JUN alone, or overexpression of FOS and JUN together, facilitated the expression of FLNA in primary cultured human aortic SMCs. In the present study, we not only detected the expression pattern of FLNs in aortas of humans and mice with or without AD, but we also found that the expression of FLNA in the AD samples was significantly reduced and that AP-1 might regulate the expression of FLNA. Our findings will contribute to the elucidation of the pathological mechanisms of AD and provide potential therapeutic targets for AD.
RESUMO
Resumo Menina de seis anos com cardiomiopatia restritiva e hipertrabeculação na qual, devido ao início precoce da doença, foi realizado sequenciamento completo do exoma, revelando a presença de uma nova variante heterozigótica missense no gene FLNC. A mesma variante genética também foi identificada em seu pai, que, já adulto, apresentava resultados de imagem normais e não apresentava sintomas. Esta variante não foi relatada em bancos de dados populacionais ou na literatura médica atual e é classificada como provavelmente patogênica.
Abstract A six-year-old girl with restrictive cardiomyopathy and hypertrabeculation, due to the early onset of her disease, whole exome sequencing was conducted, revealing the presence of a novel heterozygous missense variant in the FLNC gene. The same gene variant was also identified in her father, who, at an adult age, displayed normal imaging results and was symptom-free. This variant has not been reported in population databases or current medical literature and is classified as likely pathogenic.
RESUMO
This paper reported a neonate with periventricular nodular heterotopia associated to filamin A ( FLNA) gene mutation. The female patient was born at 29 +6 weeks of gestation to a mother who had intractable seizures and a history of two adverse pregnancy outcomes. Postnatal cranial ultrasound showed multiple hypoechoic masses on the walls of bilateral ventricles, which presented as "sawtooth pattern". MRI revealed gray matter displacement, unclear edge of gray and white matter, wavy bilateral ventricles and multiple nodular signals. Whole exon sequencing showed that the patient carried a maternally-inherited and likely pathogenic heterozygous mutation of chrX:153579307 in the FLNA gene (NM_00111 0556; p.Glu2376fsTer9), which caused the periventricular nodular heterotopia in the neonate. The patient was followed up until eight months of age and no convulsion or obvious abnormality in her growth or development was reported.
RESUMO
During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015.
Assuntos
Axônios/fisiologia , Movimento Celular/fisiologia , Proteínas de Drosophila/metabolismo , Filaminas/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Citoesqueleto/metabolismo , Drosophila , Proteínas da Matriz Extracelular/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Retina/crescimento & desenvolvimento , Retina/fisiologiaRESUMO
ABSTRACT Objective This study aims to investigate the association of filamin A with the function and morphology of prostate cancer (PCa) cells, and explore the role of filamin A in the development of PCa, in order to analyze its significance in the evolvement of PCa. Materials and Methods A stably transfected cell line, in which filamin A expression was suppressed by RNA interference, was first established. Then, the effects of the suppression of filamin A gene expression on the biological characteristics of human PCa LNCaP cells were observed through cell morphology, in vitro cell growth curve, soft agar cloning assay, and scratch test. Results A cell line model with a low expression of filamin A was successfully constructed on the basis of LNCaP cells. The morphology of cells transfected with plasmid pSilencer-filamin A was the following: Cells were loosely arranged, had less connection with each other, had fewer tentacles, and presented a fibrous look. The growth rate of LNCap cells was faster than cells transfected with plasmid pSilencer-filamin A (P <0.05). The clones of LNCap cells in the soft agar cloning assay was significantly fewer than that of cells stably transfected with plasmid pSilencer-filamin A (P <0.05). Cells stably transfected with plasmid pSilencer-filamin A presented with a stronger healing and migration ability compared to LNCap cells (healing rate was 32.2% and 12.1%, respectively; P <0.05). Conclusion The expression of the filamin A gene inhibited the malignant development of LNCap cells. Therefore, the filamin A gene may be a tumor suppressor gene.
Assuntos
Humanos , Masculino , Neoplasias da Próstata/patologia , Filaminas/análise , Filaminas/fisiologia , Plasmídeos , Neoplasias da Próstata/genética , Sais de Tetrazólio , Fatores de Tempo , Cicatrização/fisiologia , Transfecção/métodos , Células Cultivadas , Western Blotting , Colorimetria/métodos , Linhagem Celular Tumoral , Proliferação de Células , Filaminas/genética , FormazansRESUMO
Introducción y objetivos Recientemente se han descrito mutaciones missense en la filamina C (FLNC) como causa de miocardiopatía. Los conocimientos sobre la patogenicidad y la correlación genotipo-fenotipo son escasos. Nuestro objetivo es describir un fenotipo cardiaco distintivo relacionado con mutaciones missense en el dominio ROD2 de FLNC (FLNC-mRod2). Métodos Incluimos 21 familias independientes con fenotipo de miocardiopatía hipertrófica (MCH)/miocardiopatía restrictiva (MCR) portadoras de variantes missense en FLNC-mRod2. Se estudió clínicamente a los portadores, además de hacer un cribado en cascada. Se analizó histológicamente el tejido miocárdico de tres corazones explantados y se comparó con un corazón portador de un truncamiento de FLNC y con un control sano. Se transfectaron plásmidos con mutaciones missense de FLNC y se analizaron mediante microscopía confocal. Resultados En 11 familias (52%) con 20 individuos evaluados (37 [23,7-52,7] años), 15 casos presentaron un fenotipo cardiaco consistente en una superposición de MCH-MCR e hipertrabeculación ventricular izquierda (apariencia de dientes de sierra). Durante una mediana de seguimiento de 6,49 años presentaron principalmente insuficiencia cardiaca avanzada (16 (80%) disfunción diastólica, 3 trasplantes cardiacos, 3 muertes por insuficiencia cardiaca) en ausencia de alteraciones de la conducción cardiaca o miopatía esquelética. Un total de 6 familias presentaban segregación genotipo-fenotipo leve, y las restantes eran mutaciones de novo. Se observó una remodelación de la matriz extracelular y distribución de la FLNC diferencial en los cardiomiocitos. Las células HT1080 y H9c2 no revelaron agregados citoplasmáticos de FLNC. Conclusiones Las variantes en FLNC-mRod2 exhiben una alta prevalencia de fenotipo solapado de MCR, MCH e hipertrabeculación en dientes de sierra, con una remodelación histopatológica cardiaca distintiva (AU)
Introduction and objectives Missense mutations in the filamin C (FLNC) gene have been reported as cause of inherited cardiomyopathy. Knowledge of the pathogenicity and genotype-phenotype correlation remains scarce. Our aim was to describe a distinctive cardiac phenotype related to rare missense FLNC variants in the ROD2 domain. Methods We recruited 21 unrelated families genetically evaluated because of hypertrophic cardiomyopathy (HCM)/restrictive cardiomyopathy (RCM) phenotype carrying rare missense variants in the ROD2 domain of FLNC (FLNC-mRod2). Carriers underwent advanced cardiac imaging and genetic cascade screening. Myocardial tissue from 3 explanted hearts of a missense FLNC carrier was histologically analyzed and compared with an FLNC-truncating variant heart sample and a healthy control. Plasmids independently containing 3 FLNC missense variants were transfected and analyzed using confocal microscopy. Results Eleven families (52%) with 20 assessed individuals (37 [23.7-52.7]) years showed 15 cases with a cardiac phenotype consisting of an overlap of HCM-RCM and left ventricular hypertrabeculation (saw-tooth appearance). During a median follow-up of 6.49 years, they presented with advanced heart failure: 16 (80%) diastolic dysfunction, 3 heart transplants, 3 heart failure deaths) and absence of cardiac conduction disturbances or skeletal myopathy. A total of 6 families had moderate genotype-phenotype segregation, and the remaining were de novo variants. Differential extracellular matrix remodeling and FLNC distribution among cardiomyocytes were confirmed on histology. HT1080 and H9c2 cells did not reveal cytoplasmic aggregation of mutant FLNC. Conclusions FLNC-mRod2 variants show a high prevalence of an overlapped phenotype comprising RCM, HCM and deep hypertrabeculation with saw-tooth appearance and distinctive cardiac histopathological remodeling (AU)