Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 976
Filtrar
1.
J Biomech Eng ; 146(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646646

RESUMO

Behind armor blunt trauma (BABT), resulting from dynamic deformation of protective ballistic armor into the thorax, is currently assessed assuming a constant threshold of maximum backface deformation (BFDs) (44 mm). Although assessed for multiple impacts on the same armor, testing is focused on armor performance (shot-to-edge and shot-to-shot) without consideration of the underlying location on the thorax. Previous studies identified the importance of impacts on organs of animal surrogates wearing soft armor. However, the effect of impact location was not quantified outside the threshold of 44 mm. In the present study, a validated biofidelic advanced human thorax model (50th percentile male) was utilized to assess the BABT outcome from varying impact location. The thorax model was dynamically loaded using a method developed for recreating BABT impacts, and BABT events within the range of real-world impact severities and locations were simulated. It was found that thorax injury depended on impact location for the same BFDs. Generally, impacts over high compliance locations (anterolateral rib cage) yielded increased thoracic compression and loading on the lungs leading to pulmonary lung contusion (PLC). Impacts at low compliance locations (top of sternum) yielded hard tissue fractures. Injuries to the sternum, ribs, and lungs were predicted at BFDs lower than 44 mm for low compliance locations. Location-based injury risk curves demonstrated greater accuracy in injury prediction. This study quantifies the importance of impact location on BABT injury severity and demonstrates the need for consideration of location in future armor design and assessment.


Assuntos
Fraturas Ósseas , Ferimentos não Penetrantes , Animais , Humanos , Masculino , Balística Forense , Análise de Elementos Finitos , Corpo Humano
2.
BMC Musculoskelet Disord ; 25(1): 129, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347518

RESUMO

OBJECTIVE: To study the biomechanical characteristics of each tissue structure when using different 3D printing Cage in osteoporotic patients undergoing interbody fusion. METHODS: A finite element model of the lumbar spine was reconstructed and validated with regarding a range of motion and intervertebral disc pressure from previous in vitro studies. Cage and pedicle screws were implanted and part of the lamina, spinous process, and facet joints were removed in the L4/5 segment of the validated mode to simulate interbody fusion. A 280 N follower load and 7.5 N·m moment were applied to different postoperative models and intact osteoporotic model to simulate lumbar motion. The biomechanical characteristics of different models were evaluated by calculating and analyzing the range of motion of the fixed and cephalic adjacent segment, the stress of the screw-rod system, the stress at the interface between cage and L5 endplate, and intervertebral disc pressure of the adjacent segment. RESULTS: After rigid fixation, the range of motion of the fixed segment of model A-C decreased significantly, which was much smaller than that of the osteoporotic model. And with the increase of the axial area of the interbody fusion cages, the fixed segment of model A-C tended to be more stable. The range of motion and intradiscal pressure of the spinal models with different interbody fusion cages were higher than those of the complete osteoporosis model, but there was no significant difference between the postoperative models. On the other hand, the L5 upper endplate stress and screw-rod system stress of model A-C show a decreasing trend in different directions of motion. The stress of the endplate is the highest during flexion, which can reach 40.5 MPa (model A). The difference in endplate stress between models A-C was the largest during lateral bending. The endplate stress of models A and B was 150.5% and 140.9% of that of model C, respectively. The stress of the screw-rod system was the highest during lateral bending (model A, 102.0 MPa), which was 108.4%, 102.4%, 110.4%, 114.2% of model B and 158.5%, 110.1%, 115.8%, 125.4% of model C in flexion, extension, lateral bending, and rotation, respectively. CONCLUSIONS: For people with osteoporosis, no matter what type of cage is used, good immediate stability can be achieved after surgery. Larger cage sizes provide better fixation without significantly increasing ROM and IDP in adjacent segments, which may contribute to the development of ASD. In addition, larger cage sizes can disperse endplate stress and reduce stress concentration, which is of positive significance in preventing cage subsidence after operation. The cage and screw rod system establish a stress conduction pathway on the spine, and a larger cage greatly enhances the stress-bearing capacity of the front column, which can better distribute the stress of the posterior spine structure and the stress borne by the posterior screw rod system, reduce the stress concentration phenomenon of the nail rod system, and avoid exceeding the yield strength of the material, resulting in the risk of future instrument failure.


Assuntos
Osteoporose , Parafusos Pediculares , Fusão Vertebral , Humanos , Análise de Elementos Finitos , Fusão Vertebral/métodos , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Osteoporose/cirurgia
3.
BMC Musculoskelet Disord ; 25(1): 423, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811940

RESUMO

BACKGROUND: The emerging of the C2 isthmus screw fixation technique is gaining popularity in the setting of atlantoaxial dislocation or other conditions requiring fixation of C2. However, the biomechanical stability of this fixation is poorly understood. PURPOSE: To compare and elucidate the biomechanical stability of C2 pedicle screw (C2PS), C2 isthmus screw (C2IS) and C2 short isthmus screw (C2SIS) fixation techniques in atlantoaxial dislocation (AAD). METHOD: A three-dimensional finite element model (FEM) from occiput to C3 was established and validated from a healthy male volunteer. Three FEMs, C1 pedicle screw (PS)-C2PS, C1PS-C2IS, C1PS-C2SIS were also constructed. The range of motion (ROM) and the maximum von Mises stress under flexion, extension, lateral bending and axial rotation loading were analyzed and compared. The pullout strength of the three fixations for C2 was also evaluated. RESULT: C1PS-C2IS model showed the greatest decrease in ROM with flexion, extension, lateral bending and axial rotation. C1PS-C2PS model showed the least ROM reduction under all loading conditions than both C2IS and C2SIS. The C1PS-C2PS model had the largest von Mises stress on the screw under all directions followed by C1PS-C2SIS, and lastly the C1PS-C2IS. Under axial rotation and lateral bending loading, the three models showed the maximum and minimum von Mises stress on the screw respectively. The stress of the three models was mainly located in the connection of the screw and rod. Overall, the maximum screw pullout strength for C2PS, C2IS and C2SIS were 729.41N, 816.62N, 640.54N respectively. CONCLUSION: In patients with atlantoaxial dislocations, the C2IS fixation provided comparable stability, with no significant stress concentration. Furthermore, the C2IS had sufficient pullout strength when compared with C2PS and C2SIS. C2 isthmus screw fixation may be a biomechanically favourable option in cases with AAD. However, future clinical trials are necessary for the evaluation of the clinical outcomes of this technique.


Assuntos
Articulação Atlantoaxial , Análise de Elementos Finitos , Luxações Articulares , Amplitude de Movimento Articular , Humanos , Articulação Atlantoaxial/cirurgia , Articulação Atlantoaxial/fisiopatologia , Masculino , Fenômenos Biomecânicos/fisiologia , Luxações Articulares/cirurgia , Luxações Articulares/fisiopatologia , Adulto , Parafusos Pediculares , Parafusos Ósseos , Fusão Vertebral/instrumentação , Fusão Vertebral/métodos
4.
Clin Oral Investig ; 28(8): 439, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037593

RESUMO

OBJECTIVES: To conduct a finite element analysis of the impact of different variables on tooth sectioning efficiency and trauma to surrounding tissues when utilizing high-speed surgical handpieces and elevators. METHODS: CBCT data from the horizontally impacted third mandibular molar (M3M) of a patient were utilized to establish digital models of the M3M, adjacent M2M, and surrounding bone. To simulate tooth sectioning, a 3D finite element model was established with the following variables: remaining tooth tissue thickness (1-5 mm), tooth section fissure width (1-3 mm), elevator depth in fissure (2-6 mm), elevator position (buccal, lingual, central), elevator width (2-5 mm), and application of force (rotating, levering). Using this model, the distribution of stress on the M3M and the surrounding tissue was assessed while measuring tooth sectioning efficiency and trauma to the surrounding tissue. RESULTS: Factors associated with uniform stress at the site of sectioning included thin (≤ 3 mm) remaining tooth tissue, appropriate fissure width (~ 2 mm), a wide (≥ 4 mm) elevator, and central elevator positioning. Levering the elevator yielded greater stress on the M3M than rotating force. Greater sectioning efficiency was associated with increased stress placed on the distobuccal side of M2M. CONCLUSIONS: Tooth sectioning efficiency can be improved by adjusting the high-speed surgical handpiece and elevator. However, it is important to remain attentive to the trauma to which adjacent teeth are exposed during this process. CLINICAL SIGNIFICANCE: These results offer guidance for approaches to improving operator efficiency and reducing trauma to surrounding tissues during tooth sectioning.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Análise de Elementos Finitos , Mandíbula , Dente Serotino , Dente Impactado , Humanos , Dente Serotino/cirurgia , Dente Impactado/cirurgia , Dente Impactado/diagnóstico por imagem , Mandíbula/cirurgia , Imageamento Tridimensional , Equipamentos Odontológicos de Alta Rotação , Análise do Estresse Dentário
5.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894137

RESUMO

The advent of digital twins facilitates the generation of high-fidelity replicas of actual systems or assets, thereby enhancing the design's performance and feasibility. When developing digital twins, precise measurement data is essential to ensure alignment between the actual and digital models. However, inherent uncertainties in sensors and models lead to disparities between observed and predicted (simulated) behaviors. To mitigate these uncertainties, this study originally proposes a multi-objective optimization strategy utilizing a Gaussian process regression surrogate model, which integrates various uncertain parameters, such as load angle, bucket cylinder stroke, arm cylinder stroke, and boom cylinder stroke. This optimization employs a genetic algorithm to indicate the Pareto frontiers regarding the pressure exerted on the boom, arm, and bucket cylinders. Subsequently, TOPSIS is applied to ascertain the optimal candidate among the identified Pareto optima. The findings reveal a substantial congruence between the experimental and numerical outcomes of the devised virtual model, in conjunction with the TOPSIS-derived optimal parameter configuration.

6.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732894

RESUMO

Most finite element model updating (FEMU) studies on bridges are acceleration-based due to their lower cost and ease of use compared to strain- or displacement-based methods, which entail costly experiments and traffic disruptions. This leads to a scarcity of comprehensive studies incorporating strain measurements. This study employed the strain- and acceleration-based FEMU analyses performed on a more than 50-year-old multi-span concrete highway viaduct. Mid-span strains under heavy vehicles were considered for the strain-based FEMU, and frequencies and mode shapes for the acceleration-based FEMU. The analyses were performed separately for up to three variables, representing Young's modulus adjustment factors for different groups of structural elements. FEMU studies considered residual minimisation and the error-domain model falsification (EDMF) methodology. The residual minimisation utilised four different single-objective optimisations focusing on strains, frequencies, and mode shapes. Strain- and frequency-based FEMU analyses resulted in an approximately 20% increase in the overall superstructure's design stiffness. This study shows the benefits of the intuitive EDMF over residual minimisation for FEMU, where information gained from the strain data, in addition to the acceleration data, manifests more sensible updated variables. EDMF finally resulted in a 25-50% overestimated design stiffness of internal main girders.

7.
Chin J Traumatol ; 27(4): 235-241, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38637177

RESUMO

PURPOSE: Under-foot impact loadings can cause serious lower limb injuries in many activities, such as automobile collisions and underbody explosions to military vehicles. The present study aims to compare the biomechanical responses of the mainstream vehicle occupant dummies with the human body lower limb model and analyze their robustness and applicability for assessing lower limb injury risk in under-foot impact loading environments. METHODS: The Hybrid III model, the test device for human occupant restraint (THOR) model, and a hybrid human body model with the human active lower limb model were adopted for under-foot impact analysis regarding different impact velocities and initial lower limb postures. RESULTS: The results show that the 2 dummy models have larger peak tibial axial force and higher sensitivity to the impact velocities and initial postures than the human lower limb model. In particular, the Hybrid III dummy model presented extremely larger peak tibial axial forces than the human lower limb model. In the case of minimal difference in tibial axial force, Hybrid III's tibial axial force (7.5 KN) is still 312.5% that of human active lower limb's (2.4 KN). Even with closer peak tibial axial force values, the biomechanical response curve shapes of the THOR model show significant differences from the human lower limb model. CONCLUSION: Based on the present results, the Hybrid III dummy cannot be used to evaluate the lower limb injury risk in under-foot loading environments. In contrast, potential improvement in ankle biofidelity and related soft tissues of the THOR dummy can be implemented in the future for better applicability.


Assuntos
Acidentes de Trânsito , Humanos , Fenômenos Biomecânicos , Acidentes de Trânsito/prevenção & controle , Manequins , Extremidade Inferior/fisiologia , Suporte de Carga
8.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 341-347, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38953258

RESUMO

Objective To demonstrate the feasibility of oblique lumbar interbody fusion (OLIF) combined with 4-screw fixation for treating two-level lumbar degenerative diseases.Methods An intact finite element model of L3-S1 (M0) was constructed and validated.Then,we constructed the M1 model by simulating OLIF surgery at L3/4 and L4/5 segments on the M0 model.By attachment of posterior 4-screw or 6-screw fixation to the M1 model,three 4-screw fixation models (M2-M4) and one 6-screw fixation model (M5) were established.The segmental and overall range of motion (ROM) and the peak von Mises stresses of superior endplate,cage,and posterior screw-rod were investigated under each implanted condition.Results Under the motion modes of forward flexion,backward extension,bilateral (left and right) flexion,and left and right rotation,the L3/4 ROM of M2 model and L4/5 ROM of M3 model increased,while the L3/4 and L4/5 ROM of M4 and M5 models significantly decreased compared with those of M1 model.Under all motion modes,the L4 superior endplate in M2 model and the L5 superior endplate in M3 model showed the maximum peak von Mises stress,and the peak von Mises stresses of L4 and L5 superior endplates in M4 and M5 models were close.The L3/4 cage in M2 model and the L4/5 cage in M3 model showcased the largest peak von Mises stress,and the peak von Mises stresses of cages in M4 and M5 models were close.The peak stresses of internal fixation in M2-M5 models were close.Conclusion Four-screw fixation can replace 6-screw fixation in the OLIF surgery for treating two-level degenerative lumbar diseases.


Assuntos
Parafusos Ósseos , Análise de Elementos Finitos , Vértebras Lombares , Fusão Vertebral , Fusão Vertebral/métodos , Fusão Vertebral/instrumentação , Humanos , Vértebras Lombares/cirurgia
9.
Curr Osteoporos Rep ; 21(2): 105-116, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36808071

RESUMO

PURPOSE OF THE REVIEW: Bone adapts structure and material properties in response to its mechanical environment, a process called mechanoadpatation. For the past 50 years, finite element modeling has been used to investigate the relationships between bone geometry, material properties, and mechanical loading conditions. This review examines how we use finite element modeling in the context of bone mechanoadpatation. RECENT FINDINGS: Finite element models estimate complex mechanical stimuli at the tissue and cellular levels, help explain experimental results, and inform the design of loading protocols and prosthetics. FE modeling is a powerful tool to study bone adaptation as it complements experimental approaches. Before using FE models, researchers should determine whether simulation results will provide complementary information to experimental or clinical observations and should establish the level of complexity required. As imaging technics and computational capacity continue increasing, we expect FE models to help in designing treatments of bone pathologies that take advantage of mechanoadaptation of bone.


Assuntos
Adaptação Fisiológica , Osso e Ossos , Humanos , Análise de Elementos Finitos , Simulação por Computador , Próteses e Implantes , Estresse Mecânico
10.
J Biomech Eng ; 145(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35864785

RESUMO

Contemporary finite element (FE) neck models are developed in a neutral posture; however, evaluation of injury risk for out-of-position impacts requires neck model repositioning to non-neutral postures, with much of the motion occurring in the upper cervical spine (UCS). Current neck models demonstrate a limitation in predicting the intervertebral motions within the UCS within the range of motion, while recent studies have highlighted the importance of including the tissue strains resulting from repositioning FE neck models to predict injury risk. In the current study, the ligamentous cervical spine from a contemporary neck model (GHBMC M50 v4.5) was evaluated in flexion, extension, and axial rotation by applying moments from 0 to 1.5 N·m in 0.5 N·m increments, as reported in experimental studies and corresponding to the physiologic loading of the UCS. Enhancements to the UCS model were identified, including the C0-C1 joint-space and alar ligament orientation. Following geometric enhancements, an analysis was undertaken to determine the UCS ligament laxities, using a sensitivity study followed by an optimization study. The ligament laxities were optimized to UCS-level experimental data from the literature. The mean percent difference between UCS model response and experimental data improved from 55% to 23% with enhancements. The enhanced UCS model was integrated with a ligamentous cervical spine (LS) model and assessed with independent experimental data. The mean percent difference between the LS model and the experimental data improved from 46% to 35% with the integration of the enhanced UCS model.


Assuntos
Vértebras Cervicais , Instabilidade Articular , Fenômenos Biomecânicos , Vértebras Cervicais/lesões , Análise de Elementos Finitos , Humanos , Ligamentos Articulares , Amplitude de Movimento Articular/fisiologia
11.
J Biomech Eng ; 145(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37144889

RESUMO

Our objective was to develop a technique for performing irreversible electroporation (IRE) of esophageal tumors while mitigating thermal damage to the healthy lumen wall. We investigated noncontact IRE using a wet electrode approach for tumor ablation in a human esophagus with finite element models for electric field distribution, joule heating, thermal flux, and metabolic heat generation. Simulation results indicated the feasibility of tumor ablation in the esophagus using an catheter mounted electrode immersed in diluted saline. The ablation size was clinically relevant, with substantially lesser thermal damage to the healthy esophageal wall when compared to IRE performed by placing a monopolar electrode directly into the tumor. Additional simulations were used to estimate ablation size and penetration during noncontact wet-electrode IRE (wIRE) in the healthy swine esophagus. A novel catheter electrode was manufactured and wIRE evaluated in seven pigs. wIRE was performed by securing the device in the esophagus and using diluted saline to isolate the electrode from the esophageal wall while providing electric contact. Computed tomography and fluoroscopy were performed post-treatment to document acute lumen patency. Animals were sacrificed within four hours following treatment for histologic analysis of the treated esophagus. The procedure was safely completed in all animals; post-treatment imaging revealed intact esophageal lumen. The ablations were visually distinct on gross pathology, demonstrating full thickness, circumferential regions of cell death (3.52 ± 0.89 mm depth). Acute histologic changes were not evident in nerves or extracellular matrix architecture within the treatment site. Catheter directed noncontact IRE is feasible for performing penetrative ablations in the esophagus while avoiding thermal damage.


Assuntos
Eletroporação , Esôfago , Suínos , Humanos , Animais , Esôfago/patologia , Eletrodos , Fluoroscopia , Eletroporação/métodos
12.
Sensors (Basel) ; 23(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005571

RESUMO

Aging, corrosive environments, and inadequate maintenance may result in performance deterioration of civil infrastructures, and finite element model updating is a commonly employed structural health monitoring procedure in civil engineering to reflect the current situation and to ensure the safety and serviceability of structures. Using the finite element model updating process to obtain the relationship between the structural responses and updating parameters, this paper proposes a method of using the wavelet neural network (WNN) as the surrogate model combined with the wind-driven optimization (WDO) algorithm to update the structural finite element model. The method was applied to finite element model updating of a continuous beam structure of three equal spans to verify its feasibility, the results show that the WNN can reflect the nonlinear relationship between structural responses and the parameters and has an outstanding simulation performance; the WDO has an excellent ability for optimization and can effectively improve the efficiency of model updating. Finally, the method was applied to update a real bridge model, and the results show that the finite element model update based on WDO and WNN is applicable to the updating of a multi-parameter bridge model, which has practical significance in engineering and high efficiency in finite element model updating. The differences between the updated values and measured values are all within the range of 5%, while the maximum difference was reduced from -10.9% to -3.6%. The proposed finite element model updating method is applicable and practical for multi-parameter bridge model updating and has the advantages of high updating efficiency, reliability, and practical significance.

13.
Sensors (Basel) ; 23(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37299858

RESUMO

The use of guided wave-based Ultrasonic Testing (UT) for monitoring Polyethylene (PE) pipes is mostly restricted to detecting defects in welded zones, despite its diversified success in monitoring metallic pipes. PE's viscoelastic behavior and semi-crystalline structure make it prone to crack formation under extreme loads and environmental factors, which is a leading cause of pipeline failure. This state-of-the-art study aims to demonstrate the potential of UT for detecting cracks in non-welded regions of natural gas PE pipes. Laboratory experiments were conducted using a UT system consisting of low-cost piezoceramic transducers assembled in a pitch-catch configuration. The amplitude of the transmitted wave was analyzed to study wave interaction with cracks of different geometries. The frequency of the inspecting signal was optimized through wave dispersion and attenuation analysis, guiding the selection of third- and fourth- order longitudinal modes for the study. The findings revealed that cracks with lengths equal to or greater than the wavelength of the interacting mode were more easily detectable, while smaller crack lengths required greater crack depths for detection. However, there were potential limitations in the proposed technique related to crack orientation. These insights were validated using a finite element-based numerical model, confirming the potential of UT for detecting cracks in PE pipes.


Assuntos
Polietileno , Ultrassom , Transdutores
14.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679657

RESUMO

A new damaged cable identification method using the basis vector matrix (BVM) is proposed to identify multiple damaged cables in cable-stayed bridges. The relationships between the cable tension stiffness and the girder bending strain of the cable-stayed bridge are established using a force method. The difference between the maximum bending strains of the bridges with intact and damaged cables is used to obtain the damage index vectors (DIXVs). Then, BVM is obtained by the normalized DIXV. Finally, the damage indicator vector (DIV) is obtained by DIXV and BVM to identify the damaged cables. The damage indicator is substituted into the damage severity function to identify the corresponding damage severity. A field cable-stayed bridge is used to verify the proposed method. The three-dimensional finite element model is established using ANSYS, and the model is validated using the field measurements. The validated model is used to simulate the strain response of the bridge with different damage scenarios subject to a moving vehicle load, including one, two, three, and four damaged cables with damage severity of 10%, 20%, and 30%, respectively. The noise effect is also discussed. The results show that the BVM method has good anti-noise capability and robustness.

15.
Chin J Traumatol ; 26(3): 147-154, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35985904

RESUMO

PURPOSE: Child head injury under impact scenarios (e.g. falls, vehicle crashes, etc.) is an important topic in the field of injury biomechanics. The head of piglet was commonly used as the surrogate to investigate the biomechanical response and mechanisms of pediatric head injuries because of the similar cellular structures and material properties. However, up to date, piglet head models with accurate geometry and material properties, which have been validated by impact experiments, are seldom. We aim to develop such a model for future research. METHODS: In this study, first, the detailed anatomical structures of the piglet head, including the skull, suture, brain, pia mater, dura mater, cerebrospinal fluid, scalp and soft tissue, were constructed based on CT scans. Then, a structured butterfly method was adopted to mesh the complex geometries of the piglet head to generate high-quality elements and each component was assigned corresponding constitutive material models. Finally, the guided drop tower tests were conducted and the force-time histories were ectracted to validate the piglet head finite element model. RESULTS: Simulations were conducted on the developed finite element model under impact conditions and the simulation results were compared with the experimental data from the guided drop tower tests and the published literature. The average peak force and duration of the guide drop tower test were similar to that of the simulation, with an error below 10%. The inaccuracy was below 20%. The average peak force and duration reported in the literature were comparable to those of the simulation, with the exception of the duration for an impact energy of 11 J. The results showed that the model was capable to capture the response of the pig head. CONCLUSION: This study can provide an effective tool for investigating child head injury mechanisms and protection strategies under impact loading conditions.


Assuntos
Traumatismos Craniocerebrais , Crânio , Animais , Suínos , Análise de Elementos Finitos , Crânio/lesões , Traumatismos Craniocerebrais/diagnóstico por imagem , Encéfalo , Fenômenos Biomecânicos , Couro Cabeludo
16.
Int Wound J ; 20(8): 3148-3156, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37073432

RESUMO

Support surfaces are the most important pressure ulcer/injury prevention technology available to clinicians for protecting their at-risk patients. A hybrid support surface marries the benefits of reactive and active support surfaces, by using high-quality foam material inside inflatable air cells. When used in its "static mode", it is a constant low air pressure mattress which delivers pressure redistribution in response to patient bodyweight and movements, by maximising the immersion and envelopment performance of the support surface. When used in its powered "dynamic mode", this system further delivers alternating pressure care via the connected foam and air cells. Modes of action of hybrid support surfaces were never studied quantitatively before, excluding through the limited scope of interface pressure mapping. In this work, we developed a novel computational modelling framework and simulations to visualise and quantify the state of soft tissue loading at the buttocks of a supine patient positioned on a hybrid support surface, in both the static and dynamic modes. We found that the dynamic mode effectively shifts deep concentrated soft tissue loading from under the sacral bone (towards the sacral promontory) to the tip of the sacrum (coccyx) and vice versa, and thereby, generates a deep tissue offloading effect.


Assuntos
Úlcera por Pressão , Humanos , Úlcera por Pressão/prevenção & controle , Pacientes , Sacro , Região Sacrococcígea , Leitos
17.
Development ; 146(20)2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604710

RESUMO

During embryonic development, the telecephalon undergoes extensive growth and cleaves into right and left cerebral hemispheres. Although molecular signals have been implicated in this process and linked to congenital abnormalities, few studies have examined the role of mechanical forces. In this study, we quantified morphology, cell proliferation and tissue growth in the forebrain of chicken embryos during Hamburger-Hamilton stages 17-21. By altering embryonic cerebrospinal fluid pressure during development, we found that neuroepithelial growth depends on not only chemical morphogen gradients but also mechanical feedback. Using these data, as well as published information on morphogen activity, we developed a chemomechanical growth law to mathematically describe growth of the neuroepithelium. Finally, we constructed a three-dimensional computational model based on these laws, with all parameters based on experimental data. The resulting model predicts forebrain shapes consistent with observations in normal embryos, as well as observations under chemical or mechanical perturbation. These results suggest that molecular and mechanical signals play important roles in early forebrain morphogenesis and may contribute to the development of congenital malformations.


Assuntos
Encéfalo/citologia , Morfogênese/fisiologia , Animais , Encéfalo/metabolismo , Embrião de Galinha , Galinhas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Análise de Elementos Finitos , Morfogênese/genética , Estresse Mecânico
18.
J Anat ; 241(2): 358-371, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35510779

RESUMO

In early limb embryogenesis, synovial joints acquire specific shapes which determine joint motion and function. The process by which the opposing cartilaginous joint surfaces are moulded into reciprocal and interlocking shapes, called joint morphogenesis, is one of the least understood aspects of joint formation and the cell-level dynamics underlying it are yet to be unravelled. In this research, we quantified key cellular dynamics involved in growth and morphogenesis of the zebrafish jaw joint and synthesised them in a predictive computational simulation of joint development. Cells in larval zebrafish jaw joints labelled with cartilage markers were tracked over a 48-h time window using confocal imaging. Changes in distance and angle between adjacent cell centroids resulting from cell rearrangement, volume expansion and extracellular matrix (ECM) deposition were measured and used to calculate the rate and direction of local tissue deformations. We observed spatially and temporally heterogeneous growth patterns with marked anisotropy over the developmental period assessed. There was notably elevated growth at the level of the retroarticular process of the Meckel's cartilage, a feature known to undergo pronounced shape changes during zebrafish development. Analysis of cell dynamics indicated a dominant role for cell volume expansion in growth, with minor influences from ECM volume increases and cell intercalation. Cell proliferation in the joint was minimal over the timeframe of interest. Synthesising the dynamic cell data into a finite element model of jaw joint development resulted in accurate shape predictions. Our biofidelic computational simulation demonstrated that zebrafish jaw joint growth can be reasonably approximated based on cell positional information over time, where cell positional information derives mainly from cell orientation and cell volume expansion. By modifying the input parameters of the simulation, we were able to assess the relative contributions of heterogeneous growth rates and of growth orientation. The use of uniform rather than heterogeneous growth rates only minorly impacted the shape predictions, whereas isotropic growth fields resulted in altered shape predictions. The simulation results suggest that growth anisotropy is the dominant influence on joint growth and morphogenesis. This study addresses the gap of the cellular processes underlying joint morphogenesis, with implications for understanding the aetiology of developmental joint disorders such as developmental dysplasia of the hip and arthrogryposis.


Assuntos
Cartilagem , Peixe-Zebra , Animais , Arcada Osseodentária , Larva , Morfogênese , Articulação Temporomandibular
19.
J Biomech Eng ; 144(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34817049

RESUMO

As an alternative to drug treatments, low-magnitude mechanical stimulation (LMMS) may improve skeletal health without potential side effects from drugs. LMMS has been shown to increase bone health short term in both animal and clinical studies. Long-term changes to the mechanical properties of bone from LMMS are currently unknown, so the objective of this research was to establish the methodology and preliminary results for investigating the long-term effects of whole body vibration therapy on the elastic and viscoelastic properties of bone. In this study, 10-week-old female BALB/cByJ mice were given LMMS (15 min/day, 5 days/week, 0.3 g, 90 Hz) for 8 weeks; SHAM did not receive LMMS. Two sets of groups remained on study for an additional 8 or 16 weeks post-LMMS (N = 17). Micro-CT and fluorochrome histomorphology of these femurs were studied and results were published by Bodnyk et al. (2020, "The Long-Term Residual Effects of Low-Magnitude Mechanical Stimulation Therapy on Skeletal Health," J. Biol. Eng., 14, Article No. 9.). Femoral quasi-static bending stiffness trended 4.2% increase in stiffness after 8 weeks of LMMS and 1.3% increase 8 weeks post-LMMS compared to SHAM. Damping, tan delta, and loss stiffness significantly increased by 17.6%, 16.3%, and 16.6%, respectively, at 8 weeks LMMS compared to SHAM. Finite element models of applied LMMS signal showed decreased stress in the mid-diaphyseal region at both 8-week LMMS and 8-week post-LMMS compared to SHAM. Residual mechanical changes in bone during and post-LMMS indicate that LMMS could be used to increase long-term mechanical integrity of bone.


Assuntos
Fêmur , Vibração , Animais , Densidade Óssea/fisiologia , Osso e Ossos , Feminino , Extremidade Inferior , Camundongos , Vibração/uso terapêutico , Microtomografia por Raio-X
20.
J Biomech Eng ; 144(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318317

RESUMO

Blast-induced injuries affect the health of veterans, in which the auditory system is often damaged, and blast-induced auditory damage to the cochlea is difficult to quantify. A recent study modeled blast overpressure (BOP) transmission throughout the ear utilizing a straight, two-chambered cochlea, but the spiral cochlea's response to blast exposure has yet to be investigated. In this study, we utilized a human ear finite element (FE) model with a spiraled, two-chambered cochlea to simulate the response of the anatomical structural cochlea to BOP exposure. The FE model included an ear canal, middle ear, and two and half turns of two-chambered cochlea and simulated a BOP from the ear canal entrance to the spiral cochlea in a transient analysis utilizing fluid-structure interfaces. The model's middle ear was validated with experimental pressure measurements from the outer and middle ear of human temporal bones. The results showed high stapes footplate (SFP) displacements up to 28.5 µm resulting in high intracochlear pressures and basilar membrane (BM) displacements up to 43.2 µm from a BOP input of 30.7 kPa. The cochlea's spiral shape caused asymmetric pressure distributions as high as 4 kPa across the cochlea's width and higher BM transverse motion than that observed in a similar straight cochlea model. The developed spiral cochlea model provides an advancement from the straight cochlea model to increase the understanding of cochlear mechanics during blast and progresses toward a model able to predict potential hearing loss after blast.


Assuntos
Traumatismos por Explosões , Cóclea , Cóclea/fisiologia , Meato Acústico Externo/fisiologia , Orelha Média/fisiologia , Explosões , Análise de Elementos Finitos , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa