Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Plant J ; 118(6): 1793-1814, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461478

RESUMO

Flavan-3-ols are prominent phenolic compounds found abundantly in the young leaves of tea plants. The enzymes involved in flavan-3-ol biosynthesis in tea plants have been extensively investigated. However, the localization and associations of these numerous functional enzymes within cells have been largely neglected. In this study, we aimed to investigate the synthesis of flavan-3-ols in tea plants, particularly focusing on epigallocatechin gallate. Our analysis involving the DESI-MSI method to reveal a distinct distribution pattern of B-ring trihydroxylated flavonoids, primarily concentrated in the outer layer of buds. Subcellular localization showed that CsC4H, CsF3'H, and CsF3'5'H localizes endoplasmic reticulum. Protein-protein interaction studies demonstrated direct associations between CsC4H, CsF3'H, and cytoplasmic enzymes (CHS, CHI, F3H, DFR, FLS, and ANR), highlighting their interactions within the biosynthetic pathway. Notably, CsF3'5'H, the enzyme for B-ring trihydroxylation, did not directly interact with other enzymes. We identified cytochrome b5 isoform C serving as an essential redox partner, ensuring the proper functioning of CsF3'5'H. Our findings suggest the existence of distinct modules governing the synthesis of different B-ring hydroxylation compounds. This study provides valuable insights into the mechanisms underlying flavonoid diversity and efficient synthesis and enhances our understanding of the substantial accumulation of B-ring trihydroxylated flavan-3-ols in tea plants.


Assuntos
Camellia sinensis , Catequina , Citocromos b5 , Flavonoides , Proteínas de Plantas , Flavonoides/metabolismo , Flavonoides/biossíntese , Camellia sinensis/metabolismo , Camellia sinensis/genética , Catequina/metabolismo , Catequina/análogos & derivados , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citocromos b5/metabolismo , Citocromos b5/genética , Folhas de Planta/metabolismo , Hidroxilação , Retículo Endoplasmático/metabolismo
2.
Plant J ; 113(3): 576-594, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534122

RESUMO

Plant tannases (TAs) or tannin acyl hydrolases, a class of recently reported carboxylesterases in tannin-rich plants, are involved in the degalloylation of two important groups of secondary metabolites: flavan-3-ol gallates and hydrolyzable tannins. In this paper, we have made new progress in studying the function of tea (Camellia sinensis) (Cs) TA-it is a hydrolase with promiscuous acyltransferase activity in vitro and in vivo and promotes the synthesis of simple galloyl glucoses and flavan-3-ol gallates in plants. We studied the functions of CsTA through enzyme analysis, protein mass spectrometry, and metabolic analysis of genetically modified plants. Firstly, CsTA was found to be not only a hydrolase but also an acyltransferase. In the two-step catalytic reaction where CsTA hydrolyzes the galloylated compounds epigallocatechin-3-gallate or 1,2,3,4,6-penta-O-galloyl-ß-d-glucose into their degalloylated forms, a long-lived covalently bound Ser159-linked galloyl-enzyme intermediate is also formed. Under nucleophilic attack, the galloyl group on the intermediate is transferred to the nucleophilic acyl acceptor (such as water, methanol, flavan-3-ols, and simple galloyl glucoses). Then, metabolic analysis suggested that transient overexpression of TAs in young strawberry (Fragaria × ananassa) fruits, young leaves of tea plants, and young leaves of Chinese bayberry (Myrica rubra) actually increased the total contents of simple galloyl glucoses and flavan-3-ol gallates. Overall, these findings provide new insights into the promiscuous acyltransferase activity of plant TA.


Assuntos
Camellia sinensis , Taninos , Taninos/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Chá/genética , Chá/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
3.
J Transl Med ; 22(1): 205, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409037

RESUMO

BACKGROUND AND AIMS: Flavonoids are a class of secondary plant metabolites that have been shown to have multiple health benefits, including antioxidant and anti-inflammatory. This study was to explore the association between dietary flavonoid consumption and the prevalence of chronic respiratory diseases (CRDs) in adults. METHODS AND RESULTS: The six main types of flavonoids, including isoflavones, anthocyanidins, flavan-3-ols, flavanones, flavones, and flavonols, were obtained from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 and 2017-2018 by the two 24-h recall interviews. The prevalence of CRDs, including asthma, emphysema, and chronic bronchitis, was determined through a self-administered questionnaire. The analysis included 15,753 participants aged 18 years or older who had completed a diet history interview. After adjustment for potential confounders, the inverse link was found with total flavonoids, anthocyanidins, flavanones, and flavones, with an OR (95%CI) of 0.86 (0.75-0.98), 0.84 (0.72-0.97), 0.80(0.69-0.92), and 0.85(0.73-0.98) for the highest group compared to the lowest group. WQS regression revealed that the mixture of flavonoids was negatively linked with the prevalence of CRDs (OR = 0.88 [0.82-0.95], P < 0.01), and the largest effect was mainly from flavanones (weight = 0.41). In addition, we found that flavonoid intake was negatively linked with inflammatory markers, and systemic inflammation significantly mediated the associations of flavonoids with CRDs, with a mediation rate of 12.64% for CRP (P < 0.01). CONCLUSION: Higher flavonoid intake was related with a lower prevalence of CRDs in adults, and this relationship may be mediated through systemic inflammation.


Assuntos
Flavanonas , Flavonas , Doenças Respiratórias , Adulto , Humanos , Flavonoides , Inquéritos Nutricionais , Antocianinas , Prevalência , Dieta , Inflamação/epidemiologia , Fatores de Risco
4.
Metab Brain Dis ; 39(5): 763-782, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38809384

RESUMO

The present investigation delved into the pharmacological mechanisms underlying the management of depression through Flavan-3-ols and Aromatic Resins, employing in silico and in vivo methodologies. Network pharmacology was utilized to identify targets associated with the antidepressant activity of Flavan-3-ols and Aromatic Resins. Protein-protein interaction and KEGG analyses were conducted to enrich and explore key pathways. Molecular docking and simulation studies were executed to assess the targets. The antidepressant effects were studied using the Forced Swim Test and Tail Suspension Test on both unstressed mice and those subjected to the chronic unpredictable mild stress (CUMS) paradigm. The Compound-Target network analysis revealed a substantial impact of the components on numerous targets, with 332 nodes and 491 edges. Protein-protein interaction analysis indicated significant interactions with targets implicated in depression. KEGG analysis highlighted major pathways, including neuroactive ligand-receptor interaction, dopaminergic synapse, and long-term depression. Docking studies on EGCG demonstrated binding energies of -7.2 kcal/mol for serotonin 1 A (5-HT1A), -7.9 kcal/mol for D2, and - 9.6 kcal/mol for MOA-A. Molecular dynamics simulation indicated minute fluctuation, hence suggesting stable complexes formed between small molecules and proteins. The combination of Flavan-3-ols and Aromatic Resins significantly increased mobility time (p < 0.05) in the Forced Swim Test and Tail Suspension Test, while significantly decreasing immobility time and time freezing (p < 0.05) in both unstressed and CUMS mice. This study demonstrated the antidepressant characteristics of Flavan-3-ols and Aromatic Resins, underscoring the need for further research to develop a novel antidepressant medication.


Assuntos
Antidepressivos , Depressão , Flavonoides , Simulação de Acoplamento Molecular , Animais , Camundongos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/metabolismo , Masculino , Farmacologia em Rede , Estresse Psicológico/metabolismo , Estresse Psicológico/tratamento farmacológico , Simulação de Dinâmica Molecular
5.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792040

RESUMO

Proanthocyanidins, natural polyphenolic compounds abundantly present in plants, exhibit diverse bioactivities, including antioxidative, anti-inflammatory, and antibacterial effects. These bioactivities are intricately linked to the degree of polymerization of these compounds. Through a comprehensive analysis of recent domestic and international research, this article synthesizes the latest advancements in the extraction process, degradation methods, as well as the biological activities and underlying mechanisms of proanthocyanidins. Furthermore, future research endeavors should prioritize the refinement of extraction techniques, the elucidation of bioactive mechanisms, and the development of formulations with enhanced potency. This will maximize the utilization of proanthocyanidins across diverse applications.


Assuntos
Anti-Inflamatórios , Antioxidantes , Proantocianidinas , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Proantocianidinas/farmacologia
6.
Plant J ; 110(1): 243-261, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35043493

RESUMO

Flavan-3-ols are abundant in the tea plant (Camellia sinensis) and confer tea with flavor and health benefits. We recently found that alternative splicing of genes is likely involved in the regulation of flavan-3-ol biosynthesis; however, the underlying regulatory mechanisms remain unknown. Here, we integrated metabolomics and transcriptomics to construct metabolite-gene networks in tea leaves, collected over five different months and from five spatial positions, and found positive correlations between endogenous jasmonic acid (JA), flavan-3-ols, and numerous transcripts. Transcriptome mining further identified CsJAZ1, which is negatively associated with flavan-3-ols formation and has three CsJAZ1 transcripts, one full-length (CsJAZ1-1), and two splice variants (CsJAZ1-2 and -3) that lacked 3' coding sequences, with CsJAZ1-3 also lacking the coding region for the Jas domain. Confocal microscopy showed that CsJAZ1-1 was localized to the nucleus, while CsJAZ1-2 and CsJAZ1-3 were present in both the nucleus and the cytosol. In the absence of JA, CsJAZ1-1 was bound to CsMYC2, a positive regulator of flavan-3-ol biosynthesis; CsJAZ1-2 functioned as an alternative enhancer of CsJAZ1-1 and an antagonist of CsJAZ1-1 in binding to CsMYC2; and CsJAZ1-3 did not interact with CsMYC2. In the presence of JA, CsJAZ1-3 interacted with CsJAZ1-1 and CsJAZ1-2 to form heterodimers that stabilized the CsJAZ1-1-CsMYC2 and CsJAZ1-2-CsMYC2 complexes, thereby repressing the transcription of four genes that act late in the flavan-3-ol biosynthetic pathway. These data indicate that the alternative splicing variants of CsJAZ1 coordinately regulate flavan-3-ol biosynthesis in the tea plant and improve our understanding of JA-mediated flavan-3-ol biosynthesis.


Assuntos
Camellia sinensis , Processamento Alternativo/genética , Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Chá/metabolismo
7.
J Nutr ; 153(8): 2193-2204, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394116

RESUMO

BACKGROUND: Phenyl-γ-valerolactones (PVLs) have been identified as biomarkers of dietary flavan-3-ol exposure, although their utility requires further characterization. OBJECTIVES: We investigated the performance of a range of PVLs as biomarkers indicative of flavan-3-ol intake. METHODS: We report the results of 2 companion studies: a 5-way randomized crossover trial (RCT) and an observational cross-sectional study. In the RCT (World Health Organization, Universal Trial Number: U1111-1236-7988), 16 healthy participants consumed flavan-3-ol-rich interventions (of apple, cocoa, black tea, green tea, or water [control]) for 1 d each. First morning void samples and 24-h urine samples were collected with diet standardized throughout. For each participant, 1 intervention period was extended (to 2 d) to monitor PVL kinetics after repeat exposure. In the cross-sectional study, 86 healthy participants collected 24-h urine samples, and concurrent weighed food diaries from which flavan-3-ol consumption was estimated using Phenol-Explorer. A panel of 10 urinary PVLs was quantified using liquid chromatography tandem mass spectrometry. RESULTS: In both studies, 2 urinary PVLs [5-(3'-hydroxyphenyl)-γ-valerolactone-4'-sulfate and putatively identified 5-(4'-hydroxyphenyl)-γ-valerolactone-3'-glucuronide] were the principal compounds excreted (>75%). In the RCT, the sum of these PVLs was significantly higher than the water (control) after each intervention; individually, there was a shift from sulfation toward glucuronidation as the total excretion of PVLs increased across the different interventions. In the extended RCT intervention period, no accumulation of these PVLs was observed after consecutive days of treatment, and after withdrawal of treatment on the third day, there was a return toward negligible PVL excretion. All results were consistent, whether compounds were measured in 24-h urine or first morning void samples. In the observational study, the sum of the principal PVLs correlated dose dependently (Rs = 0.37; P = 0.0004) with dietary flavan-3-ol intake, with similar associations for each individually. CONCLUSIONS: Urinary 5-(3'-hydroxyphenyl)-γ-valerolactone-4'-sulfate and putatively identified 5-(4'-hydroxyphenyl)-γ-valerolactone-3'-glucuronide are recommended biomarkers for dietary flavan-3-ol exposure.


Assuntos
Catequina , Glucuronídeos , Humanos , Flavonoides , Chá/química , Sulfatos , Biomarcadores , Catequina/química
8.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298181

RESUMO

Recent studies on natural antioxidant compounds have highlighted their potentiality against various pathological conditions. The present review aims to selectively evaluate the benefits of catechins and their polymeric structure on metabolic syndrome, a common disorder characterized by a cluster of three main risk factors: obesity, hypertension, and hyperglycemia. Patients with metabolic syndrome suffer chronic low inflammation state and oxidative stress both conditions effectively countered by flavanols and their polymers. The mechanism behind the activity of these molecules has been highlighted and correlated with the characteristic features present on their basic flavonoidic skelethon, as well as the efficient doses needed to perform their activity in both in vitro and in vivo studies. The amount of evidence provided in this review offers a starting point for flavanol dietary supplementation as a potential strategy to counteract several metabolic targets associated with metabolic syndrome and suggests a key role of albumin as flavanol-delivery system to the different target of action inside the organism.


Assuntos
Catequina , Síndrome Metabólica , Proantocianidinas , Humanos , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Catequina/farmacologia , Catequina/uso terapêutico , Flavonoides/química , Síndrome Metabólica/tratamento farmacológico , Polifenóis , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química
9.
New Phytol ; 235(2): 701-717, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489087

RESUMO

Salicylic acid (SA) and jasmonic acid (JA) often play distinct roles in plant defence against pathogens. Research from Arabidopsis thaliana has established that SA- and JA-mediated defences are more effective against biotrophs and necrotrophs, respectively. These two hormones often interact antagonistically in response to particular attackers, with the induction of one leading to suppression of the other. Here, we report a contrasting pattern in the woody perennial Populus: positive SA-JA interplay. Using genetically engineered high SA lines of black poplar and wild-type lines after exogenous hormone application, we quantified SA and JA metabolites, signalling gene transcripts, antifungal flavonoids and resistance to rust (Melampsora larici-populina). Salicylic acid and JA metabolites were induced concurrently upon rust infection in poplar genotypes with varying resistance levels. Analysis of SA-hyperaccumulating transgenic poplar lines showed increased jasmonate levels, elevated flavonoid content and enhanced rust resistance, but no discernible reduction in growth. Exogenous application of either SA or JA triggered the accumulation of the other hormone. Expression of pathogenesis-related (PR) genes, frequently used as markers for SA signalling, was not correlated with SA content, but rather activated in proportion to pathogen infection. We conclude that SA and JA pathways interact positively in poplar resulting in the accumulation of flavonoid phytoalexins.


Assuntos
Arabidopsis , Populus , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Flavonoides , Regulação da Expressão Gênica de Plantas , Hormônios , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia , Populus/metabolismo , Ácido Salicílico/metabolismo
10.
Plant Cell Environ ; 45(2): 362-377, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34873714

RESUMO

Condensed tannins (CTs, proanthocyanidins) are widespread polymeric flavan-3-ols known for their ability to bind proteins. In poplar (Populus spp.), leaf condensed tannins are induced by both biotic and abiotic stresses, suggesting diverse biological functions. Here we demonstrate the ability of CTs to function as physiological antioxidants, preventing oxidative and cellular damage in response to drought and UV-B irradiation. Chlorophyll fluorescence was used to monitor photosystem II performance, and both hydrogen peroxide and malondialdehyde content was assayed as a measure of oxidative damage. Transgenic MYB-overexpressing poplar (Populus tremula × P. tremuloides) with high CT content showed reduced photosystem damage and lower hydrogen peroxide and malondialdehyde content after drought and UV-B stress. This antioxidant effect of CT was observed using two different poplar MYB CT regulators, in multiple independent lines and different genetic backgrounds. Additionally, low-CT MYB134-RNAi transgenic poplars showed enhanced susceptibility to drought-induced oxidative stress. UV-B radiation had different impacts than drought on chlorophyll fluorescence, but all high-CT poplar lines displayed reduced sensitivity to both stresses. Our data indicate that CTs are significant defences against oxidative stress. The broad distribution of CTs in forest systems that are exposed to diverse abiotic stresses suggests that these compounds have wider functional roles than previously realized.


Assuntos
Antioxidantes/farmacologia , Secas , Estresse Oxidativo , Populus/efeitos dos fármacos , Proantocianidinas/farmacologia , Raios Ultravioleta/efeitos adversos , Populus/fisiologia , Populus/efeitos da radiação
11.
Eur J Nutr ; 61(3): 1299-1317, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34750642

RESUMO

PURPOSE: Extensive inter-individual variability exists in the production of flavan-3-ol metabolites. Preliminary metabolic phenotypes (metabotypes) have been defined, but there is no consensus on the existence of metabotypes associated with the catabolism of catechins and proanthocyanidins. This study aims at elucidating the presence of different metabotypes in the urinary excretion of main flavan-3-ol colonic metabolites after consumption of cranberry products and at assessing the impact of the statistical technique used for metabotyping. METHODS: Data on urinary concentrations of phenyl-γ-valerolactones and 3-(hydroxyphenyl)propanoic acid derivatives from two human interventions has been used. Different multivariate statistics, principal component analysis (PCA), cluster analysis, and partial least square-discriminant analysis (PLS-DA), have been considered. RESULTS: Data pre-treatment plays a major role on resulting PCA models. Cluster analysis based on k-means and a final consensus algorithm lead to quantitative-based models, while the expectation-maximization algorithm and clustering according to principal component scores yield metabotypes characterized by quali-quantitative differences in the excretion of colonic metabolites. PLS-DA, together with univariate analyses, has served to validate the urinary metabotypes in the production of flavan-3-ol metabolites and to confirm the robustness of the methodological approach. CONCLUSIONS: This work proposes a methodological workflow for metabotype definition and highlights the importance of data pre-treatment and clustering methods on the final outcomes for a given dataset. It represents an additional step toward the understanding of the inter-individual variability in flavan-3-ol metabolism. TRIAL REGISTRATION: The acute study was registered at clinicaltrials.gov as NCT02517775, August 7, 2015; the chronic study was registered at clinicaltrials.gov as NCT02764749, May 6, 2016.


Assuntos
Proantocianidinas , Vaccinium macrocarpon , Colo/metabolismo , Flavonoides/metabolismo , Proantocianidinas/metabolismo
12.
Molecules ; 28(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615424

RESUMO

The present research was undertaken to investigate polyphenolic profiles of peel, pulp and juices made from two standard commercial and five traditional apple cultivars from Bosnia and Herzegovina. The main goal of the study was to monitor the distribution and changes of polyphenolic profiles through different phases of apples' processing into cloudy and clear juices, with regard to L-ascorbic acid pretreatment. Quantitative determination of phenolic compounds was carried out by using high-performance liquid chromatography with diode-array detection. The obtained results showed that traditional cultivars, namely 'Paradija' and 'Prijedorska zelenika', displayed significantly higher content of these compounds compared to commercial ones. Flavan 3-ols and flavonol glycosides were mostly found in peels of all cultivars (21.2-44.1 and 5.40-33.3%, respectively), while phenolic acids along with flavan 3-ols were predominant in the pulp (8.20-30.8 and 5.10-13.9%, respectively). Apples' processing into juices caused decrease (more than 90%) in the content of all polyphenols and the distribution of these compounds from fruits to final products had a negative trend, particularly evident in clear juices. The most drastic loss occurred in the flavonol glycosides and dihydrochalcones content, while chlorogenic acid displayed quite stable distribution from apples to final products due to its good solubility. Apple mash pretreatment with L-ascorbic acid had a positive impact on the preservation and retention of polyphenols.


Assuntos
Malus , Polifenóis , Polifenóis/análise , Malus/química , Bósnia e Herzegóvina , Frutas/química , Flavonóis/análise , Glicosídeos/análise , Ácido Ascórbico/análise
13.
J Food Sci Technol ; 59(3): 1152-1161, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35153329

RESUMO

The health benefits of cocoa depend on the flavan 3-ols, procyanidins, and methylxanthines, which decrease from the early stages of cocoa bean processing. The objective of this research was to obtain a cocoa extract high in these compounds with (-)-epicatechin as the primary reference. An evaluation of two pretreatments of cocoa beans with a control after harvesting was made: A (untreated/control), B (Frozen), and C (Polyphenol oxidase inhibition), all followed by dehydration at 45 °C until obtaining a cocoa powder. In terms of (-)-epicatechin content, the best pretreatment was put on to a hydroalcoholic extraction. Flavan 3-ols, procyanidins, methylxanthines, and total polyphenols content (TPC), were quantified in the cocoa powders and the hydroalcoholic extract. The results showed that the control (A), significantly conserves the (-)-epicatechin (24.964 ± 0.400 mg/g) ca. 7 times more than conventionally sun-dried and fermented beans (3.742 ± 1.977 mg/g) ca. The hydroalcoholic extraction increased the (-)-epicatechin ca. 3 times more based on pretreatment A (84.738 mg/g).

14.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201792

RESUMO

Pulse crop seed coats are a sustainable source of antioxidant polyphenols, but are typically treated as low-value products, partly because some polyphenols reduce iron bioavailability in humans. This study correlates antioxidant/iron chelation capabilities of diverse seed coat types from five major pulse crops (common bean, lentil, pea, chickpea and faba bean) with polyphenol composition using mass spectrometry. Untargeted metabolomics was used to identify key differences and a hierarchical analysis revealed that common beans had the most diverse polyphenol profiles among these pulse crops. The highest antioxidant capacities were found in seed coats of black bean and all tannin lentils, followed by maple pea, however, tannin lentils showed much lower iron chelation among these seed coats. Thus, tannin lentils are more desirable sources as natural antioxidants in food applications, whereas black bean and maple pea are more suitable sources for industrial applications. Regardless of pulse crop, proanthocyanidins were primary contributors to antioxidant capacity, and to a lesser extent, anthocyanins and flavan-3-ols, whereas glycosylated flavonols contributed minimally. Higher iron chelation was primarily attributed to proanthocyanidin composition, and also myricetin 3-O-glucoside in black bean. Seed coats having proanthocyanidins that are primarily prodelphinidins show higher iron chelation compared with those containing procyanidins and/or propelargonidins.


Assuntos
Antioxidantes/análise , Cicer/química , Quelantes de Ferro/química , Lens (Planta)/química , Metabolômica/métodos , Polifenóis/análise , Sementes/química , Vicia faba/química , Antioxidantes/química , Biflavonoides/análise , Disponibilidade Biológica , Catequina/análise , Correlação de Dados , Flavonoides/análise , Flavonóis/análise , Concentração Inibidora 50 , Espectrometria de Massas , Fenóis/análise , Proantocianidinas/análise , Taninos/análise
15.
Compr Rev Food Sci Food Saf ; 20(5): 4841-4880, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288366

RESUMO

Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.


Assuntos
Cacau , Polifenóis , Antioxidantes , Manipulação de Alimentos , Humanos , Chá
16.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188147

RESUMO

Proanthocyanidins are the major active compounds extracted from Iris lactea Pall. var. Chinensis (Fisch.) Koidz (I. lactea). Proanthocyanidins exhibit a variety of pharmacological activities such as anti-oxidation, anti-inflammation, anti-tumor, and lowering blood lipids. However, the underlying mechanism of its regulating effect on lipid metabolism in diabetic conditions remains unclear. The present study investigated the effects of I. lactea-derived proanthocyanidins on lipid metabolism in mice of type 2 diabetes mellitus (T2DM). Results demonstrated a beneficial effect of total proanthocyanidins on dysregulated lipid metabolism and hepatic steatosis in high-fat-diet/streptozocin (STZ)-induced T2DM. To identify the mechanisms, six flavan-3-ols were isolated from proanthocyanidins of I. lacteal and their effects on adipogenesis and dexamethasone (Dex)-induced mitochondrial dysfunctions in 3T3-L1 adipocytes were determined. In vitro studies showed flavan-3-ols inhibited adipogenesis and restored mitochondrial function after Dex-induced insulin resistance, being suggested by increased mitochondrial membrane potential, intracellular ATP contents, mitochondrial mass and mitochondrial biogenesis, and reduced reactive oxygen species. Among the six flavan-3-ols, procyanidin B3 and procyanidin B1 exhibited the strongest effects. Our study suggests potential of proanthocyanidins as therapeutic target for diabetes.


Assuntos
Adipogenia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proantocianidinas/farmacologia , Células 3T3-L1 , Animais , Biflavonoides , Peso Corporal/efeitos dos fármacos , Catequina , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso , Flavonoides/antagonistas & inibidores , Flavonoides/química , Resistência à Insulina , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Proantocianidinas/química , Espécies Reativas de Oxigênio , Estreptozocina/efeitos adversos
17.
Molecules ; 25(11)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503115

RESUMO

This study investigates the effects of various drying methods applied to leaves of Cistus creticus L. on the contents of polyphenols and the composition of the volatile fraction. The following four drying methods were used: convection drying at a temperature of 40 °C (CD 40 °C), 50 °C (CD 50 °C), and 60 °C (CD 60 °C); vacuum-microwave (VMD 240 W); combined drying, involving convection pre-drying (50 °C) and vacuum-microwave (240 W) finish drying (CPD-VMFD) as well as freeze-drying (FD). Polyphenols in the dried leaves were determined using chromatography-photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS). The contents of odoriferous substances in the dry material were determined by means of head space-solid phase microextraction (HS-SPME) with the use of a gas chromatograph (GC). Thirty-seven polyphenol components including 21 flavonols, eight flavan-3-ols, and eight hydrolyzed tannins in dry Pink Rock Rose material were found for the first time. The highest contents of polyphenols, totaling 2.8 g/100 g-1 dry matter (d.m.), were found in the samples subjected to the CPD/VMFD drying method. Pink Rock Rose subjected to this drying method was characterized by large quantities of odoriferous compounds, mainly eugenol, thymol, and carvacrol, which contribute to its antiseptic properties. By using CPD/VMFD methods, it is possible to obtain fine quality dry material from the leaves of C. creticus.


Assuntos
Cistus/química , Dessecação , Flavonóis/química , Liofilização/métodos , Folhas de Planta/química , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/química , Flavonóis/análise , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise
18.
Molecules ; 25(15)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752183

RESUMO

Cranberry (Vaccinium macrocarpon) is a distinctive source of polyphenols as flavonoids and phenolic acids that has been described to display beneficial effects against urinary tract infections (UTIs), the second most common type of infections worldwide. UTIs can lead to significant morbidity, especially in healthy females due to high rates of recurrence and antibiotic resistance. Strategies and therapeutic alternatives to antibiotics for prophylaxis and treatment against UTIs are continuously being sought after. Different to cranberry, which have been widely recommended in traditional medicine for UTIs prophylaxis, probiotics have emerged as a new alternative to the use of antibiotics against these infections and are the subject of new research in this area. Besides uropathogenic Escherichia coli (UPEC), the most common bacteria causing uncomplicated UTIs, other etiological agents, such as Klebsiellapneumoniae or Gram-positive bacteria of Enterococcus and Staphylococcus genera, seem to be more widespread than previously appreciated. Considerable current effort is also devoted to the still-unraveled mechanisms that are behind the UTI-protective effects of cranberry, probiotics and their new combined formulations. All these current topics in the understanding of the protective effects of cranberry against UTIs are reviewed in this paper. Further progresses expected in the coming years in these fields are also discussed.


Assuntos
Fitoterapia , Polifenóis/farmacologia , Infecções Urinárias/prevenção & controle , Vaccinium macrocarpon/química , Aderência Bacteriana/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Feminino , Humanos , Estrutura Molecular , Extratos Vegetais/farmacologia , Polifenóis/química , Probióticos/farmacologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/patogenicidade
19.
Molecules ; 25(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443878

RESUMO

Flavan-3-ols, procyanidins and their monomers are major flavonoids present in peanuts that show a wide range of biological properties and health benefits, based on their potent antioxidant activity. Procyanidin oligomers, especially A-type, are reportedly abundant in peanut skin; however, their localization in the raw peanut testa remains poorly understood. Therefore, we performed matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to investigate the localization of flavan-3-ols in peanut testa. 1,5-Diaminonaphthalene was coated onto the peanut section by matrix vapor deposition/recrystallization, and MALDI-MSI measurements were performed in the negative-ion mode. Peaks matching the m/z values of flavan-3-ol [M - H]- ions were observed in the mass spectrum extracted from the outer epidermis of the peanut testa, using the region of interest function. Catechin and/or epicatechin, five A-type, and one B-type procyanidins were assigned by the fragment ions generated by retro-Diels-Alder, heterocyclic ring fission, and quinone methide reactions detected in MALDI-tandem MS spectra. These flavan-3-ols were localized in the outer epidermis of the peanut testa. This information will contribute to improving the extraction and purification efficiencies of flavan-3-ols from peanut testa. As flavan-3-ols display anti-microbial activity, it is speculated that flavan-3-ols present in the outer epidermis of peanut testa act to prevent pathogen infection.


Assuntos
Antioxidantes/química , Arachis/química , Flavonoides/química , Antioxidantes/isolamento & purificação , Arachis/ultraestrutura , Flavonoides/isolamento & purificação , Espectrometria de Massas , Imagem Molecular , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
New Phytol ; 221(2): 960-975, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30168132

RESUMO

Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust infection. We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in black poplar leaves at different stages of rust infection. Hormone levels were manipulated by external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses. Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves and activated downstream signaling, with SA levels correlating closely with those of flavan-3-ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by activating the MYB-bHLH-WD40 complex and reduced rust proliferation. Furthermore, transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitutively via the same transcriptional activation mechanism. These findings suggest a strong association among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also promoted poplar defense against rust infection, but likely through stomatal immunity independent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the fungal pathogen. We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.


Assuntos
Basidiomycota/fisiologia , Catequina/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Populus/genética , Proantocianidinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Populus/imunologia , Populus/microbiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa