RESUMO
PURPOSE: The main objectives were to test whether (1) a decrease in myelin is associated with enhanced rate of fibrillar tau accumulation and cognitive decline in Alzheimer's disease, and (2) whether apolipoprotein E (APOE) ε4 genotype is associated with worse myelin decrease and thus tau accumulation. METHODS: To address our objectives, we repurposed florbetapir-PET as a marker of myelin in the white matter (WM) based on previous validation studies showing that beta-amyloid (Aß) PET tracers bind to WM myelin. We assessed 43 Aß-biomarker negative (Aß-) cognitively normal participants and 108 Aß+ participants within the AD spectrum with florbetapir-PET at baseline and longitudinal flortaucipir-PET as a measure of fibrillar tau (tau-PET) over ~ 2 years. In linear regression analyses, we tested florbetapir-PET in the whole WM and major fiber tracts as predictors of tau-PET accumulation in a priori defined regions of interest (ROIs) and fiber-tract projection areas. In mediation analyses we tested whether tau-PET accumulation mediates the effect of florbetapir-PET in the whole WM on cognition. Finally, we assessed the role of myelin alteration on the association between APOE and tau-PET accumulation. RESULTS: Lower florbetapir-PET in the whole WM or at a given fiber tract was predictive of faster tau-PET accumulation in Braak stages or the connected grey matter areas in Aß+ participants. Faster tau-PET accumulation in higher cortical brain areas mediated the association between a decrease in florbetapir-PET in the WM and a faster rate of decline in global cognition and episodic memory. APOE ε4 genotype was associated with a worse decrease in the whole WM florbetapir-PET and thus enhanced tau-PET accumulation. CONCLUSION: Myelin alterations are associated in an APOE ε4 dependent manner with faster tau progression and cognitive decline, and may therefore play a role in the etiology of AD.
Assuntos
Doença de Alzheimer , Compostos de Anilina , Disfunção Cognitiva , Doenças Desmielinizantes , Etilenoglicóis , Humanos , Apolipoproteína E4/genética , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Doenças Desmielinizantes/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de PósitronsRESUMO
BACKGROUND AND PURPOSE: This study was undertaken to compare the performance of plasma p-tau181 with that of [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) in the identification of early biological Alzheimer disease (AD). METHODS: We included 533 cognitively impaired participants from the Alzheimer's Disease Neuroimaging Initiative. Participants underwent PET scans, biofluid collection, and cognitive tests. Receiver operating characteristic analyses were used to determine the diagnostic accuracy of plasma p-tau181 and [18F]FDG-PET using clinical diagnosis and core AD biomarkers ([18F]florbetapir-PET and cerebrospinal fluid [CSF] p-tau181) as reference standards. Differences in the diagnostic accuracy between plasma p-tau181 and [18F]FDG-PET were determined by bootstrap-based tests. Correlations of [18F]FDG-PET and plasma p-tau181 with CSF p-tau181, amyloid ß (Aß) PET, and cognitive performance were evaluated to compare associations between measurements. RESULTS: We observed that both plasma p-tau181 and [18F]FDG-PET identified individuals with positive AD biomarkers in CSF or on Aß-PET. In the MCI group, plasma p-tau181 outperformed [18F]FDG-PET in identifying AD measured by CSF (p = 0.0007) and by Aß-PET (p = 0.001). We also observed that both plasma p-tau181 and [18F]FDG-PET metabolism were associated with core AD biomarkers. However, [18F]FDG-PET uptake was more closely associated with cognitive outcomes (Montreal Cognitive Assessment, Mini-Mental State Examination, Clinical Dementia Rating Sum of Boxes, and logical memory delayed recall, p < 0.001) than plasma p-tau181. CONCLUSIONS: Overall, although both plasma p-tau181 and [18F]FDG-PET were associated with core AD biomarkers, plasma p-tau181 outperformed [18F]FDG-PET in identifying individuals with early AD pathophysiology. Taken together, our study suggests that plasma p-tau181 may aid in detecting individuals with underlying early AD.
RESUMO
INTRODUCTION: Abnormal amyloid-beta (Aß) and tau deposition define Alzheimer's Disease (AD), but non-elevated tau is relatively frequent in patients on the AD pathway. METHODS: We examined characteristics and regional patterns of 397 Aß+ unimpaired and impaired individuals with low tau (A+T-) in relation to their higher tau counterparts (A+T+). RESULTS: Seventy-one percent of Aß+ unimpaired and 42% of impaired Aß+ individuals were categorized as A+T- based on global tau. In impaired individuals only, A+T- status was associated with older age, male sex, and greater cardiovascular risk. α-synuclein was linked to poorer cognition, particularly when tau was low. Tau burden was most frequently elevated in a common set of temporal regions regardless of T+/T- status. DISCUSSION: Low tau is relatively common in patients on the AD pathway and is linked to comorbidities that contribute to impairment. These findings have implications for the selection of individuals for Aß- and tau-modifying therapies.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cognição , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo , FemininoRESUMO
INTRODUCTION: Machine learning (ML) can optimize amyloid (Aß) comparability among positron emission tomography (PET) radiotracers. Using multi-regional florbetapir (FBP) measures and ML, we report better Pittsburgh compound-B (PiB)/FBP harmonization of mean-cortical Aß (mcAß) than Centiloid. METHODS: PiB-FBP pairs from 92 subjects in www.oasis-brains.org and 46 in www.gaain.org/centiloid-project were used as the training/testing sets. FreeSurfer-extracted FBP multi-regional Aß and actual PiB mcAß in the training set were used to train ML models generating synthetic PiB mcAß. The correlation coefficient (R) between the synthetic/actual PiB mcAß in the testing set was assessed. RESULTS: In the testing set, the synthetic/actual PiB mcAß correlation R = 0.985 (R2 = 0.970) using artificial neural network was significantly higher (p ≤ 6.6e-4) than the FBP/PiB correlation R = 0.927 (R2 = 0.860), improving total variance percentage (R2 ) from 86% to 97%. Other ML models such as partial least square, ensemble, and relevance vector regressions also improved R (p = 9.677e-05 /0.045/0.0017). DISCUSSION: ML improved mcAß comparability. Additional studies are needed for the generalizability to other amyloid tracers, and to tau PET. Highlights Centiloid is a calibration of the amyloid scale, not harmonization. Centiloid unifies the amyloid scale without improving inter-tracer association (R2 ). Machine learning (ML) can harmonize the amyloid scale by improving R2 . ML harmonization maps multi-regional florbetapir SUVRs to PiB mean-cortical SUVR. Artificial neural network ML increases Centiloid R2 from 86% to 97%.
Assuntos
Doença de Alzheimer , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Compostos de Anilina , Etilenoglicóis , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas , Placa Amiloide , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/diagnóstico por imagemRESUMO
BACKGROUND: Cerebral microbleeds (CMBs) are associated with cognitive decline, but their importance outside of cerebral amyloid angiopathy and the mechanisms of their impact on cognition are poorly understood. We evaluated the cross-sectional association between CMB patterns and cerebral Aß (amyloid-ß) deposition, by florbetapir positron emission tomography. METHODS: The longitudinal ARIC study (Atherosclerosis Risk in Communities) recruited individuals from 4 US communities from 1987 to 1989. From 2012 to 2014, the ARIC-PET (Atherosclerosis Risk in Communities - Positron Emission Tomography) ancillary recruited 322 nondemented ARIC participants who completed 3T brain magnetic resonance imaging with T2*GRE as part of ARIC visit 5 to undergo florbetapir positron emission tomography imaging. Magnetic resonance imaging images were read for CMBs and superficial siderosis; on positron emission tomography, global cortical standardized uptake value ratio >1.2 was considered a positive Aß scan. Multivariable logistic regression models evaluated CMB characteristics in association with Aß positivity. Effect modification by sex, race, APOE status, and cognition was evaluated. RESULTS: CMBs were present in 24% of ARIC-PET participants. No significant associations were found between CMBs and Aß positivity, but a pattern of isolated lobar CMBs or superficial siderosis was associated with over 4-fold higher odds of elevated Aß when compared with those with no CMBs (odds ratio, 4.72 [95% CI, 1.16-19.16]). A similar elevated risk was not observed in those with isolated subcortical or mixed subcortical and either lobar CMBs or superficial siderosis. Although no significant interactions were found, effect estimates for elevated Aß were nonsignificantly lower (P>0.10, odds ratio, 0.4-0.6) for a mixed CMB pattern, and odds ratios were nonsignificantly higher for lobar-only CMBs for 4 subgroups: women (versus men); Black participants (versus White participants), APOE ε4 noncarriers (versus carriers), and cognitively normal (versus mild cognitive impairment). CONCLUSIONS: In this community-based cohort of nondemented adults, lobar-only pattern of CMBs or superficial siderosis is most strongly associated with brain Aß, with no elevated risk for a mixed CMB pattern. Further studies are needed to understand differences in CMB patterns and their meaning across subgroups.
Assuntos
Aterosclerose , Angiopatia Amiloide Cerebral , Siderose , Masculino , Humanos , Feminino , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/patologia , Estudos Transversais , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância MagnéticaRESUMO
Florbetapir 18 F (AV45), a highly sensitive and specific positron emission tomographic (PET) molecular biomarker binding to the amyloid-ß of Alzheimer's disease (AD), is constrained by radiation and cost. We sought to combat it by combining multimodal magnetic resonance imaging (MRI) images and a collaborative generative adversarial networks model (CollaGAN) to develop a multimodal MRI-derived Amyloid-ß (MRAß) biomarker. We collected multimodal MRI and PET AV45 data of 380 qualified participants from the ADNI dataset and 64 subjects from OASIS3 dataset. A five-fold cross-validation CollaGAN were applied to generate MRAß. In the ADNI dataset, we found MRAß could characterize the subject-level AV45 spatial variations in both AD and mild cognitive impairment (MCI). Voxel-wise two-sample t-tests demonstrated amyloid-ß depositions identified by MRAß in AD and MCI were significantly higher than healthy controls (HCs) in widespread cortices (p < .05, corrected) and were much similar to those by AV45 (r > .92, p < .001). Moreover, a 3D ResNet classifier demonstrated that MRAß was comparable to AV45 in discriminating AD from HC in both the ADNI and OASIS3 datasets, and in discriminate MCI from HC in ADNI. Finally, we found MRAß could mimic cortical hyper-AV45 in HCs who later converted to MCI (r = .79, p < .001) and was comparable to AV45 in discriminating them from stable HC (p > .05). In summary, our work illustrates that MRAß synthesized by multimodal MRI could mimic the cerebral amyloid-ß depositions like AV45 and lends credence to the feasibility of advancing MRI toward molecular-explainable biomarkers.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/patologia , BiomarcadoresRESUMO
BACKGROUND: Microglia are increasingly understood to play an important role in the pathogenesis of Alzheimer's disease. The rs75932628 (p.R47H) TREM2 variant is a well-established risk factor for Alzheimer's disease. TREM2 is a microglial cell surface receptor. In this multi-modal/multi-tracer PET/MRI study we investigated the effect of TREM2 p.R47H carrier status on microglial activation, tau and amyloid deposition, brain structure and cognitive profile. METHODS: We compared TREM2 p.R47H carriers (n = 8; median age = 62.3) and participants with mild cognitive impairment (n = 8; median age = 70.7). Participants underwent two [18F]DPA-714 PET/MRI scans to assess TSPO signal, indicative of microglial activation, before and after receiving the seasonal influenza vaccination, which was used as an immune stimulant. Participants also underwent [18F]florbetapir and [18F]AV1451 PET scans to assess amyloid and tau burden, respectively. Regional tau and TSPO signal were calculated for regions of interest linked to Braak stage. An additional comparison imaging healthy control group (n = 8; median age = 45.5) had a single [18F]DPA-714 PET/MRI. An expanded group of participants underwent neuropsychological testing, to determine if TREM2 status influenced clinical phenotype. RESULTS: Compared to participants with mild cognitive impairment, TREM2 carriers had lower TSPO signal in Braak II (P = 0.04) and Braak III (P = 0.046) regions, despite having a similar burden of tau and amyloid. There were trends to suggest reduced microglial activation following influenza vaccine in TREM2 carriers. Tau deposition in the Braak VI region was higher in TREM2 carriers (P = 0.04). Furthermore, compared to healthy controls TREM2 carriers had smaller caudate (P = 0.02), total brain (P = 0.049) and white matter volumes (P = 0.02); and neuropsychological assessment revealed worse ADAS-Cog13 (P = 0.03) and Delayed Matching to Sample (P = 0.007) scores. CONCLUSIONS: TREM2 p.R47H carriers had reduced levels of microglial activation in brain regions affected early in the Alzheimer's disease course and differences in brain structure and cognition. Changes in microglial response may underlie the increased Alzheimer's disease risk in TREM2 p.R47H carriers. Future therapeutic agents in Alzheimer's disease should aim to enhance protective microglial actions.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Vacinas contra Influenza , Humanos , Pessoa de Meia-Idade , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptores de GABA/metabolismoRESUMO
PURPOSE: Pittsburgh Compound-B (11C-PiB) and 18F-florbetapir are amyloid-ß (Aß) positron emission tomography (PET) radiotracers that have been used as endpoints in Alzheimer's disease (AD) clinical trials to evaluate the efficacy of anti-Aß monoclonal antibodies. However, comparing drug effects between and within trials may become complicated if different Aß radiotracers were used. To study the consequences of using different Aß radiotracers to measure Aß clearance, we performed a head-to-head comparison of 11C-PiB and 18F-florbetapir in a Phase 2/3 clinical trial of anti-Aß monoclonal antibodies. METHODS: Sixty-six mutation-positive participants enrolled in the gantenerumab and placebo arms of the first Dominantly Inherited Alzheimer Network Trials Unit clinical trial (DIAN-TU-001) underwent both 11C-PiB and 18F-florbetapir PET imaging at baseline and during at least one follow-up visit. For each PET scan, regional standardized uptake value ratios (SUVRs), regional Centiloids, a global cortical SUVR, and a global cortical Centiloid value were calculated. Longitudinal changes in SUVRs and Centiloids were estimated using linear mixed models. Differences in longitudinal change between PET radiotracers and between drug arms were estimated using paired and Welch two sample t-tests, respectively. Simulated clinical trials were conducted to evaluate the consequences of some research sites using 11C-PiB while other sites use 18F-florbetapir for Aß PET imaging. RESULTS: In the placebo arm, the absolute rate of longitudinal change measured by global cortical 11C-PiB SUVRs did not differ from that of global cortical 18F-florbetapir SUVRs. In the gantenerumab arm, global cortical 11C-PiB SUVRs decreased more rapidly than global cortical 18F-florbetapir SUVRs. Drug effects were statistically significant across both Aß radiotracers. In contrast, the rates of longitudinal change measured in global cortical Centiloids did not differ between Aß radiotracers in either the placebo or gantenerumab arms, and drug effects remained statistically significant. Regional analyses largely recapitulated these global cortical analyses. Across simulated clinical trials, type I error was higher in trials where both Aß radiotracers were used versus trials where only one Aß radiotracer was used. Power was lower in trials where 18F-florbetapir was primarily used versus trials where 11C-PiB was primarily used. CONCLUSION: Gantenerumab treatment induces longitudinal changes in Aß PET, and the absolute rates of these longitudinal changes differ significantly between Aß radiotracers. These differences were not seen in the placebo arm, suggesting that Aß-clearing treatments may pose unique challenges when attempting to compare longitudinal results across different Aß radiotracers. Our results suggest converting Aß PET SUVR measurements to Centiloids (both globally and regionally) can harmonize these differences without losing sensitivity to drug effects. Nonetheless, until consensus is achieved on how to harmonize drug effects across radiotracers, and since using multiple radiotracers in the same trial may increase type I error, multisite studies should consider potential variability due to different radiotracers when interpreting Aß PET biomarker data and, if feasible, use a single radiotracer for the best results. TRIAL REGISTRATION: ClinicalTrials.gov NCT01760005. Registered 31 December 2012. Retrospectively registered.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos de Anilina , Etilenoglicóis , Encéfalo/metabolismoRESUMO
INTRODUCTION: Relying on magnetic resonance imaging (MRI) for quantification of positron emission tomography (PET) images may limit generalizability of the results. We evaluated several MRI-free approaches for amyloid beta (Aß) and tau PET quantification relative to MRI-dependent quantification cross-sectionally and longitudinally. METHODS: We compared baseline MRI-free and MRI-dependent measurements of Aß PET ([18F]florbetapir [FBP], N = 1290, [18F]florbetaben [FBB], N = 290) and tau PET ([18F]flortaucipir [FTP], N = 768) images with respect to continuous and dichotomous agreement, effect sizes of Aß+ impaired versus Aß- unimpaired groups, and longitudinal standardized uptake value ratio (SUVR) slopes in a subset of individuals. RESULTS: The best-performing MRI-free approaches had high continuous and dichotomous agreement with MRI-dependent SUVRs for Aß PET and temporal flortaucipir (R2 ≥0.95; ± agreement ≥92%) and for Alzheimer's disease-related effect sizes; agreement was slightly lower for entorhinal flortaucipir and longitudinal slopes. DISCUSSION: There is no consistent loss of baseline or longitudinal AD-related signal with MRI-free Aß and tau PET image quantification.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Proteínas tau , Disfunção Cognitiva/patologiaRESUMO
This study sought to identify a reference tissue-based quantification approach for improving the statistical power in detecting changes in brain glucose metabolism, amyloid, and tau deposition in Alzheimer's disease studies. A total of 794, 906, and 903 scans were included for 18 F-FDG, 18 F-florbetapir, and 18 F-flortaucipir, respectively. Positron emission tomography (PET) and T1-weighted images of participants were collected from the Alzheimer's disease Neuroimaging Initiative database, followed by partial volume correction. The standardized uptake value ratios (SUVRs) calculated from the cerebellum gray matter, centrum semiovale, and pons were evaluated at both region of interest (ROI) and voxelwise levels. The statistical power of reference tissues in detecting longitudinal SUVR changes was assessed via paired t-test. In cross-sectional analysis, the impact of reference tissue-based SUVR differences between cognitively normal and cognitively impaired groups was evaluated by effect sizes Cohen's d and two sample t-test adjusted by age, sex, and education levels. The average ROI t values of pons were 86.62 and 38.40% higher than that of centrum semiovale and cerebellum gray matter in detecting glucose metabolism decreases, while the centrum semiovale reference tissue-based SUVR provided higher t values for the detection of amyloid and tau deposition increases. The three reference tissues generated comparable d images for 18 F-FDG, 18 F-florbetapir, and 18 F-flortaucipir and comparable t maps for 18 F-florbetapir and 18 F-flortaucipir, but pons-based t map showed superior performance in 18 F-FDG. In conclusion, the tracer-specific reference tissue improved the detection of 18 F-FDG, 18 F-florbetapir, and 18 F-flortaucipir PET SUVR changes, which helps the early diagnosis, monitoring of disease progression, and therapeutic response in Alzheimer's disease.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Carbolinas , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Estudos Transversais , Etilenoglicóis , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Humanos , Tomografia por Emissão de Pósitrons/métodosRESUMO
Cardiac amyloidosis, characterized by progressive restrictive cardiomyopathy, presents unusual diagnostic challenges. Conventional cardiac scintigraphy has shown limited utility in the quantification of disease burden and serial follow-up of cardiac amyloidosis. The advent of specialized positron emission tomography with specific amyloid-binding radiotracers has the potential to change currently employed diagnostic algorithms for the imaging of cardiac amyloidosis. This review aims to discuss the diagnostic utility of amyloid-binding radiotracers, including Pittsburg compound B, florbetapir, florbetapan, and sodium fluoride. These tracers have promising potential for the early detection of the particular type of cardiac amyloidosis, pursuing relevant medical intervention, assessing amyloid burden, monitoring treatment response, and overall prognostication.
Assuntos
Amiloidose , Cardiopatias , Amiloidose/diagnóstico por imagem , Coração , Cardiopatias/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons/métodos , CintilografiaRESUMO
PURPOSE: Recent evidence suggests that PET imaging with amyloid-ß (Aß) tracers can be used to assess myelin integrity in cerebral white matter (WM). Alzheimer's disease (AD) is characterized by myelin changes that are believed to occur early in the disease course. Nevertheless, the extent to which demyelination, as measured with Aß PET, contributes to AD progression remains unexplored. METHODS: Participants with concurrent 18F-florbetapir (FBP) PET, MRI, and cerebrospinal fluid (CSF) examinations were included (241 cognitively normal, 347 Aß-positive cognitively impaired, and 207 Aß-negative cognitively impaired subjects). A subset of these participants had also available diffusion tensor imaging (DTI) images (n = 195). We investigated cross-sectional associations of FBP retention in the white matter (WM) with MRI-based markers of WM degeneration, AD clinical progression, and fluid biomarkers. In longitudinal analyses, we used linear mixed models to assess whether FBP retention in normal-appearing WM (NAWM) predicted progression of WM hyperintensity (WMH) burden and clinical decline. RESULTS: In AD-continuum individuals, FBP retention in NAWM was (1) higher compared with WMH regions, (2) associated with DTI-based measures of WM integrity, and (3) associated with longitudinal progression of WMH burden. FBP uptake in WM decreased across the AD continuum and with increasingly abnormal CSF biomarkers of AD. Furthermore, FBP retention in the WM was associated with large-calibre axon degeneration as reflected by abnormal plasma neurofilament light chain levels. Low FBP uptake in NAWM predicted clinical decline in preclinical and prodromal AD, independent of demographics, global cortical Aß, and WMH burden. Most of these associations were also observed in Aß-negative cognitively impaired individuals. CONCLUSION: These results support the hypothesis that FBP retention in the WM is myelin-related. Demyelination levels progressed across the AD continuum and were associated with clinical progression at early stages, suggesting that this pathologic process might be a relevant degenerative feature in the disease course.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Desmielinizantes , Substância Branca , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina , Biomarcadores , Disfunção Cognitiva/patologia , Estudos Transversais , Doenças Desmielinizantes/patologia , Imagem de Tensor de Difusão/métodos , Etilenoglicóis , Humanos , Bainha de Mielina/patologia , Tomografia por Emissão de Pósitrons/métodos , Substância Branca/metabolismo , Proteínas tauRESUMO
PURPOSE: Assess the individual and combined diagnostic value of amyloid-PET and tau-PET in a memory clinic population. METHODS: Clinical reports of 136 patients were randomly assigned to two diagnostic pathways: AMY-TAU, amyloid-PET is presented before tau-PET; and TAU-AMY, tau-PET is presented before amyloid-PET. Two neurologists independently assessed all reports with a balanced randomized design, and expressed etiological diagnosis and diagnostic confidence (50-100%) three times: (i) at baseline based on the routine diagnostic workup, (ii) after the first exam (amyloid-PET for the AMY-TAU pathway, and tau-PET for the TAU-AMY pathway), and (iii) after the remaining exam. The main outcomes were changes in diagnosis (from AD to non-AD or vice versa) and in diagnostic confidence. RESULTS: Amyloid-PET and tau-PET, when presented as the first exam, resulted in a change of etiological diagnosis in 28% (p = 0.006) and 28% (p < 0.001) of cases, and diagnostic confidence increased by 18% (p < 0.001) and 19% (p < 0.001) respectively, with no differences between exams (p > 0.05). We observed a stronger impact of a negative amyloid-PET versus a negative tau-PET (p = 0.014). When added as the second exam, amyloid-PET and tau-PET resulted in a further change in etiological diagnosis in 6% (p = 0.077) and 9% (p = 0.149) of cases, and diagnostic confidence increased by 4% (p < 0.001) and 5% (p < 0.001) respectively, with no differences between exams (p > 0.05). CONCLUSION: Amyloid-PET and tau-PET significantly impacted diagnosis and diagnostic confidence in a similar way, although a negative amyloid-PET has a stronger impact on diagnosis than a negative tau-PET. Adding either of the two as second exam further improved diagnostic confidence. TRIAL NUMBER: PB 2016-01346.
Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Amiloide , Peptídeos beta-Amiloides , Humanos , Tomografia por Emissão de Pósitrons , Proteínas tauRESUMO
PURPOSE: To determine thresholds for amyloid beta pathology and evaluate associations with longitudinal memory performance with the aim to identify a grey zone of early amyloid beta accumulation and investigate its clinical relevance. METHODS: We included 162 cognitively normal participants with subjective cognitive decline from the SCIENCe cohort (64 ± 8 years, 38% F, MMSE 29 ± 1). Each underwent a dynamic [18F] florbetapir PET scan, a T1-weighted MRI scan and longitudinal memory assessments (RAVLT delayed recall, n = 655 examinations). PET scans were visually assessed as amyloid positive/negative. Additionally, we calculated the mean binding potential (BPND) and standardized uptake value ratio (SUVr50-70) for an a priori defined composite region of interest. We determined six amyloid positivity thresholds using various data-driven methods (resulting thresholds: BPND 0.19/0.23/0.29; SUVr 1.28/1.34/1.43). We used Cohen's kappa to analyse concordance between thresholds and visual assessment. Next, we used quantiles to divide the sample into two to five subgroups of equal numbers (median, tertiles, quartiles, quintiles), and operationalized a grey zone as the range between the thresholds (0.19-0.29 BPND/1.28-1.43 SUVr). We used linear mixed models to determine associations between thresholds and memory slope. RESULTS: As determined by visual assessment, 24% of 162 individuals were amyloid positive. Concordance with visual assessment was comparable but slightly higher for BPND thresholds (range kappa 0.65-0.70 versus 0.60-0.63). All thresholds predicted memory decline (range beta - 0.29 to - 0.21, all p < 0.05). Analyses in subgroups showed memory slopes gradually became steeper with higher amyloid load (all p for trend < 0.05). Participants with a low amyloid burden benefited from a practice effect (i.e. increase in memory), whilst high amyloid burden was associated with memory decline. Memory slopes of individuals in the grey zone were intermediate. CONCLUSION: We provide evidence that not only high but also grey zone amyloid burden subtly impacts memory function. Therefore, in case a binary classification is required, we suggest using a relatively low threshold which includes grey zone amyloid pathology.
Assuntos
Doença de Alzheimer , Amiloide , Disfunção Cognitiva , Idoso , Peptídeos beta-Amiloides , Compostos de Anilina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de PósitronsRESUMO
PURPOSE: Visual reading of 18F-florbetapir positron emission tomography (PET) scans is used in the diagnostic process of patients with cognitive disorders for assessment of amyloid-ß (Aß) depositions. However, this can be time-consuming, and difficult in case of borderline amyloid pathology. Computer-aided pattern recognition can be helpful in this process but needs to be validated. The aim of this work was to develop, train, validate and test a convolutional neural network (CNN) for discriminating between Aß negative and positive 18F-florbetapir PET scans in patients with subjective cognitive decline (SCD). METHODS: 18F-florbetapir PET images were acquired and visually assessed. The SCD cohort consisted of 133 patients from the SCIENCe cohort and 22 patients from the ADNI database. From the SCIENCe cohort, standardized uptake value ratio (SUVR) images were computed. From the ADNI database, SUVR images were extracted. 2D CNNs (axial, coronal and sagittal) were built to capture features of the scans. The SCIENCe scans were randomly divided into training and validation set (5-fold cross-validation), and the ADNI scans were used as test set. Performance was evaluated based on average accuracy, sensitivity and specificity from the cross-validation. Next, the best performing CNN was evaluated on the test set. RESULTS: The sagittal 2D-CNN classified the SCIENCe scans with the highest average accuracy of 99% ± 2 (SD), sensitivity of 97% ± 7 and specificity of 100%. The ADNI scans were classified with a 95% accuracy, 100% sensitivity and 92.3% specificity. CONCLUSION: The 2D-CNN algorithm can classify Aß negative and positive 18F-florbetapir PET scans with high performance in SCD patients.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Etilenoglicóis , Humanos , Redes Neurais de Computação , Tomografia por Emissão de PósitronsRESUMO
BACKGROUND: Multiple mononeuropathy is a rare presentation of primary (AL) amyloidosis and nerve biopsy is usually needed for diagnosis. Conventional imaging is useful to identify proximal nerve involvement but may be inadequate. We report a patient with multiple mononeuropathy whose presentation was suggestive of AL amyloid neuropathy and in whom repeated tissue biopsies were negative for amyloid (including two sensory nerves and one muscle). METHODS: The patient underwent magnetic resonance imaging (MRI) and whole body 18 F-florbetapir positron emission tomography (PET)/MRI. RESULTS: Whole body 18 F-florbetapir PET/MRI revealed abnormal low-level florbetapir uptake in the right proximal tibial and peroneal nerves, which provided a target for a sciatic bifurcation fascicular nerve biopsy that was diagnostic of AL amyloidosis. CONCLUSIONS: 18 F-florbetapir PET/MRI imaging is a promising diagnostic tool for patients with suspected peripheral nerve amyloidosis (including multiple mononeuropathy) in whom conventional imaging and nerve and muscle biopsies miss the pathology.
Assuntos
Neuropatias Amiloides/patologia , Amiloidose/patologia , Compostos de Anilina/farmacologia , Etilenoglicóis/farmacologia , Mononeuropatias/patologia , Neuropatias Amiloides/diagnóstico , Amiloidose/diagnóstico , Biópsia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Mononeuropatias/diagnóstico , Procedimentos Neurocirúrgicos , Tomografia por Emissão de Pósitrons/métodosRESUMO
Dynamic early-phase PET images acquired with radiotracers binding to fibrillar amyloid-beta (Aß) have shown to correlate with [18F]fluorodeoxyglucose (FDG) PET images and provide perfusion-like information. Perfusion information of static PET scans acquired during the first minute after radiotracer injection (FMF, first-minute-frame) is compared to [18F]FDG PET images. FMFs of 60 patients acquired with [18F]florbetapir (FBP), [18F]flutemetamol (FMM), and [18F]florbetaben (FBB) are compared to [18F]FDG PET images. Regional standardized uptake value ratios (SUVR) are directly compared and intrapatient Pearson's correlation coefficients are calculated to evaluate the correlation of FMFs to their corresponding [18F]FDG PET images. Additionally, regional interpatient correlations are calculated. The intensity profiles of mean SUVRs among the study cohort (r = 0.98, p < 0.001) and intrapatient analyses show strong correlations between FMFs and [18F]FDG PET images (r = 0.93 ± 0.05). Regional VOI-based analyses also result in high correlation coefficients. The FMF shows similar information to the cerebral metabolic patterns obtained by [18F]FDG PET imaging. Therefore, it could be an alternative to the dynamic imaging of early phase amyloid PET and be used as an additional neurodegeneration biomarker in amyloid PET studies in routine clinical practice while being acquired at the same time as amyloid PET images.
Assuntos
Doença de Alzheimer , Fluordesoxiglucose F18 , Doença de Alzheimer/diagnóstico por imagem , Amiloide/metabolismo , Peptídeos beta-Amiloides , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Tomografia por Emissão de PósitronsRESUMO
PURPOSE: We evaluated myelin changes throughout the central nervous system in Multiple Sclerosis (MS) patients by using hybrid [18F]florbetapir PET-MR imaging. METHODS: We included 18 relapsing-remitting MS patients and 12 healthy controls. Each subject performed a hybrid [18F]florbetapir PET-MR and both a clinical and cognitive assessment. [18F]florbetapir binding was measured as distribution volume ratio (DVR), through the Logan graphical reference method and the supervised cluster analysis to extract a reference region, and standard uptake value (SUV) in the 70-90 min interval after injection. The two quantification approaches were compared. We also evaluated changes in the measures derived from diffusion tensor imaging and arterial spin labeling. RESULTS: [18F]florbetapir DVRs decreased from normal-appearing white matter to the centre of T2 lesion (P < 0.001), correlated with fractional anisotropy and with mean, axial and radial diffusivity within T2 lesions (coeff. = -0.15, P < 0.001, coeff. = -0.12, P < 0.001 and coeff. = -0.16, P < 0.001, respectively). Cerebral blood flow was reduced in white matter damaged areas compared to white matter in healthy controls (-10.9%, P = 0.005). SUV70-90 and DVR are equally able to discriminate between intact and damaged myelin (area under the curve 0.76 and 0.66, respectively; P = 0.26). CONCLUSION: Our findings demonstrate that [18F]florbetapir PET imaging can measure in-vivo myelin damage in patients with MS. Demyelination in MS is not restricted to lesions detected through conventional MRI but also involves the normal appearing white matter. Although longitudinal studies are needed, [18F]florbetapir PET imaging may have a role in clinical settings in the management of MS patients.
Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Etilenoglicóis , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Substância Branca/diagnóstico por imagemRESUMO
PURPOSE: The clinical diagnosis of pulmonary involvement in individuals with systemic AL amyloidosis remains challenging. [18F]florbetapir imaging has previously identified AL amyloid deposits in the heart and extra-cardiac organs. The aim of this study is to determine quantitative [18F]florbetapir pulmonary kinetics to identify pulmonary involvement in individuals with systemic AL amyloidosis. METHODS: We prospectively enrolled 58 subjects with biopsy-proven AL amyloidosis and 9 control subjects (5 without amyloidosis and 4 with ATTR cardiac amyloidosis). Pulmonary [18F]florbetapir uptake was evaluated visually and quantified as distribution volume of specific binding (Vs) derived from compartmental analysis and simpler semiquantitative metrics of maximum standardized uptake values (SUVmax), retention index (RI), and target-to-blood ratio (TBR). RESULTS: On visual analysis, pulmonary tracer uptake was absent in most AL subjects (40/58, 69%); 12% (7/58) of AL subjects demonstrated intense bilateral homogeneous tracer uptake. In this group, compared to the control group, Vs (median Vs 30-fold higher, 9.79 vs. 0.26, p < 0.001), TBR (median TBR 12.0 vs. 1.71, p < 0.001), and RI (median RI 0.310 vs. 0.033, p < 0.001) were substantially higher. Notably, the AL group without visually apparent pulmonary [18F]florbetapir uptake also demonstrated a > 3-fold higher Vs compared to the control group (median 0.99 vs. 0.26, p < 0.001). Vs was independently related to left ventricular SUVmax, a marker of cardiac AL deposition, but not to ejection fraction, a marker of cardiac dysfunction. Also, intense [18F]florbetapir lung uptake was not related to [11C]acetate lung uptake, suggesting that intense [18F]florbetapir lung uptake represents AL amyloidosis rather than heart failure. CONCLUSIONS: [18F]florbetapir PET/CT offers the potential to noninvasively identify pulmonary AL amyloidosis, and its clinical relevance warrants further study.
Assuntos
Amiloidose de Cadeia Leve de Imunoglobulina , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos de Anilina , Etilenoglicóis , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/complicações , Amiloidose de Cadeia Leve de Imunoglobulina/diagnóstico por imagem , Pulmão/diagnóstico por imagemRESUMO
Amyvid (florbetapir f18, [18 F]AV-45, [18 F]5) was the first FDA-approved positron emission tomography imaging agent targeting ß-amyloid (Aß) plaques for assisting the diagnosis of Alzheimer disease. This work aimed to improve the [18 F]AV-45 ([18 F]5) preparation by using solid-phase extraction (SPE) purification. [18 F]AV-45 ([18 F]5) was synthesized by direct nucleophilic radiofluorination of O-tosylated precursor (1 mg) at 120°C in anhydrous dimethyl sulfoxide (DMSO), followed by acid hydrolysis of the N-Boc protecting group. Purification was accomplished by loading the crude reaction mixture to a cartridge (Oasis HLB 3 cc) and eluting with different combinations of solvents. This method removed the chemical impurity while leaving [18 F]AV-45 ([18 F]5) on the cartridge. The final dose was eluted by ethanol. [18 F]AV-45 ([18 F]5) was produced within 51 minutes (radiochemical yield 42.7 ± 5.9%, decay corrected, n = 3), and the radiochemical purity was greater than 95%. Total chemical impurity per batch (24.1 ± 2.7 µg per batch) was below the limit described in the package insert of Amyvid, florbetapir f18 (chemical mass: less than 50 µg/dose). In summary, [18 F]AV-45 ([18 F]5) was produced efficiently and reproducibly using a cartridge-based SPE purification. This method brings the process closer for routine preparation, similar to the commercially used [18 F]FDG.