Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Glob Chang Biol ; 30(8): e17473, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39155688

RESUMO

Tree allometric models, essential for monitoring and predicting terrestrial carbon stocks, are traditionally built on global databases with forest inventory measurements of stem diameter (D) and tree height (H). However, these databases often combine H measurements obtained through various measurement methods, each with distinct error patterns, affecting the resulting H:D allometries. In recent decades, terrestrial laser scanning (TLS) has emerged as a widely accepted method for accurate, non-destructive tree structural measurements. This study used TLS data to evaluate the prediction accuracy of forest inventory-based H:D allometries and to develop more accurate pantropical allometries. We considered 19 tropical rainforest plots across four continents. Eleven plots had forest inventory and RIEGL VZ-400(i) TLS-based D and H data, allowing accuracy assessment of local forest inventory-based H:D allometries. Additionally, TLS-based data from 1951 trees from all 19 plots were used to create new pantropical H:D allometries for tropical rainforests. Our findings reveal that in most plots, forest inventory-based H:D allometries underestimated H compared with TLS-based allometries. For 30-metre-tall trees, these underestimations varied from -1.6 m (-5.3%) to -7.5 m (-25.4%). In the Malaysian plot with trees reaching up to 77 m in height, the underestimation was as much as -31.7 m (-41.3%). We propose a TLS-based pantropical H:D allometry, incorporating maximum climatological water deficit for site effects, with a mean uncertainty of 19.1% and a mean bias of -4.8%. While the mean uncertainty is roughly 2.3% greater than that of the Chave2014 model, this model demonstrates more consistent uncertainties across tree size and delivers less biased estimates of H (with a reduction of 8.23%). In summary, recognizing the errors in H measurements from forest inventory methods is vital, as they can propagate into the allometries they inform. This study underscores the potential of TLS for accurate H and D measurements in tropical rainforests, essential for refining tree allometries.


Assuntos
Floresta Úmida , Árvores , Clima Tropical , Lasers
2.
J Environ Manage ; 368: 122002, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137635

RESUMO

In recent years, Climate-Smart Forestry (CSF) has emerged as an innovative approach to sustainable forest management, aiming to enhance forest resilience and to balance the provision of ecosystem services facing climate-related threats. This study introduces for the first time a new composite climate-smart index (ICSF) to assess CSF. The methodological approach comprises the following steps: (i) the selection and evaluation of CSF indicators; (ii) the weighting of these indicators; and (iii) the assessment of CSF for Mediterranean forests in two distinct periods, specifically 2005 and 2015. Eight indicators were selected from a systematic literature review. The Analytic Hierarchy Process was applied to translate the preferences obtained through an online questionnaire from a network of CSF-expert stakeholders into weights, at both indicators and criteria levels (i.e., adaptation, mitigation, and the social dimension). Results reveals that indicators "tree species composition", "forest damage", and "regeneration" are of crucial importance for CSF assessment. The comparison of the CSF value between the years 2005 and 2015, shows a slight increase in CSF ratings. The ICSF serves as a comprehensive index of CSF covering all aspects of that concept, i.e. adaptation, mitigation, and the social dimension (including production). The national-scale analysis provides an overview of the dynamics that involve forest management of Mediterranean forests against climate change. The study offers a practicable method for CSF evaluation with its allover set of indicators, representing a suitable tool for supporting forest managers to mitigate the negative impacts of climate change.

3.
Glob Chang Biol ; 29(4): 1096-1105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36468232

RESUMO

Episodes of forest mortality have been observed worldwide associated with climate change, impacting species composition and ecosystem services such as water resources and carbon sequestration. Yet our ability to predict forest mortality remains limited, especially across large scales. Time series of satellite imagery has been used to document ecosystem resilience globally, but it is not clear how well remotely sensed resilience can inform the prediction of forest mortality across continental, multi-biome scales. Here, we leverage forest inventories across the continental United States to systematically assess the potential of ecosystem resilience derived using different data sets and methods to predict forest mortality. We found high resilience was associated with low mortality in eastern forests but was associated with high mortality in western regions. The unexpected resilience-mortality relation in western United States may be due to several factors including plant trait acclimation, insect population dynamics, or resource competition. Overall, our results not only supported the opportunity to use remotely sensed ecosystem resilience to predict forest mortality but also highlighted that ecological factors may have crucial influences because they can reverse the sign of the resilience-mortality relationships.


Assuntos
Ecossistema , Árvores , Estados Unidos , Florestas , Dinâmica Populacional , Sequestro de Carbono , Mudança Climática
4.
Glob Chang Biol ; 29(17): 4861-4879, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37386918

RESUMO

For more than three decades, major efforts in sampling and analyzing tree diversity in South America have focused almost exclusively on trees with stems of at least 10 and 2.5 cm diameter, showing highest species diversity in the wetter western and northern Amazon forests. By contrast, little attention has been paid to patterns and drivers of diversity in the largest canopy and emergent trees, which is surprising given these have dominant ecological functions. Here, we use a machine learning approach to quantify the importance of environmental factors and apply it to generate spatial predictions of the species diversity of all trees (dbh ≥ 10 cm) and for very large trees (dbh ≥ 70 cm) using data from 243 forest plots (108,450 trees and 2832 species) distributed across different forest types and biogeographic regions of the Brazilian Amazon. The diversity of large trees and of all trees was significantly associated with three environmental factors, but in contrasting ways across regions and forest types. Environmental variables associated with disturbances, for example, the lightning flash rate and wind speed, as well as the fraction of photosynthetically active radiation, tend to govern the diversity of large trees. Upland rainforests in the Guiana Shield and Roraima regions had a high diversity of large trees. By contrast, variables associated with resources tend to govern tree diversity in general. Places such as the province of Imeri and the northern portion of the province of Madeira stand out for their high diversity of species in general. Climatic and topographic stability and functional adaptation mechanisms promote ideal conditions for species diversity. Finally, we mapped general patterns of tree species diversity in the Brazilian Amazon, which differ substantially depending on size class.


Assuntos
Aclimatação , Vento , Brasil , Floresta Úmida , Biodiversidade
5.
Glob Chang Biol ; 29(10): 2836-2851, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36757005

RESUMO

With climate change, natural disturbances such as storm or fire are reshuffled, inducing pervasive shifts in forest dynamics. To predict how it will impact forest structure and composition, it is crucial to understand how tree species differ in their sensitivity to disturbances. In this study, we investigated how functional traits and species mean climate affect their sensitivity to disturbances while controlling for tree size and stand structure. With data on 130,594 trees located on 7617 plots that were disturbed by storm, fire, snow, biotic or other disturbances from the French, Spanish, and Finnish National Forest Inventory, we modeled annual mortality probability for 40 European tree species as a function of tree size, dominance status, disturbance type, and intensity. We tested the correlation of our estimated species probability of disturbance mortality with their traits and their mean climate niches. We found that different trait combinations controlled species sensitivity to disturbances. Storm-sensitive species had a high height-dbh ratio, low wood density and high maximum growth, while fire-sensitive species had low bark thickness and high P50. Species from warmer and drier climates, where fires are more frequent, were more resistant to fire. The ranking in disturbance sensitivity between species was overall consistent across disturbance types. Productive conifer species were the most disturbance sensitive, while Mediterranean oaks were the least disturbance sensitive. Our study identified key relations between species functional traits and disturbance sensitivity, that allows more reliable predictions of how changing climate and disturbance regimes will impact future forest structure and species composition at large spatial scales.


Assuntos
Incêndios , Florestas , Mudança Climática , Probabilidade
6.
Glob Chang Biol ; 29(16): 4530-4542, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37287121

RESUMO

Non-native trees may have significant impacts on the carbon sink capacity of forested lands. However, large-scale patterns of the relative capacity of native and non-native forests to uptake and store carbon remain poorly described in the literature, and this information is urgently needed to support management decisions. In this study, we analyzed 17,065 plots from the Spanish Forest Inventory (covering c. 30 years) to quantify carbon storage and sequestration of natural forests and plantations of native and non-native trees under contrasting climate types, while controlling for the effects of environmental factors (forest structure, climate, soil, topography, and management). We found that forest origin (non-native vs. native) highly influenced carbon storage and sequestration, but such effect was dependent on climate. Carbon storage was greater in non-native than in native forests in both wet and dry climates. Non-native forests also had greater carbon sequestration than native ones in the wet climate, due to higher carbon gains by tree growth. However, in the dry climate, native forests had greater carbon gains by tree ingrowth and lower carbon loss by tree mortality than non-native ones. Furthermore, forest type (classified by the dominant species) and natural forests versus tree plantations were important determinants of carbon storage and sequestration. Native and non-native Pinus spp. forests had low carbon storage, whereas non-native Eucalyptus spp. forests and native Quercus spp., Fagus sylvatica, and Eurosiberian mixed forests (especially not planted ones) had high carbon storage. Carbon sequestration was greatest in Eucalyptus globulus, Quercus ilex, and Pinus pinaster forests. Overall, our findings suggest that the relative capacity of native and non-native forests to uptake and store carbon depends on climate, and that the superiority of non-native forests over native ones in terms of carbon sequestration declines as the abiotic filters become stronger (i.e., lower water availability and higher climate seasonality).


Assuntos
Pinus , Quercus , Carbono , Florestas , Árvores , Clima , Sequestro de Carbono
7.
Glob Chang Biol ; 29(13): 3601-3621, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36997337

RESUMO

Amazonian forests function as biomass and biodiversity reservoirs, contributing to climate change mitigation. While they continuously experience disturbance, the effect that disturbances have on biomass and biodiversity over time has not yet been assessed at a large scale. Here, we evaluate the degree of recent forest disturbance in Peruvian Amazonia and the effects that disturbance, environmental conditions and human use have on biomass and biodiversity in disturbed forests. We integrate tree-level data on aboveground biomass (AGB) and species richness from 1840 forest plots from Peru's National Forest Inventory with remotely sensed monitoring of forest change dynamics, based on disturbances detected from Landsat-derived Normalized Difference Moisture Index time series. Our results show a clear negative effect of disturbance intensity tree species richness. This effect was also observed on AGB and species richness recovery values towards undisturbed levels, as well as on the recovery of species composition towards undisturbed levels. Time since disturbance had a larger effect on AGB than on species richness. While time since disturbance has a positive effect on AGB, unexpectedly we found a small negative effect of time since disturbance on species richness. We estimate that roughly 15% of Peruvian Amazonian forests have experienced disturbance at least once since 1984, and that, following disturbance, have been increasing in AGB at a rate of 4.7 Mg ha-1 year-1 during the first 20 years. Furthermore, the positive effect of surrounding forest cover was evident for both AGB and its recovery towards undisturbed levels, as well as for species richness. There was a negative effect of forest accessibility on the recovery of species composition towards undisturbed levels. Moving forward, we recommend that forest-based climate change mitigation endeavours consider forest disturbance through the integration of forest inventory data with remote sensing methods.


Los bosques amazónicos son reservorios y sumideros de carbono, contribuyendo a la mitigación del cambio climático. Si bien experimentan perturbaciones, el efecto de estas en la biomasa y biodiversidad a través del tiempo no ha sido evaluado a gran escala. En este estudio, evaluamos el grado de perturbación forestal reciente en la Amazonía peruana y los efectos de las perturbaciones, condiciones ambientales y actividad antrópica sobre la biomasa y la biodiversidad en bosques perturbados. Los datos de biomasa aérea y riqueza de especies forestales provenientes de 1,840 subparcelas del Inventario Nacional Forestal y de Fauna Silvestre (INFFS) se analizaron en conjunto con la información de detección de cambios de cobertura forestal derivadas de perturbaciones detectadas a partir de series de tiempo de índices de diferencia de humedad normalizados (NDMI) a partir de imágenes Landsat. Nuestros resultados muestran un claro efecto negativo de la intensidad de las perturbaciones sobre la riqueza de especies arbóreas. Este efecto también fue observado en los valores de recuperación de biomasa aérea y riqueza de especies arbóreas hacia niveles no perturbados, así como en la recuperación de la composición florística. El tiempo transcurrido desde la perturbación tuvo un efecto mayor sobre la biomasa aérea que sobre la riqueza de especies. Mientras el tiempo desde una perturbación forestal tuvo un efecto positivo sobre la biomasa área, se observó un pequeño efecto negativo sobre la riqueza de especies. Estimamos que aproximadamente el 15% de los bosques en la Amazonía peruana han experimentado una perturbación al menos una vez desde 1984, y que, tras esta, han aumentado en biomasa aérea en una tasa de 4.7 Mg ha−1 año−1 durante los primeros 20 años posteriores al evento de perturbación. Además, el efecto positivo de la cubierta forestal circundante fue evidente tanto para la biomasa aérea como para su recuperación hacia niveles no perturbados, así como para los valores de riqueza de especies. La accesibilidad a bosques tuvo un efecto negativo en la recuperación de la composición de especies hacia niveles no perturbados. Recomendamos que los esfuerzos de mitigación de cambio climático basados en bosques tengan en cuenta las perturbaciones forestales mediante el análisis integrado de información de inventarios forestales con métodos de teledetección.


Assuntos
Biodiversidade , Clima Tropical , Humanos , Peru , Biomassa , Brasil
8.
Proc Natl Acad Sci U S A ; 117(40): 24649-24651, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958649

RESUMO

Several initiatives have been proposed to mitigate forest loss and climate change through tree planting as well as maintaining and restoring forest ecosystems. These initiatives have both inspired and been inspired by global assessments of tree and forest attributes and their contributions to offset carbon dioxide (CO2) emissions. Here we use data from more than 130,000 national forest inventory plots to describe the contribution of nearly 1.4 trillion trees on forestland in the conterminous United States to mitigate CO2 emissions and the potential to enhance carbon sequestration capacity on productive forestland. Forests and harvested wood products uptake the equivalent of more than 14% of economy-wide CO2 emissions in the United States annually, and there is potential to increase carbon sequestration capacity by ∼20% (-187.7 million metric tons [MMT] CO2 ±9.1 MMT CO2) per year by fully stocking all understocked productive forestland. However, there are challenges and opportunities to be considered with tree planting. We provide context and estimates from the United States to inform assessments of the potential contributions of forests in climate change mitigation associated with tree planting.

9.
Proc Natl Acad Sci U S A ; 117(15): 8532-8538, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32229563

RESUMO

Understanding the driving mechanisms behind existing patterns of vegetation hydraulic traits and community trait diversity is critical for advancing predictions of the terrestrial carbon cycle because hydraulic traits affect both ecosystem and Earth system responses to changing water availability. Here, we leverage an extensive trait database and a long-term continental forest plot network to map changes in community trait distributions and quantify "trait velocities" (the rate of change in community-weighted traits) for different regions and different forest types across the United States from 2000 to the present. We show that diversity in hydraulic traits and photosynthetic characteristics is more related to local water availability than overall species diversity. Finally, we find evidence for coordinated shifts toward communities with more drought-tolerant traits driven by tree mortality, but the magnitude of responses differs depending on forest type. The hydraulic trait distribution maps provide a publicly available platform to fundamentally advance understanding of community trait change in response to climate change and predictive abilities of mechanistic vegetation models.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Florestas , Fenômenos Fisiológicos Vegetais , Árvores/fisiologia , Água , Secas , Estresse Fisiológico
10.
Sensors (Basel) ; 23(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37430655

RESUMO

Automated forest machines are becoming important due to human operators' complex and dangerous working conditions, leading to a labor shortage. This study proposes a new method for robust SLAM and tree mapping using low-resolution LiDAR sensors in forestry conditions. Our method relies on tree detection to perform scan registration and pose correction using only low-resolution LiDAR sensors (16Ch, 32Ch) or narrow field of view Solid State LiDARs without additional sensory modalities like GPS or IMU. We evaluate our approach on three datasets, including two private and one public dataset, and demonstrate improved navigation accuracy, scan registration, tree localization, and tree diameter estimation compared to current approaches in forestry machine automation. Our results show that the proposed method yields robust scan registration using detected trees, outperforming generalized feature-based registration algorithms like Fast Point Feature Histogram, with an above 3 m reduction in RMSE for the 16Chanel LiDAR sensor. For Solid-State LiDAR the algorithm achieves a similar RMSE of 3.7 m. Additionally, our adaptive pre-processing and heuristic approach to tree detection increased the number of detected trees by 13% compared to the current approach of using fixed radius search parameters for pre-processing. Our automated tree trunk diameter estimation method yields a mean absolute error of 4.3 cm (RSME = 6.5 cm) for the local map and complete trajectory maps.

11.
Environ Monit Assess ; 195(11): 1334, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851130

RESUMO

The Hyrcanian forest is a global biodiversity hotspot that harbors many endemic and endangered tree species, but its tree diversity is threatened by various human-induced disturbances, such as logging, grazing, and urbanization. To address this issue, we conducted a study using three machine learning methods, i.e., linear regression (LR), random forest (RF), and support vector machine (SVM), to assess and predict tree species diversity within the forest. To do so, we collected an extensive dataset of forest structure and environmental factors from 2725 sample plots located throughout the forest. The Shannon-Wiener diversity index was used to quantify the tree species diversity for each plot. We found that basal area, tree density, and height of trees were the most important predictors of tree diversity, followed by diameter at breast height, elevation, slope, and aspect. We measured the performance of the models using the coefficient of determination (R2), root mean square error (RMSE), and percent of relative error index (PREI), and found RF as the best-performing model in both the training (RMSE = 0.143, R2 = 0.94, and PREI = - 0.09) and validation (RMSE = 0.15, R2 = 0.94, and PREI = - 0.09) phases. RF was able to generalize effectively to new data without losing much accuracy or explanatory power. SVM demonstrated a moderate performance training (training phase: RMSE = 0.23, R2 = 0.57, and PREI = - 0.17) and (validation phase: RMSE = 0.36, R2 = 0.34, and PREI = - 0.21) among the models, while LR performed the worst (training phase: RMSE = 0.41, R2 = 0.13, and PREI = - 0.19) and (validation phase: RMSE = 0.41, R2 = 0.11, and PREI = - 0.36). These findings have broad applications beyond this specific region and can contribute to promoting sustainable land use practices and conservation efforts in other ecosystems facing similar challenges.


Assuntos
Ecossistema , Monitoramento Ambiental , Animais , Humanos , Irã (Geográfico) , Monitoramento Ambiental/métodos , Biodiversidade , Aprendizado de Máquina , Espécies em Perigo de Extinção
12.
Environ Monit Assess ; 195(12): 1478, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966615

RESUMO

Forest resource reporting techniques primarily use the two most recent measurements for understanding forest change. Multiple remeasurements now exist within the US national forest inventory (NFI), providing an opportunity to examine long-term forest demographics. We leverage two decades of remeasurements to quantify live-dead wood demographics which can better inform estimates of resource changes in forest ecosystems. Our overall objective is to identify opportunities and gaps in tracking 20 years of forest demographics within the US NFI using east Texas as a pilot study region given its diversity of tree species, prevalence of managed conditions, frequency of disturbances, and relatively rapid change driven by a warm, humid climate. We examine growth and mortality rates, identify transitions to downed dead wood/litter and removal via harvest, and describe implications of these processes focusing on key species groups (i.e., loblolly pine, post oak, and water oak) and size classes (i.e., saplings, small and large trees). Growth and mortality rates fluctuated differently over time by species and stem sizes in response to large-scale disturbances, namely the 2011 drought in Texas. Tree-fall rates were highest in saplings and snag-fall rates trended higher in smaller trees. For removal rates, different stem sizes generally followed similar patterns within each species group. Forest demographics from the field-based US NFI are informative for identifying diffuse lagged mortality, species- and size-specific effects, and management effects. Moreover, researchers continually seek to employ ancillary data and develop new statistical methods to enhance understanding of forest resource changes from field-based inventories.


Assuntos
Ecossistema , Quercus , Projetos Piloto , Texas , Monitoramento Ambiental , Florestas , Árvores , Demografia
13.
Ecol Lett ; 25(1): 38-51, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34708503

RESUMO

Estimates of the percentage of species "committed to extinction" by climate change range from 15% to 37%. The question is whether factors other than climate need to be included in models predicting species' range change. We created demographic range models that include climate vs. climate-plus-competition, evaluating their influence on the geographic distribution of Pinus edulis, a pine endemic to the semiarid southwestern U.S. Analyses of data on 23,426 trees in 1941 forest inventory plots support the inclusion of competition in range models. However, climate and competition together only partially explain this species' distribution. Instead, the evidence suggests that climate affects other range-limiting processes, including landscape-scale, spatial processes such as disturbances and antagonistic biotic interactions. Complex effects of climate on species distributions-through indirect effects, interactions, and feedbacks-are likely to cause sudden changes in abundance and distribution that are not predictable from a climate-only perspective.


Assuntos
Ecossistema , Pinus , Mudança Climática , Florestas , Árvores
14.
Glob Chang Biol ; 28(7): 2442-2460, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35023229

RESUMO

Robust ecological forecasting of tree growth under future climate conditions is critical to anticipate future forest carbon storage and flux. Here, we apply three ingredients of ecological forecasting that are key to improving forecast skill: data fusion, confronting model predictions with new data, and partitioning forecast uncertainty. Specifically, we present the first fusion of tree-ring and forest inventory data within a Bayesian state-space model at a multi-site, regional scale, focusing on Pinus ponderosa var. brachyptera in the southwestern US. Leveraging the complementarity of these two data sources, we parsed the ecological complexity of tree growth into the effects of climate, tree size, stand density, site quality, and their interactions, and quantified uncertainties associated with these effects. New measurements of trees, an ongoing process in forest inventories, were used to confront forecasts of tree diameter with observations, and evaluate alternative tree growth models. We forecasted tree diameter and increment in response to an ensemble of climate change projections, and separated forecast uncertainty into four different causes: initial conditions, parameters, climate drivers, and process error. We found a strong negative effect of fall-spring maximum temperature, and a positive effect of water-year precipitation on tree growth. Furthermore, tree vulnerability to climate stress increases with greater competition, with tree size, and at poor sites. Under future climate scenarios, we forecast increment declines of 22%-117%, while the combined effect of climate and size-related trends results in a 56%-91% decline. Partitioning of forecast uncertainty showed that diameter forecast uncertainty is primarily caused by parameter and initial conditions uncertainty, but increment forecast uncertainty is mostly caused by process error and climate driver uncertainty. This fusion of tree-ring and forest inventory data lays the foundation for robust ecological forecasting of aboveground biomass and carbon accounting at tree, plot, and regional scales, including iterative improvement of model skill.


Assuntos
Florestas , Pinus , Teorema de Bayes , Carbono , Mudança Climática , Incerteza
15.
Bioscience ; 72(3): 233-246, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35241971

RESUMO

Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.

16.
Ecol Appl ; 32(7): e2646, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35524985

RESUMO

Estimating tree leaf biomass can be challenging in applications where predictions for multiple tree species is required. This is especially evident where there is limited or no data available for some of the species of interest. Here we use an extensive national database of observations (61 species, 3628 trees) and formulate models of varying complexity, ranging from a simple model with diameter at breast height (DBH) as the only predictor to more complex models with up to 8 predictors (DBH, leaf longevity, live crown ratio, wood specific gravity, shade tolerance, mean annual temperature, and mean annual precipitation), to estimate tree leaf biomass for any species across the continental United States. The most complex with all eight predictors was the best and explained 74%-86% of the variation in leaf mass. Consideration was given to the difficulty of measuring all of these predictor variables for model application, but many are easily obtained or already widely collected. Because most of the model variables are independent of species and key species-level variables are available from published values, our results show that leaf biomass can be estimated for new species not included in the data used to fit the model. The latter assertion was evaluated using a novel "leave-one-species-out" cross-validation approach, which showed that our chosen model performs similarly for species used to calibrate the model, as well as those not used to develop it. The models exhibited a strong bias toward overestimation for a relatively small subset of the trees. Despite these limitations, the models presented here can provide leaf biomass estimates for multiple species over large spatial scales and can be applied to new species or species with limited leaf biomass data available.


Assuntos
Folhas de Planta , Árvores , Biomassa , Clima , Estados Unidos , Madeira
17.
Ecol Appl ; 32(5): e2589, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35333426

RESUMO

Tree-ring data has been widely used to inform about tree growth responses to drought at the individual scale, but less is known about how tree growth sensitivity to drought scales up driving changes in forest dynamics. Here, we related tree-ring growth chronologies and stand-level forest changes in basal area from two independent data sets to test if tree-ring responses to drought match stand forest dynamics (stand basal area growth, ingrowth, and mortality). We assessed if tree growth and changes in forest basal area covary as a function of spatial scale and tree taxa (gymnosperm or angiosperm). To this end, we compared a tree-ring network with stand data from the Spanish National Forest Inventory. We focused on the cumulative impact of drought on tree growth and demography in the period 1981-2005. Drought years were identified by the Standardized Precipitation Evapotranspiration Index, and their impacts on tree growth by quantifying tree-ring width reductions. We hypothesized that forests with greater drought impacts on tree growth will also show reduced stand basal area growth and ingrowth and enhanced mortality. This is expected to occur in forests dominated by gymnosperms on drought-prone regions. Cumulative growth reductions during dry years were higher in forests dominated by gymnosperms and presented a greater magnitude and spatial autocorrelation than for angiosperms. Cumulative drought-induced tree growth reductions and changes in forest basal area were related, but initial stand density and basal area were the main factors driving changes in basal area. In drought-prone gymnosperm forests, we observed that sites with greater growth reductions had lower stand basal area growth and greater mortality. Consequently, stand basal area, forest growth, and ingrowth in regions with large drought impacts was significantly lower than in regions less impacted by drought. Tree growth sensitivity to drought can be used as a predictor of gymnosperm demographic rates in terms of stand basal area growth and ingrowth at regional scales, but further studies may try to disentangle how initial stand density modulates such relationships. Drought-induced growth reductions and their cumulative impacts have strong potential to be used as early-warning indicators of regional forest vulnerability.


Assuntos
Magnoliopsida , Árvores , Mudança Climática , Secas , Florestas
18.
Ecol Appl ; 32(2): e2508, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34870359

RESUMO

Invasive forest insects have significant direct impacts on forest ecosystems and they are also generating new risks, uncertainties, and opportunities for forest landowners. The growing prevalence and inexorable spread of invasive insects across the United States, combined with the fact that the majority of the nation's forests are controlled by thousands of autonomous private landowners, raises an important question: To what extent will private landowners alter their harvest practices in response to insect invasions? Using a quasi-experimental design, we conducted a causal analysis to investigate the influence of the highly impactful emerald ash borer (EAB) on (1) annual probability of harvest; (2) intensity of harvest; and (3) diameter of harvested trees, for both ash and non-ash species on private land throughout the Midwest and mid-Atlantic regions of the United States. We found that EAB detection had a negative impact on annual harvest probability and a positive impact on harvest intensity, resulting in a net increase in harvested biomass. Furthermore, our estimates suggest that EAB detection will influence private landowners to harvest greater quantities of ash, relative to non-ash species. We also found that harvested trees in EAB-infested areas had smaller diameters, on average, compared with those unaffected by EAB. These results can help policymakers, forest managers, and extension programs to anticipate and better advise landowners and managers about their options and the associated outcomes for forests.


Assuntos
Besouros , Fraxinus , Animais , Besouros/fisiologia , Ecossistema , Insetos , Larva/fisiologia
19.
J Environ Manage ; 302(Pt B): 114099, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801867

RESUMO

Efficient forest operations are required for the provision of biodiversity and numerous ecosystem services, such as wood production, carbon sequestration, protection against natural hazards and recreation. In numerous countries, under difficult terrain conditions, the costs of forest management and harvesting are not covered by timber revenue. One possible option to increase the cost-effectiveness of the forestry sector is the application of state-of-the-art harvesting and extraction techniques, so-called best suitable harvesting methods. We present a case study from Switzerland, where a lack of competitiveness in the forestry sector is of particular interest, with the aim of quantifying the efficiency gains if estimated best suitable harvesting methods were to be rigorously applied instead of the currently applied harvesting methods. For this purpose, we developed a spatial decision support system to allocate estimated best suitable harvesting methods to plots, while concurrently considering hauling route limitations, extraction route properties and stand characteristics. Our approach was based on productivity models and supported with expert-defined decision trees. The evaluation of the estimated best suitable harvesting methods and the comparison with the currently applied harvesting methods were completed for all 6500 National Forest Inventory (NFI) plots in Switzerland. We draw the following three major conclusions from our study: First, our modeling approach is an effective method to allocate estimated best suitable harvesting methods to NFI plots. Second, applying estimated best suitable harvesting methods would lead to cost reductions, in particular in the regions that include steep terrain and where harvesting mainly relies on cable- and air based extraction methods. Third, assuming an average timber price of 75 CHF m -3, 64 % instead of 52 % of the forest area could be harvested economically over the whole country if estimated best suitable methods were applied. This advantage would mainly be caused by a shift towards more mechanized harvesting methods. Improving the cost-effectiveness of the forestry sector is of high global relevance, as the increased use of domestic timber resources is a cost-efficient way to reduce atmospheric carbon emissions. The methodological framework described here was developed for Switzerland in particular, but it could be applied to Central Europe and other parts of Europe with a large amount of mountain forests.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Agricultura Florestal , Florestas
20.
New Phytol ; 230(5): 1896-1910, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33112415

RESUMO

Global warming is expected to exacerbate the duration and intensity of droughts in the western United States, which may lead to increased tree mortality. A prevailing proximal mechanism of drought-induced tree mortality is hydraulic damage, but predicting tree mortality from hydraulic theory and climate data still remains a major scientific challenge. We used forest inventory data and a plant hydraulic model (HM) to address three questions: can we capture regional patterns of drought-induced tree mortality with HM-predicted damage thresholds; do HM metrics improve predictions of mortality across broad spatial areas; and what are the dominant controls of forest mortality when considering stand characteristics, climate metrics, and simulated hydraulic stress? We found that the amount of variance explained by models predicting mortality was limited (R2 median = 0.10, R2 range: 0.00-0.52). HM outputs, including hydraulic damage and carbon assimilation diagnostics, moderately improve mortality prediction across the western US compared with models using stand and climate predictors alone. Among factors considered, metrics of stand density and tree size tended to be some of the most critical factors explaining mortality, probably highlighting the important roles of structural overshoot, stand development, and biotic agent host selection and outbreaks in mortality patterns.


Assuntos
Secas , Florestas , Clima , Mudança Climática , Árvores , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa