Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.843
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(22): e2322663121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768354

RESUMO

The fangs, jaws, and mandibles of marine invertebrates such as Chiton and Glycera show excellent mechanical properties, which are mostly contributed to the interactions between metal (Fe, Cu, Zn, etc.) and oxygen-containing functional groups in proteins. Inspired by these load-bearing skeletal biomaterials, we improved tensile strength and toughness of graphene films through bridging graphene oxide (GO) nanosheets by metal ions. By optimizing the metal coordination form and density of cross-linking network. We revealed the relationship between mechanical properties and the unique spatial geometry of the GO nanosheets bridged by different valence metal ions. The results demonstrated that the divalent metal ions form tetrahedral geometry with carboxylate groups on the edges of the GO nanosheets, and the bond energy is relatively low, which is helpful for improving the toughness of resultant graphene films. While the trivalent metal ions are easily to form octahedral geometry with the GO nanosheets with higher bond energy, which is better for enhancing the tensile strength of graphene films. After reduction, the reduced GO (rGO) film bridged by divalent metal ions shows 43% improvement in toughness, while the rGO film bridged by trivalent metal ions shows 64% improvement in tensile strength. Our work reveals the mechanism of metal coordination bond energy and spatial geometry to improve the mechanical properties of graphene films, which lays a theoretical foundation for improving the tensile strength and toughness of resultant graphene films, and provides an avenue for fabricating high-performance graphene films and other two-dimensional nanocomposites.

2.
Proc Natl Acad Sci U S A ; 121(31): e2407501121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042697

RESUMO

This study explores the impact of electrostatic interactions and hydrogen bonding on tear film stability, a crucial factor for ocular surface health. While mucosal and meibomian layers have been extensively studied, the role of electrolytes in the aqueous phase remains unclear. Dry eye syndrome, characterized by insufficient tear quantity or quality, is associated with hyperosmolality, making electrolyte composition an important factor that might impact tear stability. Using a model buffer solution on a silica glass dome, we simulated physiologically relevant tear film conditions. Sodium chloride alone induced premature dewetting through salt crystal nucleation. In contrast, trace amounts of solutes with hydroxyl groups (sodium phosphate dibasic, potassium phosphate monobasic, and glucose) exhibited intriguing phenomena: quasi-stable films, solutal Marangoni-driven fluid influx increasing film thickness, and viscous fingering due to Saffman-Taylor instability. These observations are rationalized by the association of salt solutions with increased surface tension and the propensity of hydroxyl-group-containing solutes to engage in significant hydrogen bonding, altering local viscosity. This creates a viscosity contrast between the bulk buffer solution and the film region. Moreover, these solutes shield the glass dome, counteracting sodium chloride crystallization. These insights not only advance our understanding of tear film mechanics but also pave the way for predictive diagnostics in dry eye syndrome, offering a robust platform for personalized medical interventions based on individual tear film composition.


Assuntos
Eletrólitos , Ligação de Hidrogênio , Lágrimas , Lágrimas/química , Eletrólitos/química , Humanos , Viscosidade , Cloreto de Sódio/química , Fosfatos/química , Tensão Superficial , Eletricidade Estática , Síndromes do Olho Seco/metabolismo , Molhabilidade , Compostos de Potássio
3.
Proc Natl Acad Sci U S A ; 121(41): e2406262121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39361647

RESUMO

Using angle-resolved X-ray photoelectron spectroscopy, sum-frequency generation vibrational spectroscopy, contact angle measurements, and molecular dynamics simulations, we verify that the glass transition temperature (Tg) of polymer glass is lower near the free surface. However, the experimental Tg-gradients showed a linear variation with depth (z) from the free surface, while the simulated equilibrium Tg-gradients exhibited a double exponential z-dependence. In typical simulations, Tg is determined based on the relaxation time of the system reaching a prescribed threshold value at equilibrium. Conversely, the experiments determined Tg by observing the unfreezing of molecular mobility during heating from a kinetically arrested, nonequilibrium glassy state. To investigate the impact of nonequilibrium effects on the Tg-gradient, we reduced the thermal annealing time in simulations, allowing the system to fall out of equilibrium. We observe a decrease in the relaxation time and the emergence of a modified z-dependence consistent with a linear Tg-gradient near the free surface. We further validate the impact of nonequilibrium effects by studying the dependence of the Tg on the heating/cooling rate for polymer films of varying thickness (h). Our experimental results reveal significant variations in the Tg-heating/cooling rate dependence with h below the bulk Tg, which are also observed in simulation when the simulated system is not equilibrated. We explain our findings by the reduction in mass density within the inner region of the system under nonequilibrium conditions, as observed in simulation, and recent research indicating a decrease in the local Tg of a polymer when placed next to a softer material.

4.
Proc Natl Acad Sci U S A ; 121(30): e2404164121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39012823

RESUMO

The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.


Assuntos
Neurônios , Optogenética , Silício , Animais , Silício/química , Neurônios/fisiologia , Camundongos , Optogenética/métodos , Cálcio/metabolismo , Luz , Encéfalo/fisiologia
5.
Proc Natl Acad Sci U S A ; 120(25): e2221304120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307490

RESUMO

Liquid and ionic transport through nanometric structures is central to many phenomena, ranging from cellular exchanges to water resource management or green energy conversion. While pushing down toward molecular scales progressively unveils novel transport behaviors, reaching ultimate confinement in controlled systems remains challenging and has often involved 2D Van der Waals materials. Here, we propose an alternative route which circumvents demanding nanofabrication steps, partially releases material constraints, and offers continuously tunable molecular confinement. This soft-matter-inspired approach is based on the spontaneous formation of a molecularly thin liquid film onto fully wettable substrates in contact with the vapor phase of the liquid. Using silicon dioxide substrates, water films ranging from angstrom to nanometric thicknesses are formed in this manner, and ionic transport within the film can then be measured. Performing conductance measurements as a function of confinement in these ultimate regimes reveals a one-molecule thick layer of fully hindered transport nearby the silica, above which continuum, bulk-like approaches account for experimental results. Overall, this work paves the way for future investigations of molecular scale nanofluidics and provides insights into ionic transport nearby high surface energy materials such as natural rocks and clays, building concretes, or nanoscale silica membranes used for separation and filtering.

6.
Proc Natl Acad Sci U S A ; 120(12): e2221651120, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913577

RESUMO

Nanostructured materials can display unique physical properties and are of particular interest for their new functionalities. Epitaxial growth is a promising approach for the controlled synthesis of nanostructures with desired structures and crystallinity. SrCoOx is a particularly intriguing material owing to a topotactic phase transition between an antiferromagnetic insulating brownmillerite SrCoO2.5 (BM-SCO) phase and a ferromagnetic metallic perovskite SrCoO3-δ (P-SCO) phase depending on the oxygen concentration. Here, we present the formation and control of epitaxial BM-SCO nanostructures by substrate-induced anisotropic strain. Perovskite substrates with a (110)-orientation and which allow for compressive strain result in the creation of BM-SCO nanobars, while (111)-oriented substrates give rise to the formation of BM-SCO nanoislands. We have found that substrate-induced anisotropic strain coupled with the orientation of crystalline domains determines the shape and facet of the nanostructures, while their size can be tuned by the degree of strain. Moreover, the nanostructures can be transformed between antiferromagnetic BM-SCO and ferromagnetic P-SCO via ionic liquid gating. Thus, this study provides insights into the design of epitaxial nanostructures whose structure and physical properties can be readily controlled.

7.
Proc Natl Acad Sci U S A ; 120(28): e2303312120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37410867

RESUMO

New properties and exotic quantum phenomena can form due to periodic nanotextures, including Moire patterns, ferroic domains, and topologically protected magnetization and polarization textures. Despite the availability of powerful tools to characterize the atomic crystal structure, the visualization of nanoscale strain-modulated structural motifs remains challenging. Here, we develop nondestructive real-space imaging of periodic lattice distortions in thin epitaxial films and report an emergent periodic nanotexture in a Mott insulator. Specifically, we combine iterative phase retrieval with unsupervised machine learning to invert the diffuse scattering pattern from conventional X-ray reciprocal-space maps into real-space images of crystalline displacements. Our imaging in PbTiO3/SrTiO3 superlattices exhibiting checkerboard strain modulation substantiates published phase-field model calculations. Furthermore, the imaging of biaxially strained Mott insulator Ca2RuO4 reveals a strain-induced nanotexture comprised of nanometer-thin metallic-structure wires separated by nanometer-thin Mott-insulating-structure walls, as confirmed by cryogenic scanning transmission electron microscopy (cryo-STEM). The nanotexture in Ca2RuO4 film is induced by the metal-to-insulator transition and has not been reported in bulk crystals. We expect the phasing of diffuse X-ray scattering from thin crystalline films in combination with cryo-STEM to open a powerful avenue for discovering, visualizing, and quantifying the periodic strain-modulated structures in quantum materials.


Assuntos
Filmes Cinematográficos , Refração Ocular , Aprendizado de Máquina não Supervisionado
8.
Proc Natl Acad Sci U S A ; 120(9): e2209807120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812210

RESUMO

Since first developed, the conducting materials in wireless communication and electromagnetic interference (EMI) shielding devices have been primarily made of metal-based structures. Here, we present a graphene-assembled film (GAF) that can be used to replace copper in such practical electronics. The GAF-based antennas present strong anticorrosive behavior. The GAF ultra-wideband antenna covers the frequency range of 3.7 GHz to 67 GHz with the bandwidth (BW) of 63.3 GHz, which exceed ~110% than the copper foil-based antenna. The GAF Fifth Generation (5G) antenna array features a wider BW and lower sidelobe level compared with that of copper antennas. EMI shielding effectiveness (SE) of GAF also outperforms copper, reaching up to 127 dB in the frequency range of 2.6 GHz to 0.32 THz, with a SE per unit thickness of 6,966 dB/mm. We also confirm that GAF metamaterials exhibit promising frequency selection characteristics and angular stability as flexible frequency selective surfaces.

9.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983848

RESUMO

Tiny water drops produced from bubble bursting play a critical role in forming clouds, scattering sunlight, and transporting pathogens from water to the air. Bubbles burst by nucleating a hole at their cap foot and may produce jets or film drops. The latter originate from the fragmentation of liquid ligaments formed by the centripetal destabilization of the opening hole rim. They constitute a major fraction of the aerosols produced from bubbles with cap radius of curvature (R) > ∼0.4 × capillary length (a). However, our present understanding of the corresponding mechanisms does not explain the production of most submicron film drops, which represent the main number fraction of sea spray aerosols. In this study, we report observations showing that bursting bubbles with R < ∼0.4a are actually mainly responsible for submicron film drop production, through a mechanism involving the flapping shear instability of the cap with the outer environment. With this proposed pathway, the complex relations between bubble size and number of drops produced per bubble can be better explained, providing a fundamental framework for understanding the production flux of aerosols and the transfer of substances mediated by bubble bursting through the air-water interface and the sensitivity of the process to the nature of the environment.

10.
Proc Natl Acad Sci U S A ; 119(23): e2202189119, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653574

RESUMO

SignificanceSemiconductor interfaces are among the most important in use in modern technology. The properties they exhibit can either enable or disable the characteristics of the materials they connect for functional performance. While much is known about important junctions involving conventional semiconductors such as Si and GaAs, there are several unsolved mysteries surrounding interfaces between oxide semiconductors. Here we resolve a long-standing issue concerning the measurement of anomalously low dielectric constants in SrTiO3 films with record high electron mobilities. We show that the junction between doped and undoped SrTiO3 required to make dielectric constant measurements masks the dielectric properties of the undoped film. Through modeling, we extract the latter and show that it is much higher than previously measured.

11.
Proc Natl Acad Sci U S A ; 119(19): e2118597119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35522708

RESUMO

SignificancePhase transitions, the changes between states of matter with distinct electronic, magnetic, or structural properties, are at the center of condensed matter physics and underlie valuable technologies. First-order phase transitions are intrinsically heterogeneous. When driven by ultrashort excitation, nanoscale phase regions evolve rapidly, which has posed a significant experimental challenge to characterize. The newly developed laser-pumped X-ray nanodiffraction imaging technique reported here has simultaneous 100-ps temporal and 25-nm spatial resolutions. This approach reveals pathways of the nanoscale structural rearrangement upon ultrafast optical excitation, different from those transitions under slowly varying parameters. The spatiotemporally resolved structural characterization provides crucial nanoscopic insights into ultrafast phase transitions and opens opportunities for controlling nanoscale phases on ultrafast time scales.

12.
Proc Natl Acad Sci U S A ; 119(49): e2209955119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36459653

RESUMO

From molecules and particles to macroscopic surfaces immersed in fluids, chemical reactions often endow interfaces with electrical charge which in turn governs surface interactions and interfacial phenomena. The ability to measure the electrical properties of a material immersed in any solvent, as well as to monitor the spatial heterogeneity and temporal variation thereof, has been a long-standing challenge. Here, we describe an optical microscopy-based approach to probe the surface charge distribution of a range of materials, including inorganic oxide, polymer, and polyelectrolyte films, in contact with a fluid. The method relies on optical visualization of the electrical repulsion between diffusing charged probe molecules and the unknown surface to be characterized. Rapid image-based measurements enable us to further determine isoelectric points of the material as well as properties of its ionizable chemical groups. We further demonstrate the ability to optically monitor chemically triggered surface charge changes with millisecond time resolution. Finally, we present a scanning-surface probe technique capable of diffraction-limited imaging of spatial heterogeneities in chemical composition and charge over large areas. This technique will enable facile characterization of the solid-liquid interface with wide-ranging relevance across application areas from biology to engineering.

13.
Nano Lett ; 24(40): 12642-12649, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39345204

RESUMO

Developing ultralow-κ (dielectric constant) polyimides (PIs) that are mechanically robust while also being optically transparent is challenging. For the first time, we report a nanoporous PI film with an ultralow κ of 1.8 in combination with a tensile strength of up to 180 MPa, a Young's modulus of up to 6 GPa, and a transmittance of ∼88%. This is achieved by direct nanowelding of a porous electrospun PI nanofiber membrane using a simple mixture of ethanol-dominating DMAc. Benefiting from the effective evaporation of the antisolvent ethanol upon heating, the proposed nanowelding approach allows for the localized surface dissolution of the PI nanofibers, which enables the dissolved PI to "glue" the nanofibers and occupy vacant space in the membrane, resulting in the formation of a dense but nanoporous self-reinforced nanocomposite film. Our findings provide a renewed understanding of the potential of electrospun nanofibrous materials, and the underlying principle can hopefully be applied to other commodity polymers.

14.
Nano Lett ; 24(21): 6433-6440, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747334

RESUMO

Soap bubbles exhibit abundant fascinating phenomena throughout the entire life of evolution with different fundamental physics governing them. Nevertheless, the complicated dynamics of small objects in soap films are still unrevealed. Here, we report the first observation of spontaneous particle ordering in a complicated galaxy of soap films without any external energy. The balance of interfacial tension at two liquid-gas interfaces is theoretically predicted to govern belted wetted particles (BWPs) traveling along a specified path spontaneously. Such spontaneous particle path-finding is found to depend on the particle size and hydrophilic properties. Spontaneous particle sorting is directly realized via these discrete and distinctive paths for different particles. The deformation of the soap membrane facilitates 1D/2D particle organization along the path. This observation represents the discovery of a new spontaneous order phenomenon in soap film systems and provides a new energy-free approach for particle separation and soft colloidal crystal assembly.

15.
Nano Lett ; 24(22): 6665-6672, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767991

RESUMO

Shape morphing of biopolymer materials, such as chitosan (CS) films, has great potential for applications in many fields. Traditionally, their responsive behavior has been induced by the differential water swelling through the preparation of multicomponent composites or cross-linking as deformation is not controllable in the absence of these processes. Here, we report an interfacial dehydration strategy to trigger the shape morphing of the monocomponent CS film without cross-linking. The release of water molecules is achieved by spraying the surface with a NaOH solution or organic solvents, which results in the interfacial shrinkage and deformation of the entire film. On the basis of this strategy, a range of CS actuators were developed, such as soft grippers, joint actuators, and a light switch. Combined with the geometry effect, edited deformation was also achieved from the planar CS film. This shape-morphing strategy is expected to enable the application of more biopolymers in a wide range of fields.

16.
Nano Lett ; 24(42): 13247-13254, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39392307

RESUMO

Emerging polar skyrmion crystals (SkX) have raised much interest for technological applications owing to their nontrivial topologies of electric dipoles, quasiparticle-like behaviors, and unique electrical responses. Understanding SkX defects, especially dislocations, is crucial for their unique lattice dynamics and responses; however, it still remains elusive. Here, we have not only demonstrated that a SkX dislocation exhibits an anomalously deformed core structure with over 50% elongation of skyrmions but also discovered that Volterra's elasticity theory of dislocation is broken down in SkX. Our phase-field simulation reveals that these distinct features of SkX dislocation arise from a rigid to soft quasiparticle transition of skyrmions depending on the electric field and temperature. In SkX, there exist inherent mechanics that mitigate the mismatch by both migration and deformation of skyrmions. This work provides novel insights into a new class of lattice mechanics and related functionality arising from the unique properties of quasi-particle SkX.

17.
Nano Lett ; 24(1): 479-485, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147351

RESUMO

Black phosphorus (Black P), a layered semiconductor with a layer-dependent bandgap and high carrier mobility, is a promising candidate for next-generation electronics and optoelectronics. However, the synthesis of large-area, layer-precise, single crystalline Black P films remains a challenge due to their high nucleation energy. Here, we report the molecular beam heteroepitaxy of single crystalline Black P films on a tin monosulfide (SnS) buffer layer grown on Au(100). The layer-by-layer growth mode enables the preparation of monolayer to trilayer films, with band gaps that reflect layer-dependent quantum confinement.

18.
Nano Lett ; 24(37): 11676-11682, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39225551

RESUMO

Second-order nonlinearity gives rise to many distinctive physical phenomena, e.g., second-harmonic generation, which play an important role in fundamental science and various applications. Lithium niobate, one of the most widely used nonlinear crystals, exhibits strong second-order nonlinear effects and electro-optic properties. However, its moderate refractive index and etching sidewall angle limit its capability in confining light into nanoscales, thereby restricting its application in nanophotonics. Here, we exploit nanocavities formed by second-order circular Bragg gratings, which support resonant anapole modes, to achieve a 42 000-fold enhanced second-harmonic generation in thin-film lithium niobate. The nanocavity exhibits a record-high normalized conversion efficiency of 1.21 × 10-2 cm2/GW under the pump intensity of 1.9 MW/cm2. Besides, we also show s- and p-polarization-independent second-harmonic generation in elliptical Bragg nanocavities. This work could inspire the study of nonlinear optics at the nanoscale on thin-film lithium niobate, as well as other novel photonic platforms.

19.
Nano Lett ; 24(25): 7688-7697, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869197

RESUMO

Radiation-tolerance and repairable flexible transistors and integrated circuits (ICs) with low power consumption have become hot topics due to their wide applications in outer space, nuclear power plants, and X-ray imaging. Here, we designed and developed novel flexible semiconducting single-walled carbon nanotube (sc-SWCNT) thin-film transistors (TFTs) and ICs. Sc-SWCNT solid-electrolyte-gate dielectric (SEGD) TFTs showcase symmetric ambipolar characteristics with flat-band voltages (VFB) of ∼0 V, high ION/IOFF ratios (>105), and the recorded irradiation resistance (up to 22 Mrad). Moreover, flexible sc-SWCNT ICs, including CMOS-like inverters and NAND and NOR logic gates, have excellent operating characteristics with low power consumption (≤8.4 pW) and excellent irradiation resistance. Significantly, sc-SWCNT SEGD TFTs and ICs after radiation with a total irradiation dose (TID) ≥ 11 Mrad can be repaired after thermal heating at 100 °C. These outstanding characteristics are attributed to the designed device structures and key core materials including SEGD and sc-SWCNT.

20.
Nano Lett ; 24(25): 7557-7563, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38758657

RESUMO

Ultrathin topological insulator membranes are building blocks of exotic quantum matter. However, traditional epitaxy of these materials does not facilitate stacking in arbitrary orders, while mechanical exfoliation from bulk crystals is also challenging due to the non-negligible interlayer coupling therein. Here we liberate millimeter-scale films of the topological insulator Bi2Se3, grown by molecular beam epitaxy, down to 3 quintuple layers. We characterize the preservation of the topological surface states and quantum well states in transferred Bi2Se3 films using angle-resolved photoemission spectroscopy. Leveraging the photon-energy-dependent surface sensitivity, the photoemission spectra taken with 6 and 21.2 eV photons reveal a transfer-induced migration of the topological surface states from the top to the inner layers. By establishing clear electronic structures of the transferred films and unveiling the wave function relocation of the topological surface states, our work lays the physics foundation crucial for the future fabrication of artificially stacked topological materials with single-layer precision.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa