Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37485919

RESUMO

Enzymes can produce high-quality food with low pollution, high function, high acceptability, and medical aid. However, most enzymes, in their native form, do not meet the industrial requirements. Sequence-based and structure-based methods are the two main strategies used for enzyme modification. Molecular Dynamics (MD) simulation is a sufficiently comprehensive technology, from a molecular perspective, which has been widely used for structure information analysis and enzyme modification. In this review, we summarize the progress and development of MD simulation, particularly for software, force fields, and a standard procedure. Subsequently, we review the application of MD simulation in various food enzymes for thermostability and catalytic improvement was reviewed in depth. Finally, the limitations and prospects of MD simulation in food enzyme modification research are discussed. This review highlights the significance of MD simulation and its prospects in food enzyme modification.

2.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835238

RESUMO

Food enzymes have an important role in the improvement of certain food characteristics, such as texture improvement, elimination of toxins and allergens, production of carbohydrates, enhancing flavor/appearance characteristics. Recently, along with the development of artificial meats, food enzymes have been employed to achieve more diverse functions, especially in converting non-edible biomass to delicious foods. Reported food enzyme modifications for specific applications have highlighted the significance of enzyme engineering. However, using direct evolution or rational design showed inherent limitations due to the mutation rates, which made it difficult to satisfy the stability or specific activity needs for certain applications. Generating functional enzymes using de novo design, which highly assembles naturally existing enzymes, provides potential solutions for screening desired enzymes. Here, we describe the functions and applications of food enzymes to introduce the need for food enzymes engineering. To illustrate the possibilities of using de novo design for generating diverse functional proteins, we reviewed protein modelling and de novo design methods and their implementations. The future directions for adding structural data for de novo design model training, acquiring diversified training data, and investigating the relationship between enzyme-substrate binding and activity were highlighted as challenges to overcome for the de novo design of food enzymes.


Assuntos
Alimento Funcional , Engenharia de Proteínas , Engenharia de Proteínas/métodos , Proteínas/química , Enzimas/metabolismo
3.
Compr Rev Food Sci Food Saf ; 22(2): 1184-1225, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36710650

RESUMO

Over the last decade, sono-activation of enzymes as an emerging research area has received considerable attention from food researchers. This kind of relatively new application of ultrasound has demonstrated promising potential in facilitating the modern food industry by broadening the application of various food enzymes, improving relevant industrial unit operation and productivity, as well as increasing the yield of target products. This review aims to provide insight into the fundamental principles and possible industrialization strategies of the sono-activation of food enzymes to facilitate its commercialization. This review first provides an overview of ultrasound application in the activation of food protease, carbohydrase, and lipase. Then, the recent development on ultrasound activation of food enzymes is discussed on aspects including mechanisms, influencing factors, modification effects, and its applications in real food systems for free and immobilized enzymes. Despite the far fewer studies on sono-activation of immobilized enzymes compared with those on free enzymes, we endeavored to summarize the relevant aspects in three stages: ultrasound pretreatment of free enzyme/carrier, assistance in immobilization process, and modification of the already immobilized enzyme. Lastly, challenges for the scalability of ultrasound in these target areas are discussed and future research prospects are proposed.


Assuntos
Enzimas Imobilizadas , Indústria Alimentícia , Indústria de Processamento de Alimentos
4.
Biosci Biotechnol Biochem ; 82(11): 1880-1888, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30096024

RESUMO

Whole-genome sequencing was conducted on two Aspergillus oryzae strains used for the manufacturing of food enzymes, Acrylaway® and Shearzyme®, with the aim of identifying the inserted locus of randomly integrated expression plasmid and obtaining flanking sequences for safety assessment. Illumina paired-end sequencing was employed, and the obtained reads were mapped to two references: the public genome sequence of Aspergillus oryzae RIB40 and the in-house sequence of the used expression plasmid. Introducing the concept of linking-reads, one locus for each was successfully identified as the integrated site. In the case of Acrylaway®, the obtained sequences suggested that the expression plasmid had been integrated as multiple copies in tandem form. In the case of Shearzyme®, however, information on one edge of the insert was missing, which required extra polymerase chain reaction (PCR) cloning for safety assessment. A 4-kb deletion was detected at the integrated site. There was also evidence of rearrangement occurring in Shearzyme® strain.


Assuntos
Aspergillus oryzae/genética , Mapeamento Cromossômico , Cromossomos Fúngicos , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Plasmídeos , Sequenciamento Completo do Genoma , Southern Blotting , Clonagem Molecular , Enzimas/metabolismo , Microbiologia de Alimentos , Dosagem de Genes , Reação em Cadeia da Polimerase
5.
EFSA J ; 22(4): e8713, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634008

RESUMO

The food enzyme oryzin (EC 3.4.21.63) is produced with the non-genetically modified Aspergillus ochraceus strain AE-P by Amano Enzyme Inc. The food enzyme was considered free from viable cells of the production organism. It is intended to be used in nine food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.1 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1862 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 18,620. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and 31 matches were found, including one food allergen (melon). The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to melon, cannot be excluded, but would not exceed the risk from consumption of this food. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

6.
EFSA J ; 22(2): e8615, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389854

RESUMO

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain NZYM-NB by Novozymes A/S. The production strain meets the requirements for qualified presumption of safety (QPS) approach to safety assessment. The food enzyme is intended to be used in eleven food manufacturing processes. Since residual amounts of total organic solids (TOS) are removed during two processes, dietary exposure was estimated only for the remaining nine food manufacturing processes. Exposure was estimated to be up to 1.327 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the QPS approach and no issue of concern arising from the production process of the food enzyme was identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded (except for distilled alcohol production), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

7.
EFSA J ; 22(2): e8634, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38410144

RESUMO

The food enzyme thermolysin (EC. 3.4.24.27) is produced with the non-genetically modified Anoxybacillus caldiproteolyticus strain AE-TP by Amano Enzyme Inc. The food enzyme is free from viable cells of the production organism. It is intended to be used in eight food manufacturing processes. Dietary exposure was estimated to be up to 0.973 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 700 mg TOS/kg bw per day, the mid-dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 719. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

8.
EFSA J ; 22(4): e8710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591025

RESUMO

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-NP by Amano Enzyme Inc. The production strain meets the requirements for the qualified presumption of safety (QPS) approach to safety assessment. The food enzyme is intended to be used in 14 food manufacturing processes. Since residual amounts of total organic solids (TOS) are removed in three manufacturing processes, dietary exposure was calculated only for the remaining 11 food manufacturing processes in which the food enzyme-TOS is retained. It was estimated to be up to 35.251 mg TOS/kg body weight (bw) per day in European populations. As the production strain qualifies for the QPS approach and no issue of concern arising from the production process of the food enzyme were identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

9.
EFSA J ; 22(7): e8936, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39040571

RESUMO

The food enzyme lysophospholipase (2-lysophosphatidylcholine acylhydrolase, EC 3.1.1.5) is produced with the genetically modified Trichoderma reesei strain DP-Nyc81 by Genencor International B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in the processing of cereals and other grains for the production of glucose syrups and other starch hydrolysates. Since residual amounts of food enzyme-total organic solids are removed during these food manufacturing processes, dietary exposure was not calculated and toxicological studies were considered unnecessary. A search for the identity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

10.
EFSA J ; 22(5): e8779, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741669

RESUMO

The food enzyme with two declared activities, bacillolysin (EC 3.4.24.28) and subtilisin (EC 3.4.21.62), is produced with the non-genetically modified Bacillus amyloliquefaciens strain AR-383 by AB Enzymes GmbH. The food enzyme is intended to be used in nine food manufacturing processes. Since residual amounts of total organic solids (TOS) are removed in the production of distilled alcohol, dietary exposure was calculated only for the remaining eight food manufacturing processes. Exposure was estimated to be up to 1.958 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the qualified presumption of safety approach to safety assessment and no issues of concern arising from the production process of the food enzyme were identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made, and 30 matches were found, including one food allergen (melon). The Panel considered that, under the intended conditions of use, the risk of allergic reactions by dietary exposure to this food enzyme cannot be excluded, but for individuals sensitised to melon, this would not exceed the risk of consuming melon. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

11.
EFSA J ; 22(7): e8876, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957752

RESUMO

The food enzyme 3-phytase (myo-inositol-hexakisphosphate 3-phosphohydrolase EC 3.1.3.8) is produced with the non-genetically modified Aspergillus niger strain PHY93-08 by Shin Nihon Chemical Co., Ltd. The food enzyme is free from viable cells of the production organism. It is intended to be used in nine food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in two of the food manufacturing processes, dietary exposure was calculated only for the remaining seven processes. It was estimated to be up to 0.763 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise safety concerns. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 2560 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 3355. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

12.
EFSA J ; 22(5): e8778, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764476

RESUMO

The food enzyme laccase (benzenediol:oxygen oxidoreductase; EC 1.10.3.2) is produced with the non-genetically modified Trametes hirsuta strain AE-OR by Amano Enzyme Inc. The food enzyme is free from viable cells of the production organism. It is intended to be used in six food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.026 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 862 mg TOS/kg bw per day, the highest dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 33,154. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

13.
EFSA J ; 22(1): e8515, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222929

RESUMO

The food enzyme ß-galactosidase (ß-d-galactoside galactohydrolase; EC 3.2.1.23) is produced with the non-genetically modified Papiliotrema terrestris strain AE-BLC by Amano Enzyme Inc. The food enzyme was considered free from viable cells of the production organism. It is intended to be used in the production of galacto-oligosaccharides (GOS) from lactose. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.441 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1800 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 4082. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

14.
EFSA J ; 22(1): e8506, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213414

RESUMO

The food enzyme leucyl aminopeptidase (EC 3.4.11.1) is produced with the non-genetically modified Aspergillus sp. strain AE-MB by Amano Enzyme Inc. The food enzyme is considered free from viable cells of the production organism. It is intended to be used in five food manufacturing processes: processing of dairy products for the production of (1) flavouring preparations; processing of plant- and fungal-derived products for the production of (2) protein hydrolysates; processing of meat and fish products for the production of (3) protein hydrolysates, (4) modified meat and fish products and processing of (5) yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 2.273 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 183 mg TOS/kg bw per day. The calculated margin of exposure for each age group was 135 (infants), 81 (toddlers), 83 (children), 109 (adolescents), 160 (adults) and 184 (the elderly). A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. The safety of the food enzyme could not be established given the derived margins of exposure. Therefore, the Panel concluded that this food enzyme could not be considered safe under the intended conditions of use.

15.
EFSA J ; 22(4): e8717, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634009

RESUMO

The food enzyme leucyl aminopeptidase (EC 3.4.11.1) is produced with the genetically modified Aspergillus oryzae strain NZYM-BU by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in five food manufacturing processes. Dietary exposure to the food enzyme TOS was estimated to be up to 1.508 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 4,928 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 3,268. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that the food enzyme does not give rise to safety concerns under the intended conditions of use.

16.
EFSA J ; 22(4): e8718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601864

RESUMO

The food enzyme AMP deaminase (AMP aminohydrolase; EC 3.5.4.6) is produced with the non-genetically modified microorganism Aspergillus sp. strain DEA 56-111 by Shin Nihon Chemical Co., Ltd. The food enzyme was considered free from viable cells of the production organism. It is intended to be used in the processing of yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.005 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The Panel identified a no observed adverse effect level of 1984 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 396,800. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

17.
EFSA J ; 22(3): e8631, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450083

RESUMO

The food enzyme mucorpepsin (EC 3.4.23.23) is produced with the non-genetically modified Rhizomucor miehei strain LP-N836 by Meito Sangyo Co., Ltd. The native enzyme can be chemically modified to produce a more thermolabile form. The food enzyme is free from viable cells of the production organism. It is intended to be used in the processing of dairy products for the production of cheese and fermented dairy products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.108 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 95 mg TOS/kg bw per day, the mid-dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 880. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and four matches with respiratory allergens and one with a food allergen (mustard) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to mustard proteins, cannot be excluded. Based on the data provided, the Panel concluded that both the native and thermolabile forms of this food enzyme do not give rise to safety concerns under the intended conditions of use.

18.
EFSA J ; 22(2): e8618, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405110

RESUMO

The food enzyme glutaminase (l-glutamine amidohydrolase; EC 3.5.1.2) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-GT by Amano Enzyme Inc. The production strain met the requirements for the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in five food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.462 mg TOS/kg body weight per day in European populations. Given the QPS status of the production strain and the absence of concerns resulting from the food enzyme's manufacturing process, toxicity tests were considered unnecessary by the Panel. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

19.
EFSA J ; 22(2): e8624, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405112

RESUMO

The food enzyme microbial collagenase (EC 3.4.24.3) is produced with the genetically modified Streptomyces violaceoruber strain pCol by Nagase (Europa) GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in two food manufacturing processes: the production of modified meat and fish products and the production of protein hydrolysates from meat and fish proteins. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 1.098 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 940 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 856. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

20.
EFSA J ; 22(2): e8612, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38410147

RESUMO

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain DP-Cyb74 by Genencor International B.V. The production strain met all requirements for the qualified presumption of safety (QPS) approach to safety assessment. The food enzyme is intended to be used in six food manufacturing processes. Dietary exposure to the food enzyme total organic solids (TOS) was estimated to be up to 1.536 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the QPS approach and no issue of concern arose from the production process of the food enzyme, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa