Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Cell ; 186(1): 162-177.e18, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608651

RESUMO

The cortex influences movement by widespread top-down projections to many nervous system regions. Skilled forelimb movements require brainstem circuitry in the medulla; however, the logic of cortical interactions with these neurons remains unexplored. Here, we reveal a fine-grained anatomical and functional map between anterior cortex (AC) and medulla in mice. Distinct cortical regions generate three-dimensional synaptic columns tiling the lateral medulla, topographically matching the dorso-ventral positions of postsynaptic neurons tuned to distinct forelimb action phases. Although medial AC (MAC) terminates ventrally and connects to forelimb-reaching-tuned neurons and its silencing impairs reaching, lateral AC (LAC) influences dorsally positioned neurons tuned to food handling, and its silencing impairs handling. Cortico-medullary neurons also extend collaterals to other subcortical structures through a segregated channel interaction logic. Our findings reveal a precise alignment between cortical location, its function, and specific forelimb-action-tuned medulla neurons, thereby clarifying interaction principles between these two key structures and beyond.


Assuntos
Movimento , Neurônios , Camundongos , Animais , Movimento/fisiologia , Neurônios/fisiologia , Membro Anterior/fisiologia , Tronco Encefálico
2.
Cell ; 184(17): 4564-4578.e18, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34302739

RESUMO

The mesencephalic locomotor region (MLR) is a key midbrain center with roles in locomotion. Despite extensive studies and clinical trials aimed at therapy-resistant Parkinson's disease (PD), debate on its function remains. Here, we reveal the existence of functionally diverse neuronal populations with distinct roles in control of body movements. We identify two spatially intermingled glutamatergic populations separable by axonal projections, mouse genetics, neuronal activity profiles, and motor functions. Most spinally projecting MLR neurons encoded the full-body behavior rearing. Loss- and gain-of-function optogenetic perturbation experiments establish a function for these neurons in controlling body extension. In contrast, Rbp4-transgene-positive MLR neurons project in an ascending direction to basal ganglia, preferentially encode the forelimb behaviors handling and grooming, and exhibit a role in modulating movement. Thus, the MLR contains glutamatergic neuronal subpopulations stratified by projection target exhibiting roles in action control not restricted to locomotion.


Assuntos
Locomoção/fisiologia , Mesencéfalo/anatomia & histologia , Animais , Gânglios da Base/metabolismo , Comportamento Animal , Feminino , Integrases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Optogenética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Medula Espinal/metabolismo , Transgenes , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
3.
Annu Rev Neurosci ; 42: 485-504, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31283898

RESUMO

Neuronal circuits that regulate movement are distributed throughout the nervous system. The brainstem is an important interface between upper motor centers involved in action planning and circuits in the spinal cord ultimately leading to execution of body movements. Here we focus on recent work using genetic and viral entry points to reveal the identity of functionally dedicated and frequently spatially intermingled brainstem populations essential for action diversification, a general principle conserved throughout evolution. Brainstem circuits with distinct organization and function control skilled forelimb behavior, orofacial movements, and locomotion. They convey regulatory parameters to motor output structures and collaborate in the construction of complex natural motor behaviors. Functionally tuned brainstem neurons for different actions serve as important integrators of synaptic inputs from upstream centers, including the basal ganglia and cortex, to regulate and modulate behavioral function in different contexts.


Assuntos
Tronco Encefálico/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Medula Espinal/fisiologia , Animais , Humanos , Locomoção/fisiologia , Vias Neurais/fisiologia
4.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35132436

RESUMO

The pectoral fins of teleost fish are analogous structures to human forelimbs, and the developmental mechanisms directing their initial growth and patterning are conserved between fish and tetrapods. The forelimb vasculature is crucial for limb function, and it appears to play important roles during development by promoting development of other limb structures, but the steps leading to its formation are poorly understood. In this study, we use high-resolution imaging to document the stepwise assembly of the zebrafish pectoral fin vasculature. We show that fin vascular network formation is a stereotyped, choreographed process that begins with the growth of an initial vascular loop around the pectoral fin. This loop connects to the dorsal aorta to initiate pectoral vascular circulation. Pectoral fin vascular development continues with concurrent formation of three elaborate vascular plexuses, one in the distal fin that develops into the fin-ray vasculature and two near the base of the fin in association with the developing fin musculature. Our findings detail a complex, yet highly choreographed, series of steps involved in the development of a complete, functional, organ-specific vascular network.


Assuntos
Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/crescimento & desenvolvimento , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimento , Animais
5.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38265300

RESUMO

The rostral forelimb area (RFA) in the rat is a premotor cortical region based on its dense efferent projections to primary motor cortex. This study describes corticocortical connections of RFA and the relative strength of connections with other cortical areas. The goal was to provide a better understanding of the cortical network in which RFA participates, and thus, determine its function in sensorimotor behavior. The RFA of adult male Long-Evans rats (n = 6) was identified using intracortical microstimulation techniques and injected with the tract-tracer, biotinylated dextran amine (BDA). In post-mortem tissue, locations of BDA-labeled terminal boutons and neuronal somata were plotted and superimposed on cortical field boundaries. Quantitative estimates of terminal boutons in each region of interest were based on unbiased stereological methods. The results demonstrate that RFA has dense connections with primary motor cortex and frontal cortex medial and lateral to RFA. Moderate connections were found with insular cortex, primary somatosensory cortex (S1), the M1/S1 overlap zone, and lateral somatosensory areas. Cortical connections of RFA in rat are strikingly similar to cortical connections of the ventral premotor cortex in non-human primates, suggesting that these areas share similar functions and allow greater translation of rodent premotor cortex studies to primates.


Assuntos
Córtex Motor , Ratos , Masculino , Animais , Vias Neurais/fisiologia , Ratos Long-Evans , Córtex Motor/fisiologia , Membro Anterior/fisiologia , Primatas , Mapeamento Encefálico
6.
J Neurosci ; 43(43): 7130-7148, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37699714

RESUMO

The primary motor cortex (M1) and the dorsal striatum play a critical role in motor learning and the retention of learned behaviors. Motor representations of corticostriatal ensembles emerge during motor learning. In the coordinated reorganization of M1 and the dorsal striatum for motor learning, layer 5a (L5a) which connects M1 to the ipsilateral and contralateral dorsal striatum, should be a key layer. Although M1 L5a neurons represent movement-related activity in the late stage of learning, it is unclear whether the activity is retained as a memory engram. Here, using Tlx3-Cre male transgenic mice, we conducted two-photon calcium imaging of striatum-projecting L5a intratelencephalic (IT) neurons in forelimb M1 during late sessions of a self-initiated lever-pull task and in sessions after 6 d of nontraining following the late sessions. We found that trained male animals exhibited stable motor performance before and after the nontraining days. At the same time, we found that M1 L5a IT neurons strongly represented the well-learned forelimb movement but not uninstructed orofacial movements. A subset of M1 L5a IT neurons consistently coded the well-learned forelimb movement before and after the nontraining days. Inactivation of M1 IT neurons after learning impaired task performance when the lever was made heavier or when the target range of the pull distance was narrowed. These results suggest that a subset of M1 L5a IT neurons continuously represent skilled movement after learning and serve to fine-tune the kinematics of well-learned movement.SIGNIFICANCE STATEMENT Motor memory persists even when it is not used for a while. IT neurons in L5a of the M1 gradually come to represent skilled forelimb movements during motor learning. However, it remains to be determined whether these changes persist over a long period and how these neurons contribute to skilled movements. Here, we show that a subset of M1 L5a IT neurons retain information for skilled forelimb movements even after nontraining days. Furthermore, suppressing the activity of these neurons during skilled forelimb movements impaired behavioral stability and adaptability. Our results suggest the importance of M1 L5a IT neurons for tuning skilled forelimb movements over a long period.


Assuntos
Córtex Motor , Camundongos , Animais , Masculino , Córtex Motor/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Aprendizagem/fisiologia , Membro Anterior/fisiologia
7.
Neuroimage ; : 120791, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147291

RESUMO

Strokes cause spasticity via stretch reflex hyperexcitability in the spinal cord, and spastic paralysis due to involuntary muscle contraction in the hands and fingers can severely restrict skilled hand movements. However, the underlying neurological mechanisms remain unknown. Using a mouse model of spasticity after stroke, we demonstrate changes in neuronal activity with and without electrostimulation of the afferent nerve to induce the stretch reflex, measured using quantitative activation-induced manganese-enhanced magnetic resonance imaging. Neuronal activity increased within the ventral medullary reticular formation (MdV) in the contralesional brainstem during the acute post-stroke phase, and this increase was characterised by activation of circuits involved in spasticity. Interestingly, ascending electrostimulation inhibited the MdV activity on the stimulation side in normal conditions. Moreover, immunohistochemical staining showed that, in the acute phase, the density of GluA1, one of the α-amino-3 hydroxy-5 methyl -4 isoxazolepropionic acid receptor (AMPAR) subunits, at the synapses of MdV neurons was significantly increased. In addition, the GluA1/GluA2 ratio in these receptors was altered at 2 weeks post-stroke, confirming homeostatic plasticity as the underlying mechanisms of spasticity. These results provide new insights into the relationship between impaired skilled movements and spasticity at the acute post-stroke phase.

8.
J Neurophysiol ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39081209

RESUMO

Holding still and aiming reaches to spatial targets may depend on distinct neural circuits. Using automated homecage training and a sensitive joystick, we trained freely-moving mice to contact a joystick, hold their forelimb still, and then reach to rewarded target locations. Mice learned the task by initiating forelimb sequences with clearly resolved submillimeter-scale micromovements followed by millimeter-scale reaches to learned spatial targets. Hundreds of thousands of trajectories were decomposed into millions of kinematic submovements, while photoinhibition was used to test roles of motor cortical areas. Inactivation of both caudal and rostral forelimb areas preserved the ability to produce aimed reaches, but reduced reach speed. Inactivation specifically of contralateral caudal forelimb area (CFA) additionally impaired the ability to aim corrective submovements to remembered locations following target undershoots. Our findings show that motor cortical inactivations reduce the gain of forelimb movements but that inactivation specifically of contralateral CFA impairs corrective movements important for reaching a target location.

9.
Cereb Cortex ; 33(5): 1866-1875, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35511684

RESUMO

The motor cortex is crucial for the voluntary control of skilled movement in mammals and is topographically organized into representations of the body (motor maps). Intracortical microstimulation of the motor cortex with long-duration pulse trains (LD-ICMS; ~500 ms) evokes complex movements, occurring in multiple joints or axial muscles, with characteristic movement postures and cortical topography across a variety of mammalian species. Although the laboratory mouse is extensively used in basic and pre-clinical research, high-resolution motor maps elicited with electrical LD-ICMS in both sexes of the adult mouse has yet to be reported. To address this knowledge gap, we performed LD-ICMS of the forelimb motor cortex in both male (n = 10) and naturally cycling female (n = 8) C57/BL6J mice under light ketamine-xylazine anesthesia. Complex and simple movements were evoked from historically defined caudal (CFA) and rostral (RFA) forelimb areas. Four complex forelimb movements were identified consisting of Elevate, Advance, Dig, and Retract postures with characteristic movement sequences and endpoints. Furthermore, evoked complex forelimb movements and cortical topography in mice were organized within the CFA in a unique manner relative to a qualitative comparison with the rat.


Assuntos
Membro Anterior , Córtex Motor , Ratos , Camundongos , Masculino , Feminino , Animais , Membro Anterior/fisiologia , Movimento/fisiologia , Postura , Córtex Motor/fisiologia , Mapeamento Encefálico , Estimulação Elétrica , Mamíferos
10.
Stroke ; 54(8): 2156-2166, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37439205

RESUMO

BACKGROUND: Stroke results in loss of upper motor neuron control over voluntary movements and emergence of abnormal synergies. Presently, it is unclear to what extent poststroke recovery reflects true recovery (restitution), compensation, or some combination of these processes. Here, we investigated this question using behavioral and kinematic analyses of skilled reaching in rats subjected to severe stroke that affected both the forelimb motor cortex and dorsolateral striatum. METHODS: After stroke, male rats either spontaneously recovered or received enriched rehabilitation. We assessed forelimb motor recovery using behavioral and kinematic outcome measures. To provide insights into the mechanisms underlying the effects of rehabilitation on behavior, we used intracortical microstimulation and FosB (protein fosB) immunostaining techniques. RESULTS: Enriched rehabilitation significantly improved food pellet retrieval in the staircase-reaching task. Rehabilitation resulted in several poststroke flexion synergies returning to prestroke patterns, and across subjects, these changes correlated with the intensity of rehabilitation. Enriched rehabilitation increased the proportion of distal movement representation in the perilesional cortex and increased use-dependent activation in the ipsilesional red nucleus. CONCLUSIONS: These results provide evidence that enriched rehabilitation enhances recovery, at least in part, by restitution of forelimb function following severe stroke. Furthermore, the restitution of function is associated with changes in multiple motor-related structures at different levels of the central nervous system. A better understanding of the processes that underlie improved motor performance, along with the identification of midbrain circuits activated by rehabilitation, represent new insights and potential targets for optimizing poststroke recovery.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Ratos , Masculino , Animais , Humanos , Recuperação de Função Fisiológica/fisiologia , Membro Anterior , Extremidade Superior , Movimento/fisiologia , Modelos Animais de Doenças
11.
Sensors (Basel) ; 23(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37177435

RESUMO

The effects of gait and diameter have been studied independently, but rarely together in equine circular exercise studies. This study aimed to determine the impact of diameter (10-m or 15-m) at various gaits (walk, trot, and canter) on stride frequency or forelimb stance duration. Nine mature horses were outfitted with Tekscan™ Hoof Sensors on their forelimbs during circular and straight-line exercise at various gaits on a clay and sand arena surface. Statistical analysis was performed in SAS 9.4 with fixed effects of exercise type, recording, leg, and breed (PROC GLIMMIX, p < 0.05 significance). At walk (p < 0.0001) and trot (p < 0.001), stride frequency was lower during circular exercise. Stride frequency was similar between forelimbs at all gaits. At walk (p < 0.001) and canter (p = 0.01), stance duration was greatest during 10-m circle exercise. At walk (p = 0.0007), trot (p < 0.001), and canter (p < 0.0001), the inside forelimb had longer stance duration than the outside forelimb. Differences between forelimb stance durations may support asymmetrical travel while horses exercise on a circle at the walk, trot, and canter. These results demonstrate diameter and gait are important factors when evaluating forelimb kinematics during circular exercise.


Assuntos
Marcha , Caminhada , Cavalos , Animais , Membro Anterior , Extremidade Superior , Fenômenos Biomecânicos
12.
Stroke ; 53(5): 1746-1758, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35291824

RESUMO

BACKGROUND: More effective strategies are needed to promote poststroke functional recovery. Here, we evaluated the impact of bihemispheric transcranial direct current stimulation (tDCS) on forelimb motor function recovery and the underlying mechanisms in mice subjected to focal ischemia of the motor cortex. METHODS: Photothrombotic stroke was induced in the forelimb brain motor area, and tDCS was applied once per day for 3 consecutive days, starting 72 hours after stroke. Grid-walking, single pellet reaching, and grip strength tests were conducted to assess motor function. Local field potentials were recorded to evaluate brain connectivity. Western immunoblotting, ELISA, quantitative real-time polymerase chain reaction, and Golgi-Cox staining were used to uncover tDCS-mediated stroke recovery mechanisms. RESULTS: Among our results, tDCS increased the rate of motor recovery, anticipating it at the early subacute stage. In this window, tDCS enhanced BDNF (brain-derived neurotrophic factor) expression and dendritic spine density in the peri-infarct motor cortex, along with increasing functional connectivity between motor and somatosensory cortices. Treatment with the BDNF TrkB (tropomyosin-related tyrosine kinase B) receptor inhibitor, ANA-12, prevented tDCS effects on motor recovery and connectivity as well as the increase of spine density, pERK (phosphorylated extracellular signal-regulated kinase), pCaMKII (phosphorylated calcium/calmodulin-dependent protein kinase II), pMEF (phosphorylated myocyte-enhancer factor), and PSD (postsynaptic density)-95. The tDCS-promoted rescue was paralleled by enhanced plasma BDNF level, suggesting its potential role as circulating prognostic biomarker. CONCLUSIONS: The rate of motor recovery is accelerated by tDCS applied in the subacute phase of stroke. Anticipation of motor recovery via vicariate pathways or neural reserve recruitment would potentially enhance the efficacy of standard treatments, such as physical therapy, which is often delayed to a later stage when plastic responses are progressively lower.


Assuntos
Córtex Motor , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Animais , Fator Neurotrófico Derivado do Encéfalo , Modelos Animais de Doenças , Humanos , Camundongos , Plasticidade Neuronal , Acidente Vascular Cerebral/terapia , Estimulação Transcraniana por Corrente Contínua/métodos
13.
BMC Genomics ; 23(1): 797, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460960

RESUMO

BACKGROUND: Cetacean hindlimbs were lost and their forelimb changed into flippers characterized by webbed digits and hyperphalangy, thus allowing them to adapt to a completely aquatic environment. However, the underlying molecular mechanism behind cetacean limb development remains poorly understood. RESULTS: In the present study, we explored the evolution of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with that of other mammals. TBX5, a forelimb specific expression gene, was identified to have been under accelerated evolution in the ancestral branches of cetaceans. In addition, 32 cetacean-specific changes were examined in the SHH signaling network (SHH, PTCH1, TBX5, BMPs and SMO), within which mutations could yield webbed digits or an additional phalange. These findings thus suggest that the SHH signaling network regulates cetacean flipper formation. By contrast, the regulatory activity of the SHH gene enhancer-ZRS in cetaceans-was significantly lower than in mice, which is consistent with the cessation of SHH gene expression in the hindlimb bud during cetacean embryonic development. It was suggested that the decreased SHH activity regulated by enhancer ZRS might be one of the reasons for hindlimb degeneration in cetaceans. Interestingly, a parallel / convergent site (D42G) and a rapidly evolving CNE were identified in marine mammals in FGF10 and GREM1, respectively, and shown to be essential to restrict limb bud size; this is molecular evidence explaining the convergence of flipper-forelimb and shortening or degeneration of hindlimbs in marine mammals. CONCLUSIONS: We did evolutionary analyses of 16 limb-related genes and their cis-regulatory elements in cetaceans and compared them with those of other mammals to provide novel insights into the molecular basis of flipper forelimb and hindlimb loss in cetaceans.


Assuntos
Membro Anterior , Polidactilia , Feminino , Gravidez , Animais , Camundongos , Membro Posterior , Extremidades , Desenvolvimento Embrionário , Mamíferos
14.
Neurobiol Dis ; 167: 105674, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245676

RESUMO

The primary motor cortex (M1) is crucial for movement execution, especially dexterous ones, but also for cognitive functions like motor learning. The acquisition of motor skills to execute dexterous movements requires dopamine-dependent and -independent plasticity mechanisms within M1. In addition to the basal ganglia, M1 is disturbed in Parkinson's disease (PD). However, little is known about how the lack of dopamine (DA), characteristic of PD, directly or indirectly impacts M1 circuitry. Here we review data from studies of PD patients and the substantial research in non-human primate and rodent models of DA depletion. These models enable us to understand the importance of DA in M1 physiology at the behavioral, network, cellular, and synaptic levels. We first summarize M1 functions and neuronal populations in mammals. We then look at the origin of M1 DA and the cellular location of its receptors and explore the impact of DA loss on M1 physiology, motor, and executive functions. Finally, we discuss how PD treatments impact M1 functions.


Assuntos
Córtex Motor , Doença de Parkinson , Animais , Gânglios da Base , Cognição , Dopamina , Humanos , Mamíferos
15.
J Anat ; 241(1): 119-144, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35107175

RESUMO

Dissection reports of large cats (family Felidae) have been published since the late 19th century. These reports generally describe the findings in words, show drawings of the dissection, and usually include some masses of muscles, but often neglect to provide muscle maps showing the precise location of bony origins and insertions. Although these early reports can be highly useful, the absence of visual depictions of muscle attachment sites makes it difficult to compare muscle origins and insertions in living taxa and especially to reconstruct muscle attachments in fossil taxa. Recently, more muscle maps have been published in the primary literature, but those for large cats are still limited. Here, we describe the muscular anatomy of the forelimb of the tiger (Panthera tigris), and compare muscle origins, insertions, and relative muscle masses to other felids to identify differences that may reflect functional adaptations. Our results reiterate the conservative nature of felid anatomy across body sizes and behavioral categories. We find that pantherines have relatively smaller shoulder muscle masses, and relatively larger muscles of the caudal brachium, pronators, and supinators than felines. The muscular anatomy of the tiger shows several modifications that may reflect an adaptation to terrestrial locomotion and a preference for large prey. These include in general a relatively large m. supraspinatus (shoulder flexion), an expanded origin for m. triceps brachii caput longum, and relatively large m. triceps brachii caput laterale (elbow extension), as well as relatively large mm. brachioradialis, abductor digiti I longus, and abductor digiti V. Muscle groups that are well developed in scansorial taxa are not well developed in the tiger, including muscles of the cranial compartment of the brachium and antebrachium, and m. anconeus. Overall, the musculature of the tiger strongly resembles that of the lion (Panthera leo), another large-bodied terrestrial large-prey specialist.


Assuntos
Felidae , Tigres , Animais , Gatos , Felidae/anatomia & histologia , Membro Anterior/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Extremidade Superior
16.
BMC Vet Res ; 18(1): 147, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459132

RESUMO

BACKGROUND: Limb amputation may be recommended in domestic cats following a severe injury or disease. The purpose of the study was to report the signalment, the complications, recovery outcome, owner satisfaction and expectations of domestic cats following limb amputation. RESULTS: Medical records of 3 specialty hospitals were reviewed for cats that received a single limb amputation in a 10 year period (2007-2017). These cat owners were contacted, and 59 owners completed surveys, comprising the study population. The most common reasons for limb amputation were neoplasia (54.2%, 32/59), traumatic injury (40.7%, 24/59), bone or joint infection (3.4%, 2/59), and thromboembolism (1.7%, 1/59). Thirty-four cats (57.6%) had postoperative complications. Of the fifty-nine surveys, 52.5% reported minor complications and 5.1% reported major complications. There were no differences in postoperative complication rates for thoracic versus pelvic limb amputations. All owners reported either excellent (77.9%, 46/59), good (20.3% 12/59), or fair (1.7%, 1/59) satisfaction with the procedure. Based on their previous experiences, 84.7% (50/59) of owners would elect limb amputation if medically warranted for another pet. The remaining 15.3% of owners who would not elect limb amputation again had experienced death of their pet with a median survival time of 183 days. CONCLUSION: Owners reported a positive satisfaction when considering complications, recovery outcome, and expectations. This study can be used by veterinarians to guide cat owners in the decision making process of limb amputation.


Assuntos
Doenças do Gato , Médicos Veterinários , Amputação Cirúrgica/veterinária , Animais , Doenças do Gato/cirurgia , Gatos , Humanos , Satisfação Pessoal , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/veterinária , Inquéritos e Questionários
17.
Proc Natl Acad Sci U S A ; 116(45): 22844-22850, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636197

RESUMO

Optogenetics is now a fundamental tool for investigating the relationship between neuronal activity and behavior. However, its application to the investigation of motor control systems in nonhuman primates is rather limited, because optogenetic stimulation of cortical neurons in nonhuman primates has failed to induce or modulate any hand/arm movements. Here, we used a tetracycline-inducible gene expression system carrying CaMKII promoter and the gene encoding a Channelrhodopsin-2 variant with fast kinetics in the common marmoset, a small New World monkey. In an awake state, forelimb movements could be induced when Channelrhodopsin-2-expressing neurons in the motor cortex were illuminated by blue laser light with a spot diameter of 1 mm or 2 mm through a cranial window without cortical invasion. Forelimb muscles responded 10 ms to 50 ms after photostimulation onset. Long-duration (500 ms) photostimulation induced discrete forelimb movements that could be markerlessly tracked with charge-coupled device cameras and a deep learning algorithm. Long-duration photostimulation mapping revealed that the primary motor cortex is divided into multiple domains that can induce hand and elbow movements in different directions. During performance of a forelimb movement task, movement trajectories were modulated by weak photostimulation, which did not induce visible forelimb movements at rest, around the onset of task-relevant movement. The modulation was biased toward the movement direction induced by the strong photostimulation. Combined with calcium imaging, all-optical interrogation of motor circuits should be possible in behaving marmosets.


Assuntos
Callithrix/fisiologia , Membro Anterior/fisiologia , Córtex Motor/fisiologia , Movimento , Optogenética , Animais , Eletromiografia , Luz
18.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555504

RESUMO

Recovery of upper limb (UL) impairment after stroke is limited in stroke survivors. Since stroke can be considered as a network disorder, neuromodulation may be an approach to improve UL motor dysfunction. Here, we evaluated the effect of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) in rats on forelimb grasping using the single-pellet reaching (SPR) test after stroke and determined costimulated brain regions during STN-HFS using 2-[18F]Fluoro-2-deoxyglucose-([18F]FDG)-positron emission tomography (PET). After a 4-week training of SPR, photothrombotic stroke was induced in the sensorimotor cortex of the dominant hemisphere. Thereafter, an electrode was implanted in the STN ipsilateral to the infarction, followed by a continuous STN-HFS or sham stimulation for 7 days. On postinterventional day 2 and 7, an SPR test was performed during STN-HFS. Success rate of grasping was compared between these two time points. [18F]FDG-PET was conducted on day 2 and 3 after stroke, without and with STN-HFS, respectively. STN-HFS resulted in a significant improvement of SPR compared to sham stimulation. During STN-HFS, a significantly higher [18F]FDG-uptake was observed in the corticosubthalamic/pallidosubthalamic circuit, particularly ipsilateral to the stimulated side. Additionally, STN-HFS led to an increased glucose metabolism within the brainstem. These data demonstrate that STN-HFS supports rehabilitation of skilled forelimb movements, probably by retuning dysfunctional motor centers within the cerebral network.


Assuntos
Estimulação Encefálica Profunda , Acidente Vascular Cerebral , Núcleo Subtalâmico , Animais , Ratos , Estimulação Encefálica Profunda/métodos , Fluordesoxiglucose F18/metabolismo , Membro Anterior , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo , Núcleo Subtalâmico/diagnóstico por imagem , Extremidade Superior
19.
Dev Dyn ; 250(9): 1340-1357, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33347679

RESUMO

BACKGROUND: Slits (1-3) and their Robo (1-3) receptors play multiple non-neuronal roles in development, including in development of muscle, heart and mammary gland. Previous work has demonstrated expression of Slit and Robo family members during limb development, where their functions are unclear. RESULTS: In situ hybridisation confirmed strong expression of Slit2, Slit3, Robo1, and Robo2 throughout mouse limb and joint development. No expression of Slit1 or Robo3 was detected. Analysis of Slit1/2 or Slit3 knockout mice revealed normal limb development. In contrast, locally blocking Slit signaling though grafting of cells expressing a dominant-negative Robo2 construct in the proximo-central region of developing chicken limb buds caused significant shortening of the humerus. CONCLUSIONS: These findings demonstrate an essential role for Slit/Robo signaling in regulating bone length during chicken limb development.


Assuntos
Proteínas do Tecido Nervoso , Receptores Imunológicos , Animais , Galinhas , Úmero/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais/genética
20.
Dev Biol ; 458(2): 133-140, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31697937

RESUMO

The tetrapod limb has long served as a paradigm to study vertebrate pattern formation. During limb morphogenesis, a number of distinct tissue types are patterned and subsequently must be integrated to form coherent functional units. For example, the musculoskeletal apparatus of the limb requires the coordinated development of the skeletal elements, connective tissues, muscles and nerves. Here, using light-sheet microscopy and 3D-reconstructions, we concomitantly follow the developmental emergence of nerve and muscle patterns in chicken wings and legs, two appendages with highly specialized locomotor outputs. Despite a comparable flexor/extensor-arrangement of their embryonic muscles, wings and legs show a rotated innervation pattern for their three main motor nerve branches. To test the functional implications of these distinct neuromuscular topologies, we challenge their ability to adapt and connect to an experimentally altered skeletal pattern in the distal limb, the autopod. Our results show that, unlike autopod muscle groups, motor nerves are unable to fully adjust to a changed peripheral organisation, potentially constrained by their original projection routes. As the autopod has undergone substantial morphological diversifications over the course of tetrapod evolution, our results have implications for the coordinated modification of the distal limb musculoskeletal apparatus, as well as for our understanding of the varying degrees of motor functionality associated with human hand and foot malformations.


Assuntos
Membro Posterior/embriologia , Asas de Animais/embriologia , Animais , Embrião de Galinha , Galinhas , Extremidades/embriologia , Músculos/embriologia , Sistema Nervoso/embriologia , Organogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa