Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nano Lett ; 24(13): 3922-3929, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506481

RESUMO

Tunable thin-film coating-based reflective color displays have versatile applications including image sensors, camouflage devices, spatial light modulators, and intelligent windows. However, generating high-purity colors using such coatings have posed a challenge. Here, we reveal high-purity color generation using an ultralow-loss phase change material (Sb2S3)-based tunable aperiodic distributed Bragg reflector (A-DBR). By strategically adjusting the periodicity of the adjacent layers of A-DBRs, we realize a narrow photonic bandgap with high reflectivity to generate high-purity orange and yellow colors. In particular, we demonstrate an A-DBR with a large photonic bandgap tunability by changing the structural phase of Sb2S3 layers from amorphous to crystalline. Moreover, we experimentally tailor multistate tunable colors through external optical stimuli. Unlike conventional nano thin-film coatings, our proposed approach offers an irradiance-free, narrowband, and highly reflective color band, achieving exceptional color purity by effectively suppressing reflections in off-color bands.

2.
Nano Lett ; 23(11): 5236-5241, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37200154

RESUMO

Thin film coatings with tunable colors have a broad range of applications, from solid-state reflective displays to steganography. Here, we propose a novel approach to chalcogenide phase change material (PCM)-incorporated steganographic nano-optical coatings (SNOC) as thin film color reflectors for optical steganography. The proposed SNOC design combines a broad-band and a narrow-band absorber made up of PCMs to achieve tunable optical Fano resonance in the visible wavelength, which is a scalable platform for accessing the full-color range. We demonstrate that the line width of the Fano resonance can be dynamically tuned by switching the structural phase of PCM from amorphous to crystalline, which is crucial for obtaining high-purity colors. For steganography applications, the cavity layer of SNOC is divided into an ultralow loss PCM and a high index dielectric material with identical optical thickness. We show that electrically tunable color pixels can be fabricated using the SNOC on a microheater device.

3.
AAPS PharmSciTech ; 24(7): 205, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789211

RESUMO

Over the past decades, increasing interests took place in the realm of drug delivery systems. Beyond treating intestinal diseases such as inflammatory bowel disease, colon targeting can provide possible applications for oral administration of proteins as well as vaccines due to the lower enzymatic activity in the distal part of GIT. To date, many strategies are employed to reach the colon. This article encompasses different biomaterials tested as film coatings and highlights appropriate formulations for colonic drug delivery. A comparison of different films was made to display the most interesting drug release profiles. These films contained ethylcellulose, as a thermoplastic polymer, blended with an aqueous shellac ammonium salt solution. Different blend ratios were selected as well for thin films as for coated mini-tablets, mainly varying as follows: (80:20); (75:25); (60:40). The impact of blend ratio and coating level was examined as well as the addition of natural polysaccharide "inulin" to target the colon. In vitro drug release was measured in 0.1 M HCl for 2 h followed by phosphate buffer saline pH 6.8 to simulate gastric and intestinal fluids, respectively. Coated mini-tablets were exposed to fresh fecal samples of humans in order to simulate roughly colonic content. Several formulations were able to fully protect theophylline as a model drug up to 8 h in the upper GIT, but allowing for prolonged release kinetics in the colon. These very interesting colonic release profiles were related to the amount of the natural polysaccharide added into the system.


Assuntos
Colo , Inulina , Humanos , Inulina/metabolismo , Colo/metabolismo , Sistemas de Liberação de Medicamentos , Polissacarídeos/química , Comprimidos/metabolismo , Água/metabolismo
4.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364340

RESUMO

In recent years, changing lifestyles and food consumption patterns have driven demands for high-quality, ready-to-eat food products that are fresh, clean, minimally processed, and have extended shelf lives. This demand sparked research into the creation of novel tools and ingredients for modern packaging systems. The use of phenolic-compound-based active-packaging and edible films/coatings with antimicrobial and antioxidant activities is an innovative approach that has gained widespread attention worldwide. As phenolic compounds are natural bioactive molecules that are present in a wide range of foods, such as fruits, vegetables, herbs, oils, spices, tea, chocolate, and wine, as well as agricultural waste and industrial byproducts, their utilization in the development of packaging materials can lead to improvements in the oxidative status and antimicrobial properties of food products. This paper reviews recent trends in the use of phenolic compounds as potential ingredients in food packaging, particularly for the development of phenolic compounds-based active packaging and edible films. Moreover, the applications and modes-of-action of phenolic compounds as well as their advantages, limitations, and challenges are discussed to highlight their novelty and efficacy in enhancing the quality and shelf life of food products.


Assuntos
Anti-Infecciosos , Filmes Comestíveis , Conservação de Alimentos , Embalagem de Alimentos , Verduras , Anti-Infecciosos/farmacologia , Fenóis , Antibacterianos
5.
Molecules ; 27(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744899

RESUMO

We report on shear-ordered polymer photonic crystals demonstrating intense structural color with a photonic bandgap at 270 nm. Our work examines this UV structural color, originating from a low refractive index contrast polymer composite system as a function of the viewing angle. We report extensive characterization of the angle-dependent nature of this color in the form of 'scattering cones', which showed strong reflectivity in the 275-315 nm range. The viewing range of the scattering was fully quantified for a number of planes and angles, and we additionally discuss the unique spectral anisotropy observed in these structures. Such films could serve as low-cost UV reflection coatings with applications in photovoltaics due to the fact of their non-photobleaching and robust mechanical behavior in addition to their favorable optical properties.

6.
AAPS PharmSciTech ; 24(1): 24, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543905

RESUMO

Immediate-release film coatings, also known as "non-functional" film coating, are applied to core tablets to improve product appearance and swallowability, impart taste-masking properties, improve handling and stability of the dosage form, and reduce exposure to active drug substance for caregivers. The coatings have no measurable impact on bio-performance of the drug product but they protect tablets from negative effects of environment such as humidity, oxidation, and light. The mechanical stability and integrity of tablet coatings are therefore important to maintain drug product quality attributes such as appearance and stability. Therefore, environmental conditions under which these coatings may crack are important to understand so as to prevent their occurrence. In this work, we present a novel computational framework to assess the mechanical integrity of tablet coatings exposed to rapid variations in environmental conditions. We perform detailed stress and strain analysis of tablet coatings on tablet surfaces with debossed regions and identify conditions for cracking. Coatings with both elastic and viscoelastic properties are considered. Rapid changes in environmental temperature and humidity can cause differential expansion/contraction of coating and tablet core resulting in stresses that are higher than those experienced during the drying process in a coater. Debossed regions on the tablet surface with sharp surface curvatures act as stress concentrators that nucleate cracks. Small changes in the design of the debossed regions lead to modest reductions in the peak stress. Stress calculations show that coatings that are well bonded to tablet surface can crack only under very extreme conditions.


Assuntos
Comprimidos , Humanos , Temperatura
7.
Nanotechnology ; 32(21)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33596557

RESUMO

A new method for modification of planar multilayer structures to create nanostructured aluminum oxide anti-reflection coatings is reported. The method is non-toxic and low-cost, being based on treatment of the coating with heated de-ionized water after the deposition of aluminum oxide. The results show that the method provides a viable alternative for attaining a low reflectance ARC. In particular, a low average reflectivity of ∼3.3% is demonstrated in a broadband spectrum extending from 400 nm to 2000 nm for ARCs deposited on GaInP solar-cells, the typical material used as top-junction in solar cell tandem architectures. Moreover, the process is compatible with volume manufacturing technologies used in photovoltaics, such as ion beam sputtering and electron beam evaporation.

8.
Sci Technol Adv Mater ; 22(1): 718-728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434076

RESUMO

Wearable sensors, especially pressure sensors, have become an indispensable part of life when reflecting human interactions and surroundings. However, the difficulties in technology and production-cost still limit their applicability in the field of human monitoring and healthcare. Herein, we propose a fabrication method with flexible, waterproof, thin, and high-performance circuits - based on hand-drawing for pressure sensors. The shape of the sensor is drawn on the pyralux film without assistance from any designing software and the wet-tissues coated by CNTs act as a sensing layer. Such sensor showed a sensitivity (~0.2 kPa-1) while ensuring thinness (~0.26 mm) and flexibility for touch detection or breathing monitoring. More especially, our sensor is waterproof for underwater wearable applications, which is a drawback of conventional paper-based sensors. Its outstanding capability is demonstrated in a real application when detecting touch actions to control a phone, while the sensor is dipped underwater. In addition, by leveraging machine learning technology, these touch actions were processed and classified to achieve highly accurate monitoring (up to 94%). The available materials, easy fabrication techniques, and machine learning algorithms are expected to bring significant contributions to the development of hand-drawing sensors in the future.

9.
Sci Technol Adv Mater ; 21(1): 346-358, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32939160

RESUMO

Corrosion-control coatings which can enhance bone formation and be completely replaced by bone are attractive for biodegradable Mg alloys. Carbonate apatite (CAp) and hydroxyapatite (HAp) coatings were formed on Mg-4 wt% Y-3 wt% rare earth (WE43) alloy as a corrosion-control and bioabsorbable coating in the coating solution with various concentrations of NaHCO3. The incorporation of carbonate group in apatite structure was examined using X-ray diffraction and Fourier transform infrared spectroscopy. Rat osteoclast precursor and MC3T3-E1 osteoblast cells were cultured on the CAp- and HAp-coated WE43 to examine the osteoclastic resorption and the alkaline phosphatase (ALP) activity, respectively. Mg ions in the used medium were quantified to examine the corrosion-control ability. The NaHCO3 addition in the solution resulted in the formation of B-type CAp in which the phosphate group of apatite structure was substituted with the carbonate group. The osteoclastic resorption was observed only for the CAp coatings as the cracking of the coatings and the corrosion of substrate WE43 strongly localized under osteoclast cell bodies. The CAp and HAp coatings significantly enhanced the ALP activity of osteoblasts. The CAp-coated WE43 specimens showed 1/5 smaller amount of Mg ion release than the uncoated WE43 on the first day of culturing osteoblasts. For the subsequent 22 days, the Mg ion release was reduced to 1/2 by the CAp coatings. In the presence of osteoclasts, the CAp coatings showed slightly lower corrosion protectiveness than the HAp coating. It was demonstrated that the CAp coatings can be a bioabsorbable and corrosion-control coating for biodegradable Mg alloys.

10.
Sensors (Basel) ; 20(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155785

RESUMO

Terahertz pulsed imaging (TPI) was introduced approximately fifteen years ago and has attracted a lot of interest in the pharmaceutical industry as a fast, non-destructive modality for quantifying film coatings on pharmaceutical dosage forms. In this topical review, we look back at the use of TPI for analysing pharmaceutical film coatings, highlighting the main contributions made and outlining the key challenges ahead.


Assuntos
Preparações Farmacêuticas/química , Imagem Terahertz , Calibragem , Formas de Dosagem , Refratometria
11.
Sensors (Basel) ; 18(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880731

RESUMO

Here, we present a novel method to fabricate long period gratings using standard single mode optical fibers (SMF). These optical devices were fabricated in a three-step process, which consisted of etching the SMF, then coating it with a thin-film and, the final step, which involved removing sections of the coating periodically by laser ablation. Tin dioxide was chosen as the material for this study and it was sputtered using a pulsed DC sputtering system. Theoretical simulations were performed in order to select the appropriate parameters for the experiments. The responses of two different devices to different external refractive indices was studied, and the maximum sensitivity obtained was 6430 nm/RIU for external refractive indices ranging from 1.37 to 1.39.

12.
Molecules ; 22(9)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28880225

RESUMO

This paper reports the synthesis and characterization of silver oxide films for use as bactericidal coatings. Synthesis parameters, dissolution/elution rate, and bactericidal efficacy are reported. Synthesis conditions were developed to create AgO, Ag2O, or mixtures of AgO and Ag2O on surfaces by reactive magnetron sputtering. The coatings demonstrate strong adhesion to many substrate materials and impede the growth of all bacterial strains tested. The coatings are effective in killing Escherichia coli and Staphylococcus aureus, demonstrating a clear zone-of-inhibition against bacteria growing on solid media and the ability to rapidly inhibit bacterial growth in planktonic culture. Additionally, the coatings exhibit very high elution of silver ions under conditions that mimic dynamic fluid flow ranging between 0.003 and 0.07 ppm/min depending on the media conditions. The elution of silver ions from the AgO/Ag2O surfaces was directly impacted by the complexity of the elution media, with a reduction in elution rate when examined in complex cell culture media. Both E. coli and S. aureus were shown to bind ~1 ppm Ag⁺/mL culture. The elution of Ag⁺ resulted in no increases in mammalian cell apoptosis after 24 h exposure compared to control, but apoptotic cells increased to ~35% by 48 and 72 h of exposure. Taken together, the AgO/Ag2O coatings described are effective in eliciting antibacterial activity and have potential for application on a wide variety of surfaces and devices.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Óxidos/química , Óxidos/farmacologia , Compostos de Prata/química , Compostos de Prata/farmacologia , Prata/química , Células 3T3 , Animais , Sobrevivência Celular , Escherichia coli/efeitos dos fármacos , Humanos , Íons/química , Camundongos , Testes de Sensibilidade Microbiana/métodos , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
13.
Sci Technol Adv Mater ; 17(1): 799-806, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933119

RESUMO

LaF3/SrF2 multilayer heterostructures with thicknesses of individual layers in the range 5-100 nm have been grown on MgO(100) substrates using molecular beam epitaxy. The longitudinal conductivity of the films has been measured using impedance spectroscopy in the frequency range 10-1-106 Hz and a temperature range 300-570 K. The ionic DC conductivities have been determined from Nyquist impedance diagrams and activation energies from the Arrhenius-Frenkel equation. An increase of the DC conductivity has been observed to accompany decreased layer thickness for various thicknesses as small as 25 nm. The greatest conductivity has been shown for a multilayer heterostructure having thicknesses of 25 nm per layer. The structure has a conductivity two orders of magnitude greater than pure LaF3 bulk material. The increasing conductivity can be understood as a redistribution of charge carriers through the interface due to differing chemical potentials of the materials, by strong lattice-constant mismatch, and/or by formation of a solid La1-xSrxF3-x solution at the interface during the growth process.

14.
Sci Technol Adv Mater ; 17(1): 210-219, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877871

RESUMO

A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

15.
J Control Release ; 374: 103-111, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127449

RESUMO

Colonic drug delivery offers numerous pharmaceutical opportunities, including direct access to local therapeutic targets and drug bioavailability benefits arising from the colonic epithelium's reduced abundance of cytochrome P450 enzymes and particular efflux transporters. Current workflows for developing colonic drug delivery systems involve time-consuming, low throughput in vitro and in vivo screening methods, which hinder the identification of suitable enabling materials. Polysaccharides are useful materials for colonic targeting, as they can be utilised as dosage form coatings that are selectively digested by the colonic microbiota. However, polysaccharides are a heterogeneous family of molecules with varying suitability for this purpose. To address the need for high-throughput material selection tools for colonic drug delivery, we leveraged machine learning (ML) and publicly accessible experimental data to predict the release of the drug 5-aminosalicylic acid from polysaccharide-based coatings in simulated human, rat, and dog colonic environments. For the first time, Raman spectra alone were used to characterise polysaccharides for input as ML features. Models were validated on 8 unseen drug release profiles from new polysaccharide coatings, demonstrating the generalisability and reliability of the method. Further, model analysis facilitated an understanding of the chemical features that influence a polysaccharide's suitability for colonic drug delivery. This work represents a major step in employing spectral data for forecasting drug release from pharmaceutical formulations and marks a significant advancement in the field of colonic drug delivery. It offers a powerful tool for the efficient, sustainable, and successful development and pre-ranking of colon-targeted formulation coatings, paving the way for future more effective and targeted drug delivery strategies.


Assuntos
Colo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Aprendizado de Máquina , Mesalamina , Polissacarídeos , Análise Espectral Raman , Colo/metabolismo , Animais , Humanos , Análise Espectral Raman/métodos , Polissacarídeos/química , Mesalamina/administração & dosagem , Mesalamina/farmacocinética , Mesalamina/química , Cães , Ratos
16.
J Control Release ; 369: 630-641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599548

RESUMO

Successful treatment of ulcerative colitis (UC) is highly dependent on several parameters, including dosing regimen and the ability to deliver drugs to the disease site. In this study two strategies for delivering mesalazine (5-aminosalicylic acid, 5-ASA) to the colon were compared in an advanced in vitro model of the human gastrointestinal (GI) tract, the SHIME® system. Herein, a prodrug strategy employing bacteria-mediated drug release (sulfasalazine, Azulfidine®) was evaluated alongside a formulation strategy that utilised pH and bacteria-mediated release (5-ASA, Octasa® 1600 mg). SHIME® experiments were performed simulating both the GI physiology and colonic microbiota under healthy and inflammatory bowel disease (IBD) conditions, to study the impact of the disease state and ileal pH variability on colonic 5-ASA delivery. In addition, the effects of the products on the colonic microbiome were investigated by monitoring bacterial growth and metabolites. Results demonstrated that both the prodrug and formulation approaches resulted in a similar percentage of 5-ASA recovery under healthy conditions. On the contrary, during experiments simulating the GI physiology and microbiome of IBD patients (the target population) the formulation strategy resulted in a higher proportion of 5-ASA delivery to the colonic region as compared to the prodrug approach (P < 0.0001). Interestingly, the two products had distinct effects on the synthesis of key bacterial metabolites, such as lactate and short chain fatty acids, which varied according to disease state and ileal pH variability. Further, both 5-ASA and sulfasalazine significantly reduced the growth of the faecal microbiota sourced from six healthy humans. The findings support that the approach selected for colonic drug delivery could significantly influence the effectiveness of UC treatment, and highlight that drugs licensed for UC may differentially impact the growth and functioning of the colonic microbiota.


Assuntos
Anti-Inflamatórios não Esteroides , Colo , Microbioma Gastrointestinal , Mesalamina , Sulfassalazina , Mesalamina/administração & dosagem , Mesalamina/farmacologia , Humanos , Colo/microbiologia , Colo/metabolismo , Colo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Sulfassalazina/administração & dosagem , Pró-Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Concentração de Íons de Hidrogênio , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Liberação Controlada de Fármacos
17.
Polymers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37571213

RESUMO

Polymer-derived ceramic (PDC) thin-film sensors have a very high potential for extreme environments. However, the erosion caused by high-temperature airflow at the hot-end poses a significant challenge to the stability of PDC thin-film sensors. Here, we fabricate a thin-film coating by PDC/TiB2/B composite ceramic material, which can be used to enhance the oxidation resistance and ablation resistance of the sensors. Due to the formation of a dense oxide layer on the surface of the thin-film coating in a high-temperature air environment, it effectively prevents the ingress of oxygen as a pivotal barrier. The coating exhibits an exceptionally thin oxide layer thickness of merely 8 µm, while its oxidation resistance was rigorously assessed under air exposure at 800 °C, proving its enduring protection for a minimum duration of 10 h. Additionally, during ablation testing using a flame gun that can generate temperatures of up to 1000 °C, the linear ablation rate of thin-film coating is merely 1.04 µm/min. Our analysis reveals that the volatilization of B2O3 occurs while new SiO2 is formed on the thin-film coating surface. This phenomenon leads to the absorption of heat, thereby enhancing the ablative resistance performance of the thin-film sensor. The results indicate that the thin-film sensor exhibits exceptional resistance to oxidation and ablation when protected by the coating, which has great potential for aerospace applications.

18.
Adv Drug Deliv Rev ; 181: 114076, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34890739

RESUMO

Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.


Assuntos
Colo/efeitos dos fármacos , Colo/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Produtos Biológicos/administração & dosagem , Preparações de Ação Retardada , Microbioma Gastrointestinal/fisiologia , Trânsito Gastrointestinal/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Síndrome do Intestino Irritável/tratamento farmacológico , Prebióticos/administração & dosagem , Impressão Tridimensional , Probióticos/administração & dosagem , Fatores de Tempo , Vacinas/administração & dosagem
19.
Nanomaterials (Basel) ; 10(9)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872654

RESUMO

This paper discusses the surface-engineered nanomaterials (adaptive nano-structured physical vapor deposition (PVD) thin-film coatings) that can effectively perform under severely non-equilibrium tribological conditions. The typical features of these nanomaterials are: (a) Dynamically interacting elements present in sufficient amounts to account for its compositional/structural complexity; (b) an initial non-equilibrium state; (c) optimized micro-mechanical characteristics, and (d) intensive adaptation to the external stimuli. These could be considered as functionally graded nanomaterials that consist of two major layers: an underlying (2-3 microns) thin-film PVD coating, the surface on which an outer nanoscale layer of dynamically re-generating tribo-films is produced as a result of self-organization during friction. This tribo-film nanolayer (dissipative structures) was discovered to represent complex matter, which exhibits characteristic properties and functions common to naturally occurring systems. These include adaptive interaction with a severely non-equilibrium environment; formation of compounds such as sapphire, mullite, and garnet, similar to those that arise during metamorphism; ability to evolve with time; as well as complexity and multifunctional, synergistic behavior. Due to several nanoscale effects, this nanolayer is capable of protecting the surface with unprecedented efficiency, enabling extensive control over the performance of the entire surface-engineered system. These surface-engineered nanomaterials can achieve a range (speed and level) of adaptability to the changing environment that is not found in naturally occurring materials. Therefore, these materials could be classified as metamaterials. The second major characteristic of these materials is the structure and properties of the coating layer, which mostly functions as a catalytic medium for tribo-film generation and replenishment. A functioning example of this type of material is represented by an adaptive hard thin-film TiAlCrSiYN/TiAlCrN nano-multilayer PVD coating, which can efficiently work in an extreme environment, typical for the dry machining of hard-to-cut materials.

20.
ACS Appl Mater Interfaces ; 12(48): 54191-54202, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33201658

RESUMO

Transition metal dichalcogenide (TMD)-based coatings are known for their low friction performance, which is attributed to the formation of a tribolayer consisting almost exclusively of pure well-ordered TMD. However, the formation of such a tribolayer and its wear track coverage is still unknown. In this study, we employed surface mapping and nanotribological techniques to study the properties of the wear tracks of composite W-S-C coatings. Our analysis revealed that the as-deposited coating consisted of two phases, with significantly different nanoscale frictional properties. We attributed the phases to nanocrystalline WS2 (low friction) and amorphous solution of carbon and WS2 (high friction). The two phases wear at different rates, especially at lower loads, where we observed faster depletion of nanocrystalline WS2. In the wear track, sparse flat WS2 flakes were identified, suggesting that the recrystallization of the WS2 phase occurs only at the spots where the contact pressure is the highest.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa