Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(14): e2400068, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593218

RESUMO

With the advantages of lightweight and low thermal conductivity properties, polymeric foams are widely employed as thermal insulation materials for energy-saving buildings but suffer from inherent flammability. Flame-retardant coatings hold great promise for improving the fire safety of these foams without deteriorating the mechanical-physical properties of the foam. In this work, four kinds of sulfur-based flame-retardant copolymers are synthesized via a facile radical copolymerization. The sulfur-containing monomers serve as flame-retardant agents including vinyl sulfonic acid sodium (SPS), ethylene sulfonic acid sodium (VS), and sodium p-styrene sulfonate (VSS). Additionally, 2-hydroxyethyl acrylate (HEA) and 4-hydroxybutyl acrylate are employed to enable a strong interface adhesion with polymeric foams through interfacial H-bonding. By using as-synthesized waterborne flame-retardant polymeric coating with a thickness of 600 µm, the coated polyurethane foam (PUF) can achieve a desired V-0 rating during the vertical burning test with a high limiting oxygen index (LOI) of >31.5 vol%. By comparing these sulfur-containing polymeric fire-retardant coatings, poly(VS-co-HEA) coated PUF demonstrates the best interface adhesion capability and flame-retardant performance, with the lowest peak heat release rate of 166 kW m-2 and the highest LOI of 36.4 vol%. This work provides new avenues for the design and performance optimization of advanced fire-retardant polymeric coatings.


Assuntos
Retardadores de Chama , Polímeros , Poliuretanos , Enxofre , Poliuretanos/química , Polímeros/química , Enxofre/química , Retardadores de Chama/análise , Incêndios
2.
Molecules ; 28(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36838828

RESUMO

Developing fire-retardant building materials is vital in reducing fire loss. The design and preparation of novel fire-retardant coatings merely require the adhesion of flame retardants with high fire-retardant characteristics on the surface, which is significantly more economical than adding excessive amounts of flame retardants into bulk building materials. Meanwhile, fire-retardant coating has excellent performance because it can block the self-sustaining mechanisms of heat and mass transfer over combustion interfaces. In recent years, research of fire-retardant coatings for building materials has been subject to rapid development, and a variety of novel environmentally benign fire-retardant coatings have been reported. Nonetheless, as the surface characteristics of various flammable building materials are contrastively different, selecting chemical ingredients and controlling the physical morphology of fire-retardant coatings for specific building materials is rather complicated. Thus, it is urgent to review the ideas and preparation methods for new fire-retardant coatings. This paper summarizes the latest research progress of fire-retardant building materials, focusing on the compositions and performances of fire-retardant coatings, as well as the principles of their bottom-up design and preparation methods on the surface of building materials.


Assuntos
Incêndios , Retardadores de Chama , Temperatura Alta , Materiais de Construção
3.
Angew Chem Int Ed Engl ; 62(4): e202215600, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36446737

RESUMO

Zinc metal battery (ZMB) is promising as the next generation of energy storage system, but challenges relating to dendrites and corrosion of the zinc anode are restricting its practical application. Here, to stabilize Zn anode, we report a controlled electrolytic method for a monolithic solid-electrolyte interphase (SEI) via a high dipole moment solvent dimethyl methylphosphonate (DMMP). The DMMP-based electrolytes can generate a homogeneous and robust phosphate SEI (Zn3 (PO4 )2 and ZnP2 O6 ). Benefiting from the protecting impact of this in situ monolithic SEI, the zinc electrode exhibits long-term cycling of 4700 h and a high Coulombic efficiency 99.89 % in Zn|Zn and Zn|Cu cell, respectively. The full V2 O5 |Zn battery with DMMP-H2 O hybrid electrolyte exhibits a high capacity retention of 82.2 % following 4000 cycles under 5 A g-1 . The first success in constructing the monolithic phosphate SEI will open a new avenue in electrolyte design for highly reversible and stable Zn metal anodes.

4.
Molecules ; 27(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744867

RESUMO

Driven by concerns over the health and environmental impacts of currently used fire retardants (FRs), recent years have seen strong demand for alternative safer and sustainable bio-based FRs. In this paper, we evaluated the potential of nitrogen-modified biopolyphenols as FRs for cellulosic natural fibres that could be used in low-density cellulose insulations. We describe the preparation and characterisation of nitrogen-modified lignin and tannin containing over 10% nitrogen as well as the treatment of cellulose pulp fibres with combinations of lignin or tannin and adsorption-enhancing retention aids. Combining lignin or tannin with a mixture of commercial bio-based flocculant (cationised tannin) and anionic retention chemical allowed for a nearly fourfold increase in lignin adsorption onto cellulosic pulp. The nitrogen-modified biopolyphenols showed significant improvement in heat release parameters in micro-scale combustion calorimetry (MCC) testing compared with their unmodified counterparts. Moreover, the adsorption of nitrogen-modified lignin or tannin onto cellulose fibres decreased the maximum heat release rate and total heat release compared with cellulose reference by 15-23%. A further positive finding was that the temperature at the peak heat release rate did not change. These results show the potential of nitrogen-modified biopolyphenols to improve fire-retarding properties of cellulosic products.


Assuntos
Celulose , Retardadores de Chama , Celulose/química , Lignina/química , Nitrogênio/química , Taninos
5.
Toxicol Ind Health ; 37(7): 398-407, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34075834

RESUMO

Trifluoroiodomethane (CF3I) is a fire suppressant gas with potential for use in low global-warming refrigerant blends. Data from studies in rats suggest that the most sensitive health effect of CF3I is thyroid hormone perturbation, but the rat is a particularly sensitive species for disruption of thyroid homeostasis. Mice appear to be less sensitive than rats but still a conservative model with respect to humans. The purpose of this study was to test tolerance and thyroid response to CF3I in B6C3F1 male mice. Male mice were exposed to CF3I for 6 h per day, for 28 days, via whole body exposure at concentrations of 2500, 5000 and 10,000 ppm. A 16-day recovery period was included to evaluate reversibility. No adverse clinical signs were observed throughout the study, and body weights were unaffected by exposure. CF3I exposure had no effect on thyroid histology. An increase in relative thyroid weight was observed at 10,000 ppm on day 28 but not in a separate group of animals evaluated on day 29, and thyroid weight was not different from controls at 44 days. Slight and sporadic changes in serum triiodothyronine, thyroxine, and thyroid-stimulating hormone were observed but did not follow a consistent pattern with respect to timing, dose, or direction. Overall, exposure at up to 10,000 ppm (1.0%) of CF3I gas for 28 days produced no overt general toxicity and only transient, recoverable effects on thyroid weight and hormones at certain concentrations. On the basis of the effect of CF3I exposure on the thyroid, including evaluation of thyroid histopathology, the no observed adverse effect level for this study is 10,000 ppm. Considering the apparently greater toxicity reported in prior studies in male rats, our data suggest a species difference between rats and mice in terms of susceptibility to CF3I-induced thyroid hormone perturbation.


Assuntos
Peso Corporal/efeitos dos fármacos , Sistemas de Combate a Incêndio , Homeostase/efeitos dos fármacos , Hidrocarbonetos Halogenados/toxicidade , Tamanho do Órgão/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Animais , Testes de Carcinogenicidade , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Especificidade da Espécie
6.
Molecules ; 26(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34279433

RESUMO

The integration of intumescent flame-retardant (IFR) additives in natural fiber-based polymer composites enhances the fire-retardant properties, but it generally has a detrimental effect on the mechanical properties, such as tensile and flexural strengths. In this work, the feasibility of graphene as a reinforcement additive and as an effective synergist for IFR-based flax-polypropylene (PP) composites was investigated. Noticeable improvements in tensile and flexural properties were achieved with the addition of graphene nanoplatelets (GNP) in the composites. Furthermore, better char-forming ability of GNP in combination with IFR was observed, suppressing HRR curves and thus, lowering the total heat release (THR). Thermogravimetric analysis (TGA) detected a reduction in the decomposition rate due to strong interfacial bonding between GNP and PP, whereas the maximum decomposition rate was observed to occur at a higher temperature. The saturation point for the IFR additive along with GNP has also been highlighted in this study. A safe and effective method of graphene encapsulation within PP using the fume-hood set-up was achieved. Finally, the effect of flame retardant on the flax-PP composite has been simulated using Fire Dynamics Simulator.

7.
Molecules ; 26(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578896

RESUMO

In this paper, the fire behavior of unsaturated polyester resin (UP) modified with L-histidinium dihydrogen phosphate-phosphoric acid (LHP), being a novel intumescent fire retardant (IFR), was investigated. Thermal and thermomechanical properties of the UP with different amounts of LHP (from 10 to 30 wt. %) were determined by thermogravimetric analysis (TG) as well as dynamic mechanical thermal analysis (DMTA). Reaction to small flames was studied by horizontal burning (HB) test, while fire behavior and smoke emission were investigated with the cone calorimeter (CC) and smoke density chamber. Further, the analysis of volatile products was conducted (TGA/FT-IR). It was observed that the addition of LHP resulted in the formation of carbonaceous char inhibiting the thermal decomposition, burning rate and smoke emission. The most promising results were obtained for the UP containing 30 wt. % of LHP, for which the highest reduction in maximum values of heat release rate (200 kW/m2) and total smoke release (3535 m2/m2) compared to unmodified polymer (792 kW/m2 and 6895 m2/m2) were recorded. However, some important disadvantage with respect to water resistance was observed.


Assuntos
Retardadores de Chama/análise , Histidina/química , Fosfatos/química , Ácidos Fosfóricos/química , Poliésteres/química , Temperatura , Água/química , Incêndios
8.
Molecules ; 25(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041132

RESUMO

Thin coatings of crosslinked poly(vinylphosphonic acid), PVPA, display good adhesion and excellent intumescent, fire-retardant barrier properties when applied to the surfaces of a typical thermoplastic, such as poly(methyl methacrylate), but perform relatively poorly in water-soak tests. To strengthen and further improve the barrier properties of the intumescent char and to make the coating more hydrophobic, PVPA has been complexed with various inorganic and organic species. The chars formed from coatings of some of these hybrid materials are less friable than chars from coatings synthesized from crosslinked PVPA alone, and show higher levels of water tolerance with no significant reduction in dry adhesion to the substrate.


Assuntos
Incêndios/prevenção & controle , Organofosfonatos/química , Polivinil/química , Retardadores de Chama , Teste de Materiais/métodos
9.
Molecules ; 25(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370000

RESUMO

A series of new hexasubstituted cyclotriphosphazene compounds (4a-j) consisting of two Schiff base linking units and different terminal substituents was successfully synthesized and characterized. The structures of these compounds were confirmed using Fourier Transform Infra-Red (FTIR), Nuclear Magnetic Resonance (NMR), and CHN elemental analysis. Polarized optical microscopy (POM) was used to determine their liquid-crystal behavior, which was then further confirmed using differential scanning calorimetry (DSC). Compounds 4a-i with heptyl, nonyl, decyl, dodecyl, tetradecyl, hydroxy, 4-carboxyphenyl, chloro, and nitro terminal ends, respectively, showed the liquid-crystal properties, whereas compound 4j with the amino group was found to be non-mesogenic. The attachment of an electron-donating group in 4j eventually give a non-mesogenic product. The study of the fire-retardant properties of these compounds was done using the limiting oxygen index (LOI). In this study, polyester resin (PE) was used as a matrix for moulding, and the LOI value of pure PE was 22.53%. The LOI value increased to 24.71% when PE was incorporated with 1 wt.% of hexachlorocyclotriphosphazene (HCCP), thus indicating that HCCP has a good fire-retardant properties. The result showed that all the compounds have good agreement in their LOI values. Compound 4i with a nitro terminal group gave the highest LOI value of 28.37%.


Assuntos
Retardadores de Chama/análise , Cristais Líquidos/química , Organofosfatos/química , Bases de Schiff/química , Varredura Diferencial de Calorimetria , Técnicas de Química Sintética , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Termogravimetria
10.
Molecules ; 24(13)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262097

RESUMO

Zinc borates are important chemical products having industrial applications as functional additives in polymers, bio-composites, paints and ceramics. Of the thirteen well documented hydrated binary zinc borates, Zn[B3O4(OH)3] (2ZnO∙3B2O3∙3H2O) is manufactured in the largest quantity and is known as an article of commerce as 2ZnO∙3B2O3∙3.5H2O. Other hydrated zinc borates in commercial use include 4ZnO∙B2O3∙H2O, 3ZnO∙3B2O3∙5H2O and 2ZnO∙3B2O3∙7H2O. The history, chemistry, and applications of these and other hydrated zinc borate phases are briefly reviewed, and outstanding problems in the field are highlighted.


Assuntos
Boratos/química , Cerâmica/química , Cerâmica/síntese química , Zinco/química , Boratos/síntese química
11.
Angew Chem Int Ed Engl ; 57(31): 9764-9769, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29808549

RESUMO

Phosphorus incorporation into carbon can greatly modify its chemical, electronic, and thermal stability properties. To date this has been limited to low levels of phosphorus. Now a simple, large-scale synthesis of carbon-nitrogen-phosphorus (CNP) materials is reported with tunable elemental composition, leading to excellent thermal stability to oxidation and fire-retardant properties. The synthesis consists of using monomers that are liquid at high temperatures as the reaction precursors. The molten-state stage leads to good monomer miscibility and enhanced reactivity at high temperatures and formation of CNP materials with up to 32 wt % phosphorus incorporation. The CNP composition and fire-retardant properties can be tuned by modifying the starting monomers ratio and the final calcination temperature. The CNP materials demonstrate great resistance to oxidation and excellent fire-retardant properties, with up to 90 % of the materials preserved upon heating to 800 °C in air.

12.
Sensors (Basel) ; 16(6)2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27314352

RESUMO

Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

13.
Chemosphere ; 358: 142226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704039

RESUMO

Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.


Assuntos
Casca de Ovo , Retardadores de Chama , Ácido Fítico , Casca de Ovo/química , Ácido Fítico/química , Animais , Incêndios , Celulose/química , Carbonato de Cálcio/química , Galinhas
14.
Chem Asian J ; 19(17): e202400357, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837322

RESUMO

Cyclotriphosphazene (CP) is a cyclic inorganic compound with the chemical formula N3P3. This unique molecule consists of a six-membered ring composed of alternating nitrogen and phosphorus atoms, each bonded to two chlorine atoms. CP exhibits remarkable versatility and significance in the realm of materials chemistry due to its easy functionalization via facile nucleophilic substitution reactions in mild conditions as well as intriguing properties of resultant final CP-based molecules or polymers. CP has been served as an important building block for numerous functional materials. This review provides a general and broad overview of the synthesis of CP-based small molecules through nucleophilic substitution of hexachlorocyclotriphosphazene (HCCP), and their applications, including flame retardants, liquid crystals (LC), chemosensors, electronics, biomedical materials, and lubricants, have been summarized and discussed. It would be expected that this review would offer a timely summary of various CP-based materials and hence give an insight into further exploration of CP-based molecules in the future.

15.
Materials (Basel) ; 17(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39203242

RESUMO

The control of powder aging during Selective Laser Sintering (SLS) processing is one of the challenges to be overcome for the implementation of this technique in serial production. Aging phenomena, because of the elevated temperatures and long processing times, need to be considered when a fraction of the polymer powders present in the build chamber and not used to manufacture the parts are reused at various times. The aim of this study was to investigate the influence of successive reuse of blends of pure Polyamide 12 and its blends with two types of flame retardants (FR): ammonium polyphosphate (APP) and zinc borate (ZB). The composition of the blends was 70/30 (wt/wt) PA 12/FR. Four successive processing stages have been carried out by collecting the remaining powder blend each time. The powders were re-used using the same processing parameters after sieving. DSC measurements showed that the incorporation of FRs entailed a reduction in the processing window up to 4 °C; nevertheless, no further reduction was noted after aging. The TGA curves of aged blends of powders were also similar for pure PA 12 and PA 12 with FR. In addition, initial and reused powders presented a higher degree of crystallinity than the specimens processed from the powders. The heterogeneous character of the PA 12 after LS processing or reprocessing was shown through Pyrolysis Combustion Flow Calorimetry (PCFC) and cone calorimeter (CC) tests. FTIR analysis also showed that post-condensation reactions have occurred. The mode of action of the flame retardants was clearly seen on HRR curves at both tests. The first reuses of PA 12 powders entailed a significant reduction in time to ignition at the cone calorimeter (150 for the initial material to around 90 s for the reused material), indicating the formation of short polymer chains. Only in the case of zinc borate was it noticed that re-used powder was detrimental to the fire performance because of a strong increase in the value of pHRR (between 163 and 220 kW/m2 for reused material instead of 125 kW/m2 for the initial one).

16.
Polymers (Basel) ; 16(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39204522

RESUMO

Due to their ability to prevent or slow the spread of fires, fire-retardant coatings are utilized as the main means of fire protection for steel structures, combining easy application and high economic efficiency. This study investigates the effects of the particle size and dosage of expanded vermiculite (EV) on the fire resistance and application performance of coatings. Ammonium polyphosphate, melamine, and pentaerythritol were used as intumescent fire-retardant systems, along with waterborne hydroxyl-modified acrylic resins as the film-forming substances. The properties of fire resistance coatings were tested via scanning electron microscope (SEM), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), limiting oxygen index (LOI), and cone calorimetry. The excellent fire performance of the coatings with 3 wt.% 300-mesh EV was proven, exhibiting a relative expansion of 30.43 times. Moreover, the surface structure of the charcoal layer was dense. The total smoke production (TSP) and smoke concentration (TSR) were only 0.18 m2 and 0.25 m2/m2.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37977239

RESUMO

Climate change and other factors have contributed to an increased frequency and intensity of global wildfires in recent years. Ammonium-based fire retardants are widely used to suppress or delay the spread of fire and have generally been regarded as presenting a low risk of acute toxicity to fauna. However, studies have raised concerns about their potential to cause indirect or sub-lethal effects, and toxicity information regarding the potential for such impacts in aquatic species is limited. To address these knowledge gaps, we used an untargeted metabolomics approach to evaluate the sub-lethal physiological and metabolic responses of striped marsh frog (Limnodynastes peronii) tadpoles exposed to a concentration gradient of the ammonium polyphosphate (APP)-based fire retardant Phos-Chek LC95W (PC). Acute exposure (96 h) to PC significantly altered the relative abundance of 14 metabolites in whole tadpoles. The overall metabolic response pattern was consistent with effects reported for ammonia toxicity and also suggestive of energy dysregulation and osmotic stress associated with alterations to physicochemical water quality parameters in the PC treatments. Results suggest that run-off or accidental application of this formulation into waterways can have significant sub-lethal consequences on the biochemical profiles (i.e., the metabolome) of aquatic organisms and may be a concern for frog species that breed and develop in small, often ephemeral, waterbodies. Our study highlights the benefits of integrating untargeted metabolomics with other ecological and toxicological endpoints to provide a more holistic characterisation of the sub-lethal impacts associated with bushfire-fighting chemicals and with environmental contaminants more broadly.


Assuntos
Compostos de Amônio , Retardadores de Chama , Poluentes Químicos da Água , Animais , Áreas Alagadas , Retardadores de Chama/toxicidade , Larva , Anuros/metabolismo , Compostos de Amônio/farmacologia , Poluentes Químicos da Água/metabolismo
18.
Nanomaterials (Basel) ; 14(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786803

RESUMO

As one of the emerging nanomaterials, boron nitride nanotubes (BNNTs) provide promising opportunities for diverse applications due to their unique properties, such as high thermal conductivity, immense inertness, and high-temperature durability, while the instability of BNNTs due to their high surface induces agglomerates susceptible to the loss of their advantages. Therefore, the proper functionalization of BNNTs is crucial to highlight their fundamental characteristics. Herein, a simplistic low-cost approach of BNNT surface modification through catechol-polyamine (CAPA) interfacial polymerization is postulated to improve its dispersibility on the polymeric matrix. The modified BNNT was assimilated as a filler additive with AlN/Al2O3 filling materials in a PDMS polymeric matrix to prepare a thermal interface material (TIM). The resulting composite exhibits a heightened isotropic thermal conductivity of 8.10 W/mK, which is a ~47.27% increase compared to pristine composite 5.50 W/mK, and this can be ascribed to the improved BNNT dispersion forming interconnected phonon pathways and the thermal interface resistance reduction due to its augmented compatibility with the polymeric matrix. Moreover, the fabricated composite manifests a fire resistance improvement of ~10% in LOI relative to the neat composite sample, which can be correlated to the thermal stability shift in the TGA and DTA data. An enhancement in thermal permanence is stipulated due to a melting point (Tm) shift of ∼38.5 °C upon the integration of BNNT-CAPA. This improvement can be associated with the good distribution and adhesion of BNNT-CAPA in the polymeric matrix, integrated with its inherent thermal stability, good charring capability, and free radical scavenging effect due to the presence of CAPA on its surface. This study offers new insights into BNNT utilization and its corresponding incorporation into the polymeric matrix, which provides a prospective direction in the preparation of multifunctional materials for electric devices.

19.
Polymers (Basel) ; 16(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38891502

RESUMO

To broaden the applications of wood, it is necessary to prepare flame-retardant coatings that can protect wood substrates during combustion. In this study, a bio-based, intumescent, flame-retardant phytic acid-melamine polyelectrolyte (PM) was prepared using phosphorus-rich biomass phytic acid and nitrogen-rich melamine as raw materials through an ion crosslinking reaction. Subsequently, a series of bio-based, flame-retardant wood coatings were prepared by optimizing the structure of urea-formaldehyde resin with the addition of melamine, sodium lignosulfonate, and PM as a flame-retardant curing agent. Woods coated with PM-containing coatings displayed significantly improved flame-retardant performances in comparison to uncoated woods. For PM-cured woods, the measured values of total heat release and total smoke production were 91.51% and 57.80% lower, respectively, compared with those of uncoated wood. Furthermore, the fire growth index decreased by 97.32%, indicating a lower fire hazard. This increase in flame retardancy and smoke suppression performance is due to the dense expanded carbon layer formed during the combustion of the coating, which isolates oxygen and heat. In addition, the mechanical properties of the flame-retardant coatings cured with PM are similar to those cured with a commercial curing agent, NH4Cl. In addition, the prepared flame-retardant coating can also stain the wood. This study proves the excellent flame-retarding and curing effect of ammonium phytate in urea-formaldehyde resin coatings and provides a new approach for the application of bio-based flame retardants in wood coatings.

20.
Adv Mater ; : e2410453, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212641

RESUMO

Fire-retardant coatings represent a universal cost-effective approach to providing fire protection for various substrates without compromising substrates' bulk properties. However, it has been attractive yet highly challenging to create waterborne polymeric fire-retardant coatings combining high-efficiency, generally strong adhesion, and self-repairability due to a lack of rational design principles. Inspired by mussel's unique adhesive, self-healing, and char-forming mechanisms, herein, a "group synergy" design strategy is proposed to realize the combination of self-healing, strong adhesion, and high efficiency in a fully polymeric fire-retardant coating via multiple synergies between catechol, phosphonic, and hydroxyethyl groups. As-created fire-retardant coating exhibits a rapid room-temperature self-healing ability and strong adhesion to (non)polar substrates due to multiple dynamic non-covalent interactions enabled by these groups. Because these functional groups enable the formation of a robust structurally intact yet slightly expanded char layer upon exposure to flame, a 200 µm-thick such coating can make extremely flammable polystyrene foam very difficult to ignite and self-extinguishing, which far outperforms previous strategies. Moreover, this coating can provide universal exceptional fire protection for a variety of substrates from polymer foams, and timber, to fabric and steel. This work presents a promising material design principle to create next-generation sustainable high-performance fire-retardant coatings for general fire protection.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa