Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.312
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-34, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712440

RESUMO

Using renewable resources for food packaging not only helps reduce our dependence on fossil fuels but also minimizes the environmental impact associated with traditional plastics. Starch has been a hot topic in the field of current research because of its low cost, wide source and good film forming property. However, a comprehensive review in this field is still lacking. Starch-based films offer a promising alternative for sustainable packaging in the food industry. The present paper covers various aspects such as raw material sources, modification methods, and film formation mechanisms. Understanding the physicochemical properties and potential commercial applications is crucial for bridging the gap between research and practical implementation. Finally, the application of starch-based films in the food industry is discussed in detail. Different modifications of starch can improve the mechanical and barrier properties of the films. The addition of active substances to starch-based films can endow them with more functions. Therefore, these factors should be better investigated and optimized in future studies to improve the physicochemical properties and functionality of starch-based films. In summary, this review provides comprehensive information and the latest research progress of starch-based films in the food industry.

2.
Environ Sci Technol ; 58(23): 10041-10051, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38788731

RESUMO

Ordering takeout is a growing social phenomenon and may raise public health concerns. However, the associated health risk of compounds leaching from plastic packaging is unknown due to the lack of chemical and toxicity data. In this study, 20 chemical candidates were tentatively identified in the environmentally relevant leachate from plastic containers through the nontargeted chemical analysis. Three main components with high responses and/or predicted toxicity were further verified and quantified, namely, 3,5-di-tert-butyl-4-hydroxycinnamic acid (BHC), 2,4-di-tert-butylphenol (2,4-DTBP), and 9-octadecenamide (oleamide). The toxicity to zebrafish larvae of BHC, a degradation product of a widely used antioxidant Irganox 1010, was quite similar to that of the whole plastic leachate. In the same manner, RNA-seq-based ingenuity analysis showed that the affected canonical pathways of zebrafish larvae were quite comparable between BHC and the whole plastic leachate, i.e., highly relevant to neurological disease, metabolic disease, and even behavioral disorder. Longer-term exposure (35 days) did not cause any effect on adult zebrafish but led to decreased hatching rate and obvious neurotoxicity in zebrafish offspring. Collectively, this study strongly suggests that plastic containers can leach out a suite of compounds causing non-negligible impacts on the early stages of fish via direct or parental exposure.


Assuntos
Plásticos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Larva/efeitos dos fármacos
3.
Environ Sci Technol ; 58(13): 5670-5684, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501683

RESUMO

PFASs are linked to serious health and environmental concerns. Among their widespread applications, PFASs are known to be used in food packaging and directly contribute to human exposure. However, information about PFASs in food packaging is scattered. Therefore, we systematically map the evidence on PFASs detected in migrates and extracts of food contact materials and provide an overview of available hazard and biomonitoring data. Based on the FCCmigex database, 68 PFASs have been identified in various food contact materials, including paper, plastic, and coated metal, by targeted and untargeted analyses. 87% of these PFASs belong to the perfluorocarboxylic acids and fluorotelomer-based compounds. Trends in chain length demonstrate that long-chain perfluoroalkyl acids continue to be found, despite years of global efforts to reduce the use of these substances. We utilized ToxPi to illustrate that hazard data are available for only 57% of the PFASs that have been detected in food packaging. For those PFASs for which toxicity testing has been performed, many adverse outcomes have been reported. The data and knowledge gaps presented here support international proposals to restrict PFASs as a group, including their use in food contact materials, to protect human and environmental health.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Fluorocarbonos/análise , Embalagem de Alimentos , Alimentos , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 58(11): 4872-4883, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38440973

RESUMO

G protein-coupled receptors (GPCRs) are central mediators of cell signaling and physiological function. Despite their biological significance, GPCRs have not been widely studied in the field of toxicology. Herein, we investigated these receptors as novel targets of plastic chemicals using a high-throughput drug screening assay with 126 human non-olfactory GPCRs. In a first-pass screen, we tested the activity of triphenol phosphate, bisphenol A, and diethyl phthalate, as well as three real-world mixtures of chemicals extracted from plastic food packaging covering all major polymer types. We found 11 GPCR-chemical interactions, of which the chemical mixtures exhibited the most robust activity at adenosine receptor 1 (ADORA1) and melatonin receptor 1 (MTNR1A). We further confirm that polyvinyl chloride and polyurethane products contain ADORA1 or MTNRA1 agonists using a confirmatory secondary screen and pharmacological knockdown experiments. Finally, an analysis of the associated gene ontology terms suggests that ADORA1 and MTNR1A activation may be linked to downstream effects on circadian and metabolic processes. This work highlights that signaling disruption caused by plastic chemicals is broader than that previously believed and demonstrates the relevance of nongenomic pathways, which have, thus far, remained unexplored.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ensaios de Triagem em Larga Escala , Polímeros
5.
Environ Res ; 244: 117888, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38097060

RESUMO

In the face of escalating environmental concerns, particularly the pervasive issue of non-biodegradable fast-food packaging waste, this study introduces a ground-breaking solution that not only addresses waste management but also advances biomedical technology. Utilizing the underexploited resource of Fucoidan, a sulfated polysaccharide from brown algae, we have innovatively transformed fast-food packaging waste into eco-friendly fluorescent carbon dots (FPCDs). These FPCDs were meticulously characterized through advanced techniques like FT-IR, TEM, and XRD, shedding light on their unique structure, morphology, and composition. A significant discovery of this study is the potent antimicrobial properties of these FPCDs, which demonstrate remarkable effectiveness against specific bacterial and fungal strains. This opens new avenues in the realm of biomedical applications, including imaging, drug delivery, and biosensing. Furthermore, extensive toxicity assessments, including the Brine shrimp lethality assay and Adult Artemia toxicity tests, underscore the safety of these nanoparticles, bolstering their applicability in sensitive medical scenarios. Our research presents a compelling dual approach, ingeniously tackling environmental sustainability issues by repurposing waste while simultaneously creating valuable materials for biomedical use. This dual benefit underscores the transformative potential of our approach, setting a precedent in both waste management and medical innovation.


Assuntos
Anti-Infecciosos , Embalagem de Alimentos , Perda e Desperdício de Alimentos , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/toxicidade
6.
Nutr Metab Cardiovasc Dis ; 34(4): 1088-1096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403484

RESUMO

BACKGROUND AND AIMS: Bisphenol A (BPA), an endocrine disruptor widely used in food contact materials, has been linked to a worse health profile. This study intends to estimate the association between BPA exposure and cardiometabolic patterns at adolescence. METHODS AND RESULTS: Data from the Portuguese population-based birth cohort Generation XXI at the age of 13 were used (n = 2386 providing 3-day food diaries and fasting blood samples). BPA exposure was measured in 24-h urine from a subsample (n = 206) and then predicted in all participants using a random forest method and considering dietary intake from diaries. Three cardiometabolic patterns were identified (normal, modified lipid profile and higher cardiometabolic risk) using a probabilistic Gaussian mixture model. Multinomial regression models were applied to associate BPA exposure (lower, medium, higher) and cardiometabolic patterns, adjusting for confounders. The median BPA exposure was 1532 ng/d, corresponding to 29.4 ng/kg/d. Adolescents higher exposed to BPA (compared to medium and lower levels) had higher BMI z-score (kg/m2) (0.68 vs. 0.39 and 0.52, respectively; p = 0.008), higher levels of body fat (kg) (16.3 vs. 13.8 and 14.6, respectively; p = 0.002), waist circumference (76.2 vs. 73.7 and 74.9, respectively; p = 0.026), insulinemia (ug/mL) (14.1 vs. 12.7 and 13.1, respectively; p = 0.039) and triglyceridemia (mg/dL) (72.7 vs. 66.1 and 66.5, respectively; p = 0.030). After adjustment, a significant association between higher BPA and a higher cardiometabolic risk pattern was observed (OR: 2.55; 95%CI: 1.41, 4.63). CONCLUSION: Higher BPA exposure was associated with a higher cardiometabolic risk pattern in adolescents, evidencing the role of food contaminants in health.


Assuntos
Doenças Cardiovasculares , Disruptores Endócrinos , Humanos , Adolescente , Compostos Benzidrílicos/efeitos adversos , Compostos Benzidrílicos/urina , Fenóis/efeitos adversos , Fenóis/urina , Disruptores Endócrinos/efeitos adversos , Disruptores Endócrinos/urina , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia
7.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37309029

RESUMO

Food-borne pathogen-related biofilms in food processing environments pose significant risks to human health. To ensure human and environmental safety, natural substances with anti-microbial properties and generally recognized as safe (GRAS) status are the future disinfectants of the food industry. The use of postbiotics in food products is gaining attention due to their many benefits. Postbiotics are soluble substances produced by probiotics or released after their lysis, such as bacteriocins, biosurfactants (BSs), and exopolysaccharides (EPS). Postbiotics have drawn attention because of their clear chemical structure, safety dose parameters, long shelf life, and the content of various signaling molecules, which may have anti-biofilm and antibacterial activities. The main mechanisms of postbiotics to combat biofilm contain suppression of twitching motility, disturbing quorum sensing (QS), and reduction of virulence factors. However, there are obstacles to using these compounds in the food matrix because some factors (temperature and pH) can limit the anti-biofilm impact of postbiotics. Therefore, by using encapsulation or application of these compounds in packaging films, the effect of interfering factors can be eliminated. This review summarizes the concept and safety of postbiotics, focusing on their antibiofilm effect, as well as discussing the encapsulation of postbiotics and their application in packaging films.

8.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928343

RESUMO

Increasing the number of resistant bacteria resistant to treatment is one of the leading causes of death worldwide. These bacteria are created in wounds and injuries and can be transferred through hospital equipment. Various attempts have been made to treat these bacteria in recent years, such as using different drugs and new sterilization methods. However, some bacteria resist drugs, and other traditional methods cannot destroy them. In the meantime, various studies have shown that cold atmospheric plasma can kill these bacteria through different mechanisms, making cold plasma a promising tool to deactivate bacteria. This new technology can be effectively used in the food industry because it has the potential to inactivate microorganisms such as spores and microbial toxins and increase the wettability and printability of polymers to pack fresh and dried food. It can also increase the shelf life of food without leaving any residue or chemical effluent. This paper investigates cold plasma's potential, advantages, and disadvantages in the food industry and sterilization.


Assuntos
Embalagem de Alimentos , Gases em Plasma , Embalagem de Alimentos/métodos , Gases em Plasma/farmacologia , Esterilização/métodos , Pressão Atmosférica , Conservação de Alimentos/métodos , Bactérias/efeitos dos fármacos
9.
Compr Rev Food Sci Food Saf ; 23(1): e13275, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284604

RESUMO

Along with the growth of the world's population that reduces the accessibility of arable land and water, demand for food, as the fundamental element of human beings, has been continuously increasing each day. This situation not only becomes a challenge for the modern food chain systems but also affects food availability throughout the world. Edible coating is expected to play a significant role in food preservation and packaging, where this technique can reduce the number of food loss and subsequently ensure more sustainable food and agriculture production through various mechanisms. This review provides comprehensive information related to the currently available advanced technologies of coating applications, which include advanced methods (i.e., nanoscale and multilayer coating methods) and advanced properties (i.e., active, self-healing, and super hydrophobic coating properties). Furthermore, the benefits and drawbacks of those technologies during their applications on foods are also discussed. For further research, opportunities are foreseen to develop robust edible coating methods by combining multiple advanced technologies for large-scale and more sustainable industrial production.


Assuntos
Filmes Comestíveis , Humanos , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Tecnologia de Alimentos , Biopolímeros
10.
Compr Rev Food Sci Food Saf ; 23(3): e13373, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778547

RESUMO

The environmental challenges posed by plastic pollution have prompted the exploration of eco-friendly alternatives to disposable plastic packaging and utensils. Paper-based materials, derived from renewable resources such as wood pulp, non-wood pulp (bamboo pulp, straw pulp, reed pulp, etc.), and recycled paper fibers, are distinguished by their recyclability and biodegradability, making them promising substitutes in the field of plastic food packaging. Despite their merits, challenges like porosity, hydrophilicity, limited barrier properties, and a lack of functionality have restricted their packaging potential. To address these constraints, researchers have introduced antimicrobial agents, hydrophobic substances, and other functional components to improve both physical and functional properties. This enhancement has resulted in notable improvements in food preservation outcomes in real-world scenarios. This paper offers a comprehensive review of recent progress in hydrophobic antimicrobial paper-based materials. In addition to outlining the characteristics and functions of commonly used antimicrobial substances in food packaging, it consolidates the current research landscape and preparation techniques for hydrophobic paper. Furthermore, the paper explores the practical applications of hydrophobic antimicrobial paper-based materials in agricultural produce, meat, and seafood, as well as ready-to-eat food packaging. Finally, challenges in production, application, and recycling processes are outlined to ensure safety and efficacy, and prospects for the future development of antimicrobial hydrophobic paper-based materials are discussed. Overall, the emergence of hydrophobic antimicrobial paper-based materials stands out as a robust alternative to plastic food packaging, offering a compelling solution with superior food preservation capabilities. In the future, paper-based materials with antimicrobial and hydrophobic functionalities are expected to further enhance food safety as promising packaging materials.


Assuntos
Anti-Infecciosos , Embalagem de Alimentos , Interações Hidrofóbicas e Hidrofílicas , Papel , Embalagem de Alimentos/métodos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Conservação de Alimentos/métodos
11.
Compr Rev Food Sci Food Saf ; 23(3): e13333, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38571439

RESUMO

Recently, food spoilage caused by pathogens has been increasing. Therefore, applying control strategies is essential. Bacteriophages can potentially reduce this problem due to their host specificity, ability to inhibit bacterial growth, and extend the shelf life of food. When bacteriophages are applied directly to food, their antibacterial activity is lost. In this regard, bacteriophage-loaded biopolymers offer an excellent option to improve food safety by extending their shelf life. Applying bacteriophages in food preservation requires comprehensive and structured information on their isolation, culturing, storage, and encapsulation in biopolymers for active food packaging applications. This review focuses on using bacteriophages in food packaging and preservation. It discusses the methods for phage application on food, their use for polymer formulation and functionalization, and their effect in enhancing food matrix properties to obtain maximum antibacterial activity in food model systems.


Assuntos
Bacteriófagos , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Alimento Funcional , Biopolímeros , Antibacterianos
12.
Crit Rev Food Sci Nutr ; 63(20): 4450-4466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34766864

RESUMO

Natural edible films have recently gained a lot of interests in future food packaging. Polysaccharides and proteins in edible materials are not toxic and widely available, which have been confirmed as sustainable and green materials used for packaging films due to their good film-forming abilities. However, polysaccharides and proteins are hydrophilic in nature, they exhibit some undesirable material properties. Cold plasma (CP), as an innovative and highly efficient technology, has been introduced to improve the performance of polysaccharides and proteins-based films. This review mainly presents the basic information of polysaccharides and proteins-based films, principles of CP modified biopolymer films, and the effects of CP on the structural changes including surface morphology, surface composition, and bulk modification, and properties including wettability, mechanical properties, barrier properties, and thermal properties of polysaccharides, proteins, and polysaccharide/protein composite-based films. It is concluded that the CP modified performances are mainly depending on the polysaccharides and proteins raw materials, CP generation types and treatment conditions. The existing difficulties and future trends are also discussed. Despite natural materials currently not fully substitute for traditional plastic materials, CP has exhibited an effective solution to shape the future of natural materials for food packaging.


Assuntos
Embalagem de Alimentos , Gases em Plasma , Polissacarídeos/química , Biopolímeros , Interações Hidrofóbicas e Hidrofílicas
13.
Crit Rev Food Sci Nutr ; 63(2): 288-301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34229564

RESUMO

As a bioactive extract from tea leaves, tea polyphenols (TP) are safe and natural. Its excellent antioxidant and antibacterial properties are increasingly regarded as a good additive for improving degradable food packaging film properties. This article comprehensively reviewed the functional properties of active films containing TP developed recently. The effects of TP addition to enhancing active food packaging films' performance, including thickness, water sensitivity, barrier properties, color, mechanical properties, antioxidant, antibacterial, and intelligent discoloration properties, were discussed. Besides, the practical applications in food preservation of active films containing TP are also discussed. This work concluded that the addition of TP could impart antioxidant and antibacterial properties to active packaging films and act as a crosslinking agent to improve other physical and chemical properties of the film, such as mechanical and barrier properties. However, the effect of TP on specific properties of the active packaging film is complex, and the appropriate TP concentration needs to be selected according to the type of film matrix and the interaction between the components. Notably, the addition of TP improved the efficiency of the active packaging film in food preservation applications, which accelerates the process of replacing the traditional plastic-based food packaging with active packaging film.


Assuntos
Embalagem de Alimentos , Polifenóis
14.
Crit Rev Food Sci Nutr ; 63(32): 11010-11025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35703070

RESUMO

Packaging ensures the safe handling and distribution of fresh and processed food products via diverse supply chains, and has become an indispensable component of the food industry. However, the rapidly expanding use of plastics, especially single-use plastics, as packaging material leads to inadequate waste management, littering, and consequently serious environmental damage, which predominantly affects marine and freshwater sources. Thus, the use of plastics for packaging purposes has become a major public concern and hence a concern among global policymakers. Notably, 26% of the total volume of global plastic production is primarily used for packaging, of which single-use plastics account for 50%, resulting in pollution that may last hundreds of years. This review provides an overview of the manner in which molded pulp products can be utilized to improve sustainability of food packaging applications, by highlighting the manufacturing processes, signifying characteristics features of recyclable molded pulp, and coupling circularity with eco-friendly and safe food product packaging. In this regard, current concepts advocate the implementation of a dynamic and sustainable approach using molded pulp products. This approach encompasses the design and production of eco-friendly packaging, distribution and consumption of packaged products, and collection and recycling of used packaging for subsequent reuse.


Assuntos
Plásticos , Reciclagem , Embalagem de Alimentos , Alimentos , Água Doce
15.
Crit Rev Food Sci Nutr ; 63(19): 3895-3911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34748438

RESUMO

ß-glucan from cereals such as wheat, barley, oats and rye are a water-soluble dietary fiber, which are composed of repeating (1→4)-ß-bond ß-D-glucopyranosyl units and a single (1→3)-ß-D-bond separated unit. ß-glucan has a series of physicochemical properties (such as viscosity, gelling properties, solubility, etc.), which can be used as a food gel and fat substitute. Its structure endows the healthy functions, including anti-oxidative stress, lowering blood glucose and serum cholesterol, regulating metabolic syndrome and exerting gut immunity via gut microbiota. Due to their unique structural properties and efficacy, cereal ß-glucan are not only applied in food substrates in the food industry, but also in food coatings and packaging. This article reviewed the applications of cereal ß-glucan in hydrogels, aerogels, intelligent packaging systems and targeted delivery carriers in recent years. Cereal ß-glucan in edible film and gel packaging applications are becoming more diversified and intelligent in recent years. Those advances provide a potential solution based on cereal ß-glucan as biodegradable substances for immune regulation delivery system and intelligent gelling material in the biomedicine field.


Assuntos
Microbioma Gastrointestinal , beta-Glucanas , Grão Comestível/química , Glicemia/metabolismo , Solubilidade , Avena/química , Fibras na Dieta/análise
16.
Crit Rev Food Sci Nutr ; 63(23): 6393-6411, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35089844

RESUMO

Conventionally used petrochemical-based plastics are poorly degradable and cause severe environmental pollution. Alternatively, biopolymers (e.g., polysaccharides, proteins, lipids, and their blends) are biodegradable and environment-friendly, and thus their use in packaging technologies has been on the rise. Spoilage of food by mycotoxigenic fungi poses a severe threat to human and animal health. Hence, because of the adverse effects of synthetic preservatives, active packaging as an effective technique for controlling and decontaminating fungi and related mycotoxins has attracted considerable interest. The current review aims to provide an overview of the prevention of fungi and mycotoxins through active packaging. The impact of different additives on the antifungal and anti-mycotoxigenic functionality of packaging incorporating active films/coatings is also investigated. In addition, active packaging applications to control and decontaminate common fungi and mycotoxins in bakery products, cereal grains, fruits, nuts, and dairy products are also introduced. The results of recent studies have confirmed that biopolymer films and coatings incorporating antimicrobial agents provide great potential for controlling common fungi and mycotoxins and enhancing food quality and safety.


Assuntos
Anti-Infecciosos , Micotoxinas , Animais , Humanos , Fungos , Embalagem de Alimentos/métodos , Antifúngicos , Biopolímeros
17.
Crit Rev Food Sci Nutr ; 63(23): 6464-6483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35099331

RESUMO

Packaging materials for microwave application should be generally designed based on products properties and processing conditions such as microwavability, susceptibility, processing condition, barrier properties, mechanical properties, storage condition, sustainability, convenience, and so on. Ready-to-eat products are packed in materials that can sustain thermal processing in an industrial oven and warming process in a household oven. In this context, high barrier polymers are versatile microwave packaging materials due to the microwave transparency (unlike metalized film) and high barrier. Additionally, microwave packaging materials used for ready-to-cook are intended to facilitate the microwave heating of the products in a domestic oven. The introduction of a functional feather to microwave packaging tends to improve the microwaving efficiency such as susceptor and shielding in the household oven or self-venting microwave packaging to safely release the internal steam. Furthermore, microwave-assisted thermal processing intends to control microbial contamination, requiring materials with adequate stability during processing and storage. The features of these materials are addressed in this review along with details on the basic requirements and advanced technologies for microwave packaging, microwave processing of prepackaged food, and migration testing. The prospects of microwave packaging materials in the near future are also discussed.


Assuntos
Temperatura Alta , Micro-Ondas , Culinária , Polímeros , Vapor , Embalagem de Alimentos
18.
Crit Rev Food Sci Nutr ; 63(24): 6757-6776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35196934

RESUMO

Nanotechnology is a rapidly growing field with profound applications in different domains, particularly in food science and technology. Nanoparticles (NPs) synthesis, an integral part of nanotechnology-based applications, is broadly classified into chemical, physical and biosynthesis methods. Chemically sensitive and energy-intensive procedures employed for NPs synthesis are some of the limits of traditional chemical approaches. Recent research has focused on developing easy, nontoxic, cost-effective, and environment-friendly NPs synthesis during the last decade. Biosynthesis approaches have been developed to achieve this goal as it is a viable alternative to existing chemical techniques for the synthesis of metallic nanomaterials. Fruit peels contain abundant bioactive compounds including phenols, flavonoids, tannins, triterpenoids, steroids, glycosides, carotenoids, anthocyanins, ellagitannins, vitamin C, and essential oils with substantial health benefits, anti-bacterial and antioxidant properties, generally discarded as byproduct or waste by the fruit processing industry. NPs synthesized using bioactive compounds from fruit peel has futuristic applications for an unrealized market potential for nutraceutical and pharmaceutical delivery. Numerous studies have been conducted for the biosynthesis of metallic NPs such as silver (AgNPs), gold (AuNPs), zinc oxide, iron, copper, palladium and titanium using fruit peel extract, and their synthesis mechanism have been reported in the present review. Additionally, NPs synthesis methods and applications of fruit peel NPs have been discussed.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Antibacterianos , Frutas/química , Ouro/análise , Ouro/química , Antocianinas/análise , Extratos Vegetais/química
19.
Crit Rev Food Sci Nutr ; : 1-31, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37667831

RESUMO

Metabolic by-products are part of the so-called postbiotics of probiotics and other beneficial microorganisms, particularly lactic acid bacteria, which have gained popularity as a feasible alternative to improving food quality and safety. Postbiotics in dry and liquid forms can be easily integrated into food formulations and packaging materials, exhibiting antimicrobial and antioxidant effects owing to the presence of multiple antimicrobials, such as organic acids, bacteriocins, exopolysaccharides and bioactive peptides. Postbiotics can thus control the growth of pathogens and spoilage microorganisms, thereby extending the shelf life of food products. Because of their ability to be easily manufactured without requiring extensive processing, postbiotics are regarded as a safer and more sustainable alternative to synthetic preservatives, which can have negative environmental consequences. Additionally, food manufacturers can readily adopt postbiotics in food formulations without significant modifications. This systematic review provides an in-depth analysis of studies on the use of postbiotics in the biopreservation and packaging of a wide range of food products. The review evaluates and discusses the types of microorganisms, postbiotics preparation and modification techniques, methods of usage in dairy products, meat, poultry, seafood, fruits, vegetables, bread, and egg, and their effects on food quality and safety.

20.
Crit Rev Food Sci Nutr ; : 1-16, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37216478

RESUMO

Active packaging is a novel strategy for maintaining the shelf life of products and ensuring their safety, freshness, and integrity that has emerged with the consumer demand for safer, healthier, and higher quality food. Nanofibers have received a lot of attention for the application in active food packaging due to their high specific surface area, high porosity, and high loading capacity of active substances. Three common methods (electrospinning, solution blow spinning, and centrifugal spinning) for the preparation of nanofibers in active food packaging and their influencing parameters are presented, and advantages and disadvantages between these methods are compared. The main natural and synthetic polymeric substrate materials for the nanofiber preparation are discussed; and the application of nanofibers in active packaging is elaborated. The current limitations and future trends are also discussed. There have been many studies on the preparation of nanofibers using substrate materials from different sources for active food packaging. However, most of these studies are still in the laboratory research stage. Solving the issues of preparation efficiency and cost of nanofibers is the key to their application in commercial food packaging.


Electrospinning is the most used method to produce nanofibers for food packagingSolution blow and centrifugal spinning are novel for large-scale nanofiber productionA variety of natural and synthetic polymers have been used for nanofiber productionProgress has been made in the development of antimicrobial and antioxidant nanofibersEthylene removal and moisture removal nanofibers have been successfully produced.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa