RESUMO
Spinal cord injury (SCI) disrupts neuronal function below the lesion epicenter, causing disuse muscle atrophy. We investigated motor unit (MU) activity and synaptic inputs to motoneurons in the caudal region of the injured spinal cord. Participants with C4-C7 cervical injuries were studied. The extensor digitorum communis (EDC) muscle, which is mainly innervated by C8, was assessed for disuse muscle atrophy. Using advanced electromyography and signal-processing techniques, we examined the concurrent activation of a substantial population of MUs during force-tracking tasks. We found that in participants with SCI (n = 9), both MU discharge rates and the amplitudes of MU action potentials were significantly lower than in controls (n = 9). After SCI, MUs were recruited in a limited force range as the strength of muscle contractions increased, implying a disruption in the orderly MU recruitment pattern. Coherence analysis revealed reduced synaptic inputs to motoneurons in the delta band (0.5-5 Hz) for participants with SCI, suggesting diminished common synaptic inputs to the EDC muscle. In addition, participants with SCI exhibited greater muscle force variability. Using principal component analysis on low-frequency MU discharge rates, we found that the first common component (FCC) captured the most discharge variability in participants with SCI. The coefficients of variation (CV) of the FCC correlated with force signal CVs, suggesting force variability mainly results from common synaptic inputs to the EDC muscle after SCI. These results advance our understanding of the neurophysiology of disuse muscle atrophy in human SCI, paving the way for therapeutic interventions to restore muscle function.NEW & NOTEWORTHY This study analyzed motor unit (MU) function below the lesion epicenter in patients with spinal cord injury (SCI). We found reduced MU discharge rates and action potential amplitudes in participants with SCI compared with controls. The strength of common synaptic inputs to motoneurons was reduced in patients with SCI, with increased force variability primarily due to low-frequency oscillations of common inputs. This study enhances understanding of neurophysiological and behavioral changes in disuse muscle atrophy post-SCI.
Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Humanos , Estimulação Elétrica , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Eletromiografia/métodos , Contração Muscular/fisiologia , Atrofia Muscular/patologiaRESUMO
BACKGROUND: When using lesion size index (LSI) to guide catheter ablation, it is unclear what combination of power, contact force and time would be preferable to use and what LSI target value to aim for. This study aimed at identifying desirable ablation settings and LSI targets by using tissue impedance drop as indicator of lesion formation. METHODS: Consecutive patients, undergoing their first left atrial (LA) catheter ablation for atrial fibrillation, with radiofrequency energy (RF) powers of 20, 30 and 40 W were enrolled. Tissue impedance, contact force (CF), Force Time Integral (FTI) and LSI values were continuously recorded during ablation and sampled at 100 Hz. Mean CF and Contact Force Variability (CFV) were calculated for every lesion. The effect of RF power, ablation time, CF and CFV on impedance drop and LSI were assessed. RESULTS: A total of 3258 lesions were included in the analysis. For any target LSI value, use of higher RF powers translated into progressively higher impedance drops. The impact of lower CF and higher CFV on impedance drop was more relevant when using lower powers. Target LSI values corresponding to maximum impedance drop were identified depending on RF power, mean CF and CFV used. CONCLUSIONS: Even in the context of an LSI-guided ablation strategy, use of lower or higher powers might lead to different lesion sizes. Different LSI targets might be needed depending on the combination of RF power, CF and CFV used for ablation. Incorporating indicators of catheter stability, like CFV, in the LSI formula could improve the predictive value of LSI for lesion size. Studies with clinical outcomes are required to confirm the clinical relevance of these findings.
Assuntos
Fibrilação Atrial , Ablação por Cateter , Impedância Elétrica , Humanos , Fibrilação Atrial/cirurgia , Fibrilação Atrial/fisiopatologia , Ablação por Cateter/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Resultado do TratamentoRESUMO
The aim of the study was to assess the influence of habitual training history on force steadiness and the discharge characteristics of motor units in tibialis anterior during submaximal isometric contractions. Fifteen athletes whose training emphasized alternating actions (11 runners and 4 cyclists) and fifteen athletes who relied on bilateral actions with leg muscles (7 volleyball players, 8 weight-lifters) performed 2 maximal voluntary contractions (MVC) with the dorsiflexors, and 3 steady contractions at 8 target forces (2.5%, 5%, 10%, 20%, 30%, 40%, 50% and 60% MVC). The discharge characteristics of motor units in tibialis anterior were recorded using high-density electromyography grids. The MVC force and the absolute (standard deviation) and normalized (coefficient of variation) amplitudes of the force fluctuations at all target forces were similar between groups. The coefficient of variation for force decreased progressively from 2.5% to 20% MVC force, then it plateaued until 60% MVC force. Mean discharge rate of the motor units in tibialis anterior was similar at all target forces between groups. The variability in discharge times (coefficient of variation for interspike interval) and the variability in neural drive (coefficient of variation of filtered cumulative spike train) was also similar for the two groups. These results indicate that athletes who have trained with either alternating or bilateral actions with leg muscles has similar effects on maximal force, force control, and variability in the independent and common synaptic input during a single-limb isometric task with the dorsiflexors.
Assuntos
Perna (Membro) , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Contração Isométrica/fisiologia , Exercício FísicoRESUMO
As the populations of the United States and developed nations age, motor control performance is adversely impacted, resulting in functional impairments that can diminish quality of life. Generally, force control in the lower limb worsens with age, with older adults (OA) displaying more variable and less accurate submaximal forces. Corticospinal inhibitory signaling may influence force control, with those OA who maintain corticospinal inhibitory signaling capacity achieving steadier forces. This study aimed to assess the relationships between lower limb force control and transcranial magnetic stimulation (TMS) measures of corticospinal inhibition (i.e., cortical silent period (cSP) duration and depth). 15 OA and 14 young adults (YA) were recruited for this study. All subjects underwent a TMS protocol to elicit the cSP while maintaining 15% of their maximal force in their knee extensor muscles. OA and YA did not display differences in force control metrics or corticospinal inhibitory measures. However, in OA, maximal cSP depth (%dSP max) was associated with lower force variability. No other significant relationships existed in the YA or OA groups. Future studies will benefit from evaluating a range of target forces and target muscles to assess potential relationships between sensorimotor inhibitory capacity and control of muscle force output.
Assuntos
Perna (Membro) , Qualidade de Vida , Idoso , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Humanos , Extremidade Inferior , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto JovemRESUMO
The spectral properties of surface electromyographic (EMG) signal in the rectus femoris (RF) and the coactivation in the medial hamstrings (MH) were investigated in 45 stroke subjects (22 ± 12 days post-onset) and 30 age-matched healthy controls who performed unilateral knee extensions at maximum effort (100% MVC) and during 5-s force-matching tasks (10, 30, 50% MVC). The spectral properties were obtained through a power spectrum analysis based on Fast Fourier Transform. The coactivation was measured as the MH amplitude (%max) and MH/RF amplitude ratio. Force variability was expressed as the coefficient of variation. Both knee extensors and flexors were weaker in the paretic leg than the non-paretic and control legs (p < 0.001). A significantly higher relative power in the 5-13 and 13-30 Hz bands was found in the paretic than the non-paretic leg across all force levels (p ≤ 0.001) without changes in the 30-60 and 60-100 Hz bands or the mean and median frequencies. Regarding the antagonist coactivation, MH amplitude in the paretic leg was higher than in the non-paretic leg (submaximal levels, p < 0.0001) and the control leg (all force levels, p = 0.0005) with no differences between legs in the MH/RF ratio. The steadiness of the knee extension force was not related to the spectral properties of the agonist EMG or antagonistic coactivation. Greater coactivation was associated with weaker paretic knee flexors (p ≤ 0.0002). The overall results suggest variably altered agonist activation and antagonistic coactivation over the range of isometric knee extension contractions in subacute stroke.
Assuntos
Músculo Quadríceps , Acidente Vascular Cerebral , Humanos , Contração Isométrica , Joelho , Articulação do Joelho , Acidente Vascular Cerebral/complicaçõesRESUMO
Prolonged exposure to cold can impair manual performance, which in turn can affect work task performance. We investigated whether mild whole-body cold stress would affect isometric force control during submaximal hand grip and key pinch tasks. Twelve male participants performed isometric hand grip and key pinch tasks at 10% and 30% of maximal voluntary contraction (MVC) for 30 and 10â¯s respectively, in cold (8⯰C) and control (25⯰C) conditions. Finger temperature decreased significantly by 18.7⯱â¯2.1⯰C and continuous low-intensity shivering in the upper trunk increased significantly in intensity and duration during cold exposure. Rectal temperature decreased similarly for the 8⯰C and 25⯰C exposures. Force variability (FCv) was <2% for the hand grip tasks, and <3% for the key pinch tasks. No significant changes in FCv or force accuracy were found between the ambient temperatures. In conclusion, isometric force control during hand grip and key pinch tasks was maintained when participants experienced mild whole-body cold stress compared with when they were thermally comfortable.
Assuntos
Resposta ao Choque Frio , Contração Isométrica , Força de Pinça , Adulto , Humanos , Masculino , Músculo Esquelético/fisiologia , Estremecimento , Tronco/fisiologiaRESUMO
BACKGROUND: There are fundamental similarities and differences between the jaw and hand motor systems. However, it is unclear how the two systems respond to unpredictable task demands. OBJECTIVE: To investigate and compare the force control of the jaw motor system (OMS) and the hand motor system (HMS) during unpredictable load changes. METHODS: Seventeen healthy adults (24.0 ± 4.3 years) performed two standardised force control tasks (OMS and HMS). During the OMS, the participants asked to bite and pull a force transducer with the front teeth. While during HMS they pinched and pulled the same force transducer with their index and thumb fingers. Series of loads were added to a string attached to the transducer in an unpredictable (sequential and non-sequential) manner. The entire force profile during the task was divided into "initial" and "latter" segments. The force control was analysed and compared between the OMS and HMS in terms of peak force during the initial segment and holding force and force variability during the latter segment. RESULTS: The peak force, holding force and force variability were higher for the OMS than the HMS (P < .001). However, there were no differences in the peak force, holding force or force variability between the sequential and non-sequential load changes (P > .05). CONCLUSIONS: The results showed that unpredictable load changes did not affect the force control during the motor control task. This study suggests that both the motor systems are optimised in performing simple motor control tasks and are rather resilient to motor unpredictability.
Assuntos
Dedos , Mãos , Adulto , Força da Mão , Humanos , PolegarRESUMO
Dynamic force modulation is critical for performing skilled bimanual tasks. Unilateral motor impairments after stroke contribute to asymmetric hand function. Here, we investigate the impact of stroke on dynamic bimanual force control and compare the contribution of each hand to a bimanual task. Thirteen chronic stroke and thirteen healthy control participants performed bimanual, isometric finger flexion during visually guided, force tracking of a trapezoidal trajectory with force increment and decrement phases. We quantified the accuracy and variability of total force from both hands. Individual hand contribution was quantified with the proportion of force contributed to total force and force variability of each hand. The total force output was 53.10% less accurate and 56% more variable in the stroke compared with the control group. The variability of total force was 91.10% greater in force decrement than increment phase. In stroke group, the proportion of force and force variability contributed by each hand differed across the two phases. During force decrement, the proportion of force contributed by the non-paretic hand reduced and force variability of the non-paretic hand increased, compared with the increment phase. The control group showed no differences in each hand's contribution across the two force phases. In conclusion, dynamic bimanual force modulation is impaired after stroke, with greater deficits in force decrement than force increment. The non-paretic and paretic hands adapt differentially to dynamic bimanual task constraints. During force decrement, the non-paretic hand preferentially assumes force modulation, while the paretic hand produces steady force to meet the force requirements.
Assuntos
Lateralidade Funcional/fisiologia , Força da Mão/fisiologia , Paresia/fisiopatologia , Desempenho Psicomotor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Paresia/diagnóstico , Paresia/psicologia , Estimulação Luminosa/métodos , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/psicologiaRESUMO
Presently, there is no evidence that magnification of visual feedback has motor implications beyond impairments in force control during a visuomotor task. We hypothesized that magnification of visual feedback would increase visual information processing, alter the muscle activation, and exacerbate the response time in older adults. To test this hypothesis, we examined whether magnification of visual feedback during a reaction time task alters the premotor time and the motor unit pool activation of older adults. Participants responded as fast as possible to a visual stimulus while they maintained a steady ankle dorsiflexion force (15% maximum) either with low-gain or high-gain visual feedback of force. We quantified the following: 1) response time and its components (premotor and motor time), 2) force variability, and 3) motor unit pool activity of the tibialis anterior muscle. Older adults exhibited longer premotor time and greater force variability than young adults. Only in older adults, magnification of visual feedback lengthened the premotor time and exacerbated force variability. The slower premotor time in older adults with high-gain visual feedback was associated with increased force variability and an altered modulation of the motor unit pool. In conclusion, our findings provide novel evidence that magnification of visual feedback also exacerbates premotor time during a reaction time task in older adults, which is correlated with force variability and an altered modulation of motor unit pool. Thus these findings suggest that visual information processing deficiencies in older adults could result in force control and reaction time impairments. NEW & NOTEWORTHY It is unknown whether magnification of visual feedback has motor implications beyond impairments in force control for older adults. We examined whether it impairs reaction time and motor unit pool activation. The findings provide novel evidence that magnification of visual feedback exacerbates reaction time by lengthening premotor time, which implicates time for information processing in older adults, which is correlated with force variability and an altered modulation of motor unit pool.
Assuntos
Envelhecimento/fisiologia , Retroalimentação Sensorial , Contração Muscular , Percepção Visual , Adulto , Idoso , Idoso de 80 Anos ou mais , Tornozelo/inervação , Tornozelo/fisiologia , Feminino , Humanos , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Tempo de Reação , Recrutamento NeurofisiológicoRESUMO
Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.
Assuntos
Fatores Etários , Retroalimentação Sensorial/fisiologia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Eletromiografia/métodos , Feminino , Dedos/fisiologia , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Fatores de Tempo , Adulto JovemRESUMO
Visual feedback can influence the force output by changing the power in frequencies below 1 Hz. However, it remains unknown whether visual guidance can help an individual reduce force variability voluntarily. The purpose of this study, therefore, was to determine whether an individual can voluntarily reduce force variability during constant contractions with visual guidance, and whether this reduction is associated with a decrease in the power of low-frequency oscillations (0-1 Hz) in force and muscle activity. Twenty young adults (27.6 ± 3.4 years) matched a force target of 15% MVC (maximal voluntary contraction) with ankle dorsiflexion. Participants performed six visually unrestricted contractions, from which we selected the trial with the least variability. Following, participants performed six visually guided contractions and were encouraged to reduce their force variability within two guidelines (±1 SD of the least variable unrestricted trial). Participants decreased the SD of force by 45% (P < 0.001) during the guided condition, without changing mean force (P > 0.2). The decrease in force variability was associated with decreased low-frequency oscillations (0-1 Hz) in force (R 2 = 0.59), which was associated with decreased low-frequency oscillations in EMG bursts (R 2 = 0.35). The reduction in low-frequency oscillations in EMG burst was positively associated with power in the interference EMG from 35 to 60 Hz (R 2 = 0.47). In conclusion, voluntary reduction of force variability is associated with decreased low-frequency oscillations in EMG bursts and consequently force output. We provide novel evidence that visual guidance allows healthy young adults to reduce force variability voluntarily likely by adjusting the low-frequency oscillations in the neural drive.
Assuntos
Tornozelo/fisiologia , Eletromiografia/métodos , Retroalimentação Sensorial/fisiologia , Atividade Motora/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Humanos , Masculino , Percepção Visual/fisiologia , Adulto JovemRESUMO
PURPOSE: The function of the anterior cruciate ligament (ACL) patients' non-injured leg is relevant in light of the high incidence of secondary ACL injuries on the contralateral side. However, the non-injured leg's function has only been examined for a selected number of neuromuscular outcomes and often without appropriate control groups. We measured a broad array of neuromuscular functions between legs of ACL patients and compared outcomes to age, sex, and physical activity matched controls. METHODS: Thirty-two ACL-deficient patients (208 ± 145 days post-injury) and active and less-active controls (N = 20 each) participated in the study. We measured single- and multi-joint neuromuscular function in both legs in each group and expressed the overall neuromuscular function in each leg by calculating a mean z-score across all neuromuscular measures. A group by leg MANOVA and ANOVA were performed to examine group and leg differences for the selected outcomes. RESULTS: After an ACL injury, duration (-4.3 h/week) and level (Tegner activity score of -3.9) of sports activity decreased and was comparable to less-active controls. ACL patients showed bilateral impairments in the star excursion balance test compared to both control groups (P ≤ 0.004) and for central activation ratio compared to active controls (P ≤ 0.002). There were between-leg differences within each group for maximal quadriceps and hamstring strength, voluntary quadriceps activation, star excursion balance test performance, and single-leg hop distance (all P < 0.05), but there were no significant differences in quadriceps force accuracy and variability, knee joint proprioception, and static balance. Overall neuromuscular function (mean z-score) did not differ between groups, but ACL patients' non-injured leg displayed better neuromuscular function than the injured leg (P < 0.05). CONCLUSIONS: Except for poorer dynamic balance and reduced quadriceps activation, ACL patients had no bilateral neuromuscular deficits despite reductions in physical activity after injury. Therapists can use the non-injured leg as a reference to assess the injured leg's function for tasks measured in the present study, excluding dynamic balance and quadriceps activation. Rehabilitation after an ACL injury should be mainly focused on the injured leg. LEVEL OF EVIDENCE: III.
Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/fisiologia , Perna (Membro)/fisiologia , Equilíbrio Postural/fisiologia , Propriocepção/fisiologia , Músculo Quadríceps/fisiologia , Adolescente , Adulto , Feminino , Humanos , Articulação do Joelho , Masculino , Contração Muscular , Adulto JovemRESUMO
Force control deficits have been repeatedly documented in autism spectrum disorder (ASD). They are associated with worse social and daily living skill impairments in patients suggesting that developing a more mechanistic understanding of the central and peripheral processes that cause them may help guide the development of treatments that improve multiple outcomes in ASD. The neuromuscular mechanisms underlying force control deficits are not yet understood. Seventeen individuals with ASD and 14 matched healthy controls completed an isometric index finger abduction test at 60% of their maximum voluntary contraction (MVC) during recording of the first dorsal interosseous (FDI) muscle to determine the neuromuscular processes associated with sustained force variability. Central modulation of the motorneuron pool activation of the FDI muscle was evaluated at delta (0-4 Hz), alpha (4-10 Hz), beta (10-35 Hz) and gamma (35-60 Hz) frequency bands. ASD patients showed greater force variability than controls when attempting to maintain a constant force. Relative to controls, patients also showed increased central modulation of the motorneuron pool at beta and gamma bands. For controls, reduced force variability was associated with reduced delta frequency modulation of the motorneuron pool activity of the FDI muscle and increased modulation at beta and gamma bands. In contrast, delta, beta, and gamma frequency oscillations were not associated with force variability in ASD. These findings suggest that alterations of central mechanisms that control motorneuron pool firing may underlie the common and often impairing symptoms of ASD.
Assuntos
Transtorno do Espectro Autista/fisiopatologia , Contração Isométrica , Neurônios Motores/fisiologia , Adolescente , Adulto , Ondas Encefálicas , Estudos de Casos e Controles , Potencial Evocado Motor , Feminino , Dedos/fisiologia , Humanos , Masculino , Músculo Esquelético/fisiologiaRESUMO
Control of the motor output depends on our ability to precisely increase and release force. However, the influence of aging on force increase and release remains unknown. The purpose of this study, therefore, was to determine whether force control differs while increasing and releasing force in young and older adults. Sixteen young adults (22.5 ± 4 yr, 8 females) and 16 older adults (75.7 ± 6.4 yr, 8 females) increased and released force at a constant rate (10% maximum voluntary contraction force/s) during an ankle dorsiflexion isometric task. We recorded the force output and multiple motor unit activity from the tibialis anterior (TA) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) mean discharge rate and variability of discharge rate of multiple motor units; and 3) power spectrum of the multiple motor units from 0-4, 4-10, 10-35, and 35-60 Hz. Participants exhibited greater force variability while releasing force, independent of age (P < 0.001). Increased force variability during force release was associated with decreased modulation of multiple motor units from 35 to 60 Hz (R(2) = 0.38). Modulation of multiple motor units from 35 to 60 Hz was further correlated to the change in mean discharge rate of multiple motor units (r = 0.66) and modulation from 0 to 4 Hz (r = -0.64). In conclusion, these findings suggest that force control is altered while releasing due to an altered modulation of the motor units.
Assuntos
Envelhecimento/fisiologia , Contração Isométrica/fisiologia , Destreza Motora/fisiologia , Músculo Esquelético/fisiologia , Idoso , Tornozelo/fisiologia , Eletromiografia , Retroalimentação Psicológica , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto JovemRESUMO
There is little knowledge regarding the force production capacities of tug-of-war athletes, who undergo years of high-load strength training on handgrip muscles. The purpose of this investigation was to determine the force-grading strategies of tug-of-war athletes by examining force fluctuation properties at high exertion levels. Sixteen tug-of-war athletes and sixteen sedentary non-athletes performed sinusoidal handgrip grip at 50%-100% of maximal effort at 0.5 Hz under visual guidance. Force outputs of the designate task were recorded with a strain gauge. Force fluctuations were separated from the rhythmic output of the target rate in the handgrip force. In addition to a comparable normalized tracking error, the tug-of-war athletes exhibited a greater mean force output (Fmean) and a higher ratio of mean force output (Fmean) to body mass than the non-athletes. The athletes also had lower approximate entropy (ApEn) and a lower mean frequency of force fluctuations than the non-athletes, despite a similar relative size of force fluctuations for the two groups. The scaling of the fundamental element (force pulses) of force fluctuations was also group-dependent, with a greater pulse gain (duration-amplitude regression slope) than the non-athletes. The tug-of-war athletes exhibited superior force-generating capacity and more economic force-grading as compared with the non-athletes, without additional costs to task accuracy and force steadiness, during a highly-demanding rhythmic force task.
Assuntos
Atletas/estatística & dados numéricos , Força Muscular , Esforço Físico/fisiologia , Humanos , Masculino , Adulto JovemRESUMO
This study focuses on neuromuscular mechanisms behind ankle torque and EMG variability during a maintained isometric plantar flexion contraction. Experimentally obtained torque standard deviation (SD) and soleus, medial gastrocnemius, and lateral gastrocnemius EMG envelope mean and SD increased with mean torque for a wide range of torque levels. Computer simulations were performed on a biophysically-based neuromuscular model of the triceps surae consisting of premotoneuronal spike trains (the global input, GI) driving the motoneuron pools of the soleus, medial gastrocnemius, and lateral gastrocnemius muscles, which activate their respective muscle units. Two types of point processes were adopted to represent the statistics of the GI: Poisson and Gamma. Simulations showed a better agreement with experimental results when the GI was modeled by Gamma point processes having lower orders (higher variability) for higher target torques. At the same time, the simulations reproduced well the experimental data of EMG envelope mean and SD as a function of mean plantar flexion torque, for the three muscles. These results suggest that the experimentally found relations between torque-EMG variability as a function of mean plantar flexion torque level depend not only on the intrinsic properties of the motoneuron pools and the muscle units innervated, but also on the increasing variability of the premotoneuronal GI spike trains when their mean rates increase to command a higher plantar flexion torque level. The simulations also provided information on spike train statistics of several hundred motoneurons that compose the triceps surae, providing a wide picture of the associated mechanisms behind torque and EMG variability.
Assuntos
Contração Isométrica , Modelos Neurológicos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Músculo Esquelético/inervação , TorqueRESUMO
Objective: This study investigated the neuromuscular control of increasing and releasing force in patients with chronic lateral epicondylitis (CLE). Methods: Fifteen patients with CLE (10 males, 5 females, 46.5 ± 6.3 years) and fifteen healthy participants (9 males, 6 females, 45.3 ± 2.5 years) participated in this study. In addition to power grip and maximal voluntary contraction (MVC) of wrist extension, force fluctuation dynamics and characteristics of inter-spike intervals (ISI) of motor units (MUs) with various recruitment thresholds in the extensor carpi radialis brevis (ECRB) and extensor carpi radialis longus (ECRL) during a designated force-tracking task with a trapezoidal target (0%-75%-0% MVC) were assessed. Results: Besides a smaller MVC of wrist extension, the patients exhibited significantly greater task errors (p = 0.007) and force fluctuations (p = 0.001) during force increment than the healthy counterparts. Nevertheless, no force variables significantly differed between groups during force release (p > 0.05). During force increment, the amplitudes of the motor unit action potential of the ECRB and ECRL muscles of the patients were smaller than those of the heathy counterparts (p < 0.001). The patient group also exhibited a higher percentage of motor units (MU) with lower recruitment threshold (<5% MVC) in the ECRL/ECRB muscles and a lower percentage of MU with higher recruitment threshold (>40% MVC) in the ECRB muscle, compared to the healthy group. During force increment, the patient group exhibited a higher rate of decrease in inter-spike intervals (ISIs) of motor units with lower recruitment thresholds (<10% MVC) in the ECRB and ECRL muscles, compared to the control group (p < 0.005). Conclusion: The patients with CLE exhibited more pronounced impairment in increasing force than in releasing force. This impairment in increasing force is attributed to deficits in tendon structure and degenerative changes in the larger motor units of the wrist extensors. To compensate for the neuromuscular deficits, the rate of progressive increase in discharge rate of the remaining smaller motor units (MUs) is enhanced to generate force. Significance: The deficits in neuromuscular control observed in CLE with degenerative changes cannot be fully explained by the experimental pain model, which predicts pain-related inhibition on low-threshold motor units.
RESUMO
The purpose of this study was to investigate the influence of changes in muscle length on the torque fluctuations and on related oscillations in muscle activity during voluntary isometric contractions of ankle plantar flexor muscles. Eleven healthy individuals were asked to perform voluntary isometric contractions of ankle muscles at five different contraction intensities from 10% to 70% of maximum voluntary isometric contraction (MVIC) and at three different muscle lengths, implemented by changing the ankle joint angle (plantar flexion of 26°-shorter muscle length; plantar flexion of 10°-neutral muscle length; dorsiflexion of 3°-longer muscle length). Surface electromyogram (EMG) signals were recorded from the skin surface over the triceps surae muscles, and rectified-and-smoothed EMG (rsEMG) were estimated to assess the oscillations in muscle activity. The absolute torque fluctuations (quantified by the standard deviation) were significantly higher during moderate-to-high contractions at the longer muscle length. Absolute torque fluctuations were found to be a linear function of torque output regardless of muscle length. In contrast, the relative torque fluctuations (quantified by the coefficient of variation) were higher at the shorter muscle length. However, both absolute and relative oscillations in muscle activities remained relatively consistent at different ankle joint angles for all plantar flexors. These findings suggest that the torque steadiness may be affected by not only muscle activities, but also by muscle length-dependent mechanical properties. This study provides more insights that muscle mechanics should be considered when explaining the steadiness in force output.
RESUMO
The aim of the study was to assess the potential influence of footedness and dominance on maximal force, force fluctuations and neural drive during dorsiflexion. Fifteen left-footed (LF) and fifteen right-footed (RF) young adults performed 2 maximal voluntary contractions (MVC) and 3 steady submaximal isometric contractions at five target forces (5, 10, 20, 40 and 60% MVC) with the dorsiflexors of both legs. High-density electromyography (EMG) was used to record the discharge characteristics of motor units (MUs) of Tibialis Anterior. MVC force and EMG amplitude (root mean square) were similar between the two legs and groups (p > 0.05). Force fluctuations (Coefficient of Variation, CoV for force), mean discharge rate of MUs, discharge variability (CoV of interspike interval), and variability in neural drive (standard deviation of filtered cumulative spike train) were greater (p < 0.05) and the input-output gain of the MUs (ΔDR/ΔF) was lower (p < 0.05) for the LF relative to the RF group. The differences in force fluctuations during steady contractions with the dorsiflexors were associated with footedness but not with dominance. They reflect greater variability in motor neuron output, as suggested by coefficient of variation for interspike interval (independent input) and the standard deviation of the smoothed discharge times (common input).
Assuntos
Contração Isométrica , Músculo Esquelético , Masculino , Adulto Jovem , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Contração Isométrica/fisiologia , Extremidade Inferior , Pé , Contração Muscular/fisiologiaRESUMO
The purpose of the study was to assess the influence of short, intermediate, and long muscle lengths on dorsiflexor force steadiness and the discharge characteristics of motor units in tibialis anterior during submaximal isometric contractions. Steady contractions were performed at 5 target forces (5, 10, 20, 40, and 60% maximal voluntary contraction, MVC) for 3 ankle angles (75°, 90°, and 105°). MVC force was less (p = 0.043) at the smallest joint angle compared with the other two angles. The absolute (standard deviation) and normalised amplitudes (coefficient of variation) of the force fluctuations were similar for all 3 ankle angles at each target force. The coefficient of variation for force decreased progressively from 5% to 20% MVC force and then it plateaued at 40% and 60% MVC force. At all target forces, the mean discharge rate (MDR) of the motor units at 75° was greater than at 90° (p = 0.006) and 105° (p = 0.034). Moreover, the MDR was similar for 5% and 10% MVC forces and then increased gradually until 60% MVC force (p < 0.005). The variability in discharge times (coefficient of variation for interspike interval) and variability in neural drive (coefficient of variation of filtered cumulative spike train) were similar at all ankle angles. Variability in neural drive had a greater influence on force steadiness than did the variability in discharge times. Changes in ankle-joint angle did not influence either the normalised amplitude force fluctuations during steady submaximal contractions or the underlying modulation of the discharge characteristics of motor units in tibialis anterior.