RESUMO
Control of fire is one of the most important technological innovations within the evolution of humankind. The archaeological signal of fire use becomes very visible from around 400,000 y ago onward. Interestingly, this occurs at a geologically similar time over major parts of the Old World, in Africa, as well as in western Eurasia, and in different subpopulations of the wider hominin metapopulation. We interpret this spatiotemporal pattern as the result of cultural diffusion, and as representing the earliest clear-cut case of widespread cultural change resulting from diffusion in human evolution. This fire-use pattern is followed slightly later by a similar spatiotemporal distribution of Levallois technology, at the beginning of the African Middle Stone Age and the western Eurasian Middle Paleolithic. These archaeological data, as well as studies of ancient genomes, lead us to hypothesize that at the latest by 400,000 y ago, hominin subpopulations encountered one another often enough and were sufficiently tolerant toward one another to transmit ideas and techniques over large regions within relatively short time periods. Furthermore, it is likely that the large-scale social networks necessary to transmit complicated skills were also in place. Most importantly, this suggests a form of cultural behavior significantly more similar to that of extant Homo sapiens than to our great ape relatives.
RESUMO
Forest landscapes across western North America (wNA) have experienced extensive changes over the last two centuries, while climatic warming has become a global reality over the last four decades. Resulting interactions between historical increases in forested area and density and recent rapid warming, increasing insect mortality, and wildfire burned areas, are now leading to substantial abrupt landscape alterations. These outcomes are forcing forest planners and managers to identify strategies that can modify future outcomes that are ecologically and/or socially undesirable. Past forest management, including widespread harvest of fire- and climate-tolerant large old trees and old forests, fire exclusion (both Indigenous and lightning ignitions), and highly effective wildfire suppression have contributed to the current state of wNA forests. These practices were successful at meeting short-term demands, but they match poorly to modern realities. Hagmann et al. review a century of observations and multi-scale, multi-proxy, research evidence that details widespread changes in forested landscapes and wildfire regimes since the influx of European colonists. Over the preceding 10 millennia, large areas of wNA were already settled and proactively managed with intentional burning by Indigenous tribes. Prichard et al. then review the research on management practices historically applied by Indigenous tribes and currently applied by some managers to intentionally manage forests for resilient conditions. They address 10 questions surrounding the application and relevance of these management practices. Here, we highlight the main findings of both papers and offer recommendations for management. We discuss progress paralysis that often occurs with strict adherence to the precautionary principle; offer insights for dealing with the common problem of irreducible uncertainty and suggestions for reframing management and policy direction; and identify key knowledge gaps and research needs.
Assuntos
Incêndios , Incêndios Florestais , Mudança Climática , Florestas , América do Norte , ÁrvoresRESUMO
Members of genus Homo are the only animals known to create and control fire. The adaptive significance of this unique behavior is broadly recognized, but the steps by which our ancestors evolved pyrotechnic abilities remain unknown. Many hypotheses attempting to answer this question attribute hominin fire to serendipitous, even accidental, discovery. Using recent paleoenvironmental reconstructions, we present an alternative scenario in which, 2 to 3 million years ago in tropical Africa, human fire dependence was the result of adapting to progressively fire-prone environments. The extreme and rapid fluctuations between closed canopy forests, woodland, and grasslands that occurred in tropical Africa during that time, in conjunction with reductions in atmospheric carbon dioxide levels, changed the fire regime of the region, increasing the occurrence of natural fires. We use models from optimal foraging theory to hypothesize benefits that this fire-altered landscape provided to ancestral hominins and link these benefits to steps that transformed our ancestors into a genus of active pyrophiles whose dependence on fire for survival contributed to its rapid expansion out of Africa.
Assuntos
Evolução Biológica , Incêndios , Hominidae/fisiologia , Comportamento de Utilização de Ferramentas , África , Animais , Culinária , Pradaria , História Antiga , Humanos , PaleontologiaRESUMO
Forest managers are increasingly recognizing the value of disturbance-based land management techniques such as prescribed burning. Unauthorized, "arson" fires are common in the southeastern United States where a legacy of agrarian cultural heritage persists amidst an increasingly forest-dominated landscape. This paper reexamines unauthorized fire-setting in the state of Georgia, USA from a historical ecology perspective that aims to contribute to historically informed, disturbance-based land management. A space-time permutation analysis is employed to discriminate systematic, management-oriented unauthorized fires from more arbitrary or socially deviant fire-setting behaviors. This paper argues that statistically significant space-time clusters of unauthorized fire occurrence represent informal management regimes linked to the legacy of traditional land management practices. Recent scholarship has pointed out that traditional management has actively promoted sustainable resource use and, in some cases, enhanced biodiversity often through the use of fire. Despite broad-scale displacement of traditional management during the 20th century, informal management practices may locally circumvent more formal and regionally dominant management regimes. Space-time permutation analysis identified 29 statistically significant fire regimes for the state of Georgia. The identified regimes are classified by region and land cover type and their implications for historically informed disturbance-based resource management are discussed.
Assuntos
Incêndios , Agricultura Florestal/métodos , Florestas , Biodiversidade , Ecossistema , Piromania , Georgia , Humanos , Análise Espaço-TemporalRESUMO
Humans today live in a wide range of environments from the iciest to the hottest, thanks to diverse cultural solutions that buffer temperature extremes. The prehistory of this relationship between human distribution, cultural solutions and temperature conditions may help us to understand the evolution of human biological adaptations to cold temperature. Fire has long been seen as an important factor in human evolution and range expansion, particularly into temperate latitudes. Nevertheless, the earliest evidence for hominin presence in Eurasia, and middle latitudes in northern Europe, substantially predates convincing evidence for fire use in these regions. This review outlines the current state of knowledge of the chronology of hominin dispersal into temperate latitudes, from the earliest occupants to our own species, and the archeological evidence for fire use. Given continuing disagreement about this chronology and limitations to the archeological evidence, new, complementary approaches are worthwhile and would benefit from information from studies of current human temperature regulation.
RESUMO
Abstract: Scientific research that purports to evaluate Indigenous fire regimes in the absence of ethnographically contextualized ecological data runs the risk of exacerbating the fire blame game and providing evidence to support distorted narratives advanced by anti-Indigenous advocates. Spatial analysis of fire scars in Indigenous territories can be an effective tool for characterizing cultural fire regimes in terms of distribution and frequency, especially when qualified by linkages to different local ecosystems. A recently published article drew on fire scar mapping from satellite imagery to assess anthropogenic fire distribution and frequency in the Pimentel Barbosa Indigenous Land, Central Brazil. The authors use their findings to characterize A'uwẽ (Xavante) use of fire as unmanaged and a model of unsustainable use of cerrado resources. In this article, we discuss Aguiar & Martins's recent paper in light of our long-term research on A'uwẽ hunting with fire in the Pimentel Barbosa Indigenous Land, arguing that A'uwẽ hunters do burn according to established cultural protocols, manage their use of fire for conservationist purposes, and do not cause environmental degradation by burning.
Resumo: A pesquisa científica que pretende avaliar regimes indígenas de queimadas na ausência de dados ecológicos contextualizados etnograficamente corre o risco de exacerbar o jogo de culpabilização do fogo, fornecendo evidências para apoiar narrativas distorcidas apresentadas por militantes anti-indígenas. A análise espacial de cicatrizes de fogo em territórios indígenas pode ser uma ferramenta eficaz para caracterizar regimes culturais de fogo em termos de distribuição e frequência, especialmente quando qualificada por ligações a diferentes ecossistemas locais. Um artigo publicado recentemente se baseou no mapeamento de cicatrizes de fogo a partir de imagens de satélite para avaliar a distribuição e frequência antropogênica de fogo na Terra Indígena Pimentel Barbosa, Brasil Central. Os autores usam seus resultados para caracterizar o uso do fogo pelos A'uwẽ (Xavante) como não manejado e um modelo insustentável de uso de recursos do cerrado. Neste artigo, discutimos o artigo recente de Aguiar & Martins à luz de nossa pesquisa de longa duração sobre a caçada com fogo praticada pelos A'uwẽ na Terra Indígena Pimentel Barbosa, argumentando que os caçadores A'uwẽ queimam de acordo com protocolos culturais estabelecidos, manejam o fogo de maneira conservacionista e não causam degradação ambiental pela queimada.
RESUMO
Fire-use and the scale and character of its effects on landscapes remain hotly debated in the paleo- and historical-fire literature. Since the second half of the nineteenth century, anthropology and geography have played important roles in providing theoretical propositions and testable hypotheses for advancing understandings of the ecological role of human-fire-use in landscape histories. This article reviews some of the most salient and persistent theoretical propositions and hypotheses concerning the role of humans in historical fire ecology. The review discusses this history in light of current research agendas, such as those offered by pyrogeography. The review suggests that a more theoretically cognizant historical fire ecology should strive to operationalize transdisciplinary theory capable of addressing the role of human variability in the evolutionary history of landscapes. To facilitate this process, researchers should focus attention on integrating more current human ecology theory into transdisciplinary research agendas.