Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 178(3): 600-611.e16, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348887

RESUMO

The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate-distinct from that between Mcm2/5 used for origin loading-is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 81(14): 2989-3006.e9, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34197737

RESUMO

Stalled DNA replication fork restart after stress as orchestrated by ATR kinase, BLM helicase, and structure-specific nucleases enables replication, cell survival, and genome stability. Here we unveil human exonuclease V (EXO5) as an ATR-regulated DNA structure-specific nuclease and BLM partner for replication fork restart. We find that elevated EXO5 in tumors correlates with increased mutation loads and poor patient survival, suggesting that EXO5 upregulation has oncogenic potential. Structural, mechanistic, and mutational analyses of EXO5 and EXO5-DNA complexes reveal a single-stranded DNA binding channel with an adjacent ATR phosphorylation motif (T88Q89) that regulates EXO5 nuclease activity and BLM binding identified by mass spectrometric analysis. EXO5 phospho-mimetic mutant rescues the restart defect from EXO5 depletion that decreases fork progression, DNA damage repair, and cell survival. EXO5 depletion furthermore rescues survival of FANCA-deficient cells and indicates EXO5 functions epistatically with SMARCAL1 and BLM. Thus, an EXO5 axis connects ATR and BLM in directing replication fork restart.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Replicação do DNA/genética , DNA/genética , Exonucleases/genética , Instabilidade Genômica/genética , RecQ Helicases/genética , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/genética , DNA Helicases/genética , Análise Mutacional de DNA/métodos , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Mutação/genética , Oncogenes/genética , Fosforilação/genética , Regulação para Cima/genética
3.
Mol Cell ; 81(1): 198-211.e6, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33296677

RESUMO

Replication fork reversal is a global response to replication stress in mammalian cells, but precisely how it occurs remains poorly understood. Here, we show that, upon replication stress, DNA topoisomerase IIalpha (TOP2A) is recruited to stalled forks in a manner dependent on the SNF2-family DNA translocases HLTF, ZRANB3, and SMARCAL1. This is accompanied by an increase in TOP2A SUMOylation mediated by the SUMO E3 ligase ZATT and followed by recruitment of a SUMO-targeted DNA translocase, PICH. Disruption of the ZATT-TOP2A-PICH axis results in accumulation of partially reversed forks and enhanced genome instability. These results suggest that fork reversal occurs via a sequential two-step process. First, HLTF, ZRANB3, and SMARCAL1 initiate limited fork reversal, creating superhelical strain in the newly replicated sister chromatids. Second, TOP2A drives extensive fork reversal by resolving the resulting topological barriers and via its role in recruiting PICH to stalled forks.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Topoisomerases Tipo II/metabolismo , Genoma Humano , Instabilidade Genômica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , DNA Helicases/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Mol Cell ; 68(5): 830-833, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220651

RESUMO

Replication fork reversal is a rapidly emerging and remarkably frequent mechanism of fork stabilization in response to genotoxic insults. Here, we summarize recent findings that uncover key molecular determinants for reversed fork formation and describe how the homologous recombination factors BRCA1, BRCA2, and RAD51 protect these structures from extended nucleolytic degradation.


Assuntos
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Dano ao DNA , Replicação do DNA , DNA/biossíntese , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , DNA/genética , Humanos , Rad51 Recombinase/genética
5.
Genes Dev ; 31(8): 816-829, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28487407

RESUMO

DNA replication fork progression can be disrupted at difficult to replicate loci in the human genome, which has the potential to challenge chromosome integrity. This replication fork disruption can lead to the dissociation of the replisome and the formation of DNA damage. To model the events stemming from replisome dissociation during DNA replication perturbation, we used a degron-based system for inducible proteolysis of a subunit of the replicative helicase. We show that MCM2-depleted cells activate a DNA damage response pathway and generate replication-associated DNA double-strand breaks (DSBs). Remarkably, these cells maintain some DNA synthesis in the absence of MCM2, and this requires the MCM8-9 complex, a paralog of the MCM2-7 replicative helicase. We show that MCM8-9 functions in a homologous recombination-based pathway downstream from RAD51, which is promoted by DSB induction. This RAD51/MCM8-9 axis is distinct from the recently described RAD52-dependent DNA synthesis pathway that operates in early mitosis at common fragile sites. We propose that stalled replication forks can be restarted in S phase via homologous recombination using MCM8-9 as an alternative replicative helicase.


Assuntos
Replicação do DNA/genética , DNA/biossíntese , Proteínas de Manutenção de Minicromossomo/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Ativação Enzimática/genética , Células HCT116 , Recombinação Homóloga/genética , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Mutação , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Fase S/genética
6.
J Bacteriol ; 204(3): e0053921, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007156

RESUMO

DNA replication forks regularly encounter lesions or other impediments that result in a blockage to fork progression. PriA is one of the key proteins used by virtually all eubacteria to survive conditions that result in a blockage to replication fork movement. PriA directly binds stalled replication forks and initiates fork restart allowing for chromosomes to be fully duplicated under stressful conditions. We used a CRISPR-Cas gene editing approach to map PriA residues critical for surviving DNA damage induced by several antibiotics in B. subtilis. We find that the winged helix (WH) domain in B. subtilis PriA is critical for surviving DNA damage and participates in DNA binding. The important in vivo function of the WH domain mapped to distinct surfaces that were also conserved among several Gram-positive human pathogens. In addition, we identified an amino acid linker neighboring the WH domain that is greatly extended in B. subtilis due to an insertion. Shortening this linker induced a hypersensitive phenotype to DNA damage, suggesting that its extended length is critical for efficient replication fork restart in vivo. Because the WH domain is dispensable in E. coli PriA, our findings demonstrate an important difference in the contribution of the WH domain during fork restart in B. subtilis. Furthermore, with our results we suggest that this highly variable region in PriA could provide different functions across diverse bacterial organisms. IMPORTANCE PriA is an important protein found in virtually all bacteria that recognizes stalled replication forks orchestrating fork restart. PriA homologs contain a winged helix (WH) domain. The E. coli PriA WH domain is dispensable and functions in a fork restart pathway that is not conserved outside of E. coli and closely related proteobacteria. We analyzed the importance of the WH domain and an associated linker in B. subtilis and found that both are critical for surviving DNA damage. This function mapped to a small motif at the C-terminal end of the WH domain, which is also conserved in pathogenic bacteria. The motif was not required for DNA binding and therefore may perform a novel function in the replication fork restart pathway.


Assuntos
Bacillus subtilis , Proteínas de Escherichia coli , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , DNA/genética , Dano ao DNA , DNA Helicases/genética , Replicação do DNA , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
7.
EMBO Rep ; 21(7): e49367, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32419301

RESUMO

Impediments to DNA replication threaten genome stability. The homologous recombination (HR) pathway has been involved in the restart of blocked replication forks. Here, we used a method to increase yeast cell permeability in order to study at the molecular level the fate of replication forks blocked by DNA topoisomerase I poisoning by camptothecin (CPT). Our results indicate that Rad52 and Rad51 HR factors are required to complete DNA replication in response to CPT. Recombination events occurring during S phase do not generally lead to the restart of DNA synthesis but rather protect blocked forks until they merge with convergent forks. This fusion generates structures requiring their resolution by the Mus81 endonuclease in G2 /M. At the global genome level, the multiplicity of replication origins in eukaryotic genomes and the fork protection mechanism provided by HR appear therefore to be essential to complete DNA replication in response to fork blockage.


Assuntos
Replicação do DNA , Recombinação Homóloga , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Instabilidade Genômica , Recombinação Homóloga/genética , Humanos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fase S/genética
8.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142121

RESUMO

A variety of endogenous and exogenous insults are capable of impeding replication fork progression, leading to replication stress. Several SNF2 fork remodelers have been shown to play critical roles in resolving this replication stress, utilizing different pathways dependent upon the nature of the DNA lesion, location on the DNA, and the stage of the cell cycle, to complete DNA replication in a manner preserving genetic integrity. Under certain conditions, however, the attempted repair may lead to additional genetic instability. Cockayne syndrome group B (CSB) protein, a SNF2 chromatin remodeler best known for its role in transcription-coupled nucleotide excision repair, has recently been shown to catalyze fork reversal, a pathway that can provide stability of stalled forks and allow resumption of DNA synthesis without chromosome breakage. Prolonged stalling of replication forks may collapse to give rise to DNA double-strand breaks, which are preferentially repaired by homology-directed recombination. CSB plays a role in repairing collapsed forks by promoting break-induced replication in S phase and early mitosis. In this review, we discuss roles of CSB in regulating the sources of replication stress, replication stress response, as well as the implications of CSB for cancer therapy.


Assuntos
Síndrome de Cockayne , Neoplasias , Cromatina , Síndrome de Cockayne/genética , DNA/metabolismo , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/genética , Neoplasias/terapia
9.
Semin Cell Dev Biol ; 86: 121-128, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29577982

RESUMO

Our genomic DNA is found predominantly in a double-stranded helical conformation. However, there are a number of cellular transactions and DNA damage events that result in the exposure of single stranded regions of DNA. DNA transactions require these regions of single stranded DNA, but they are only transient in nature as they are particularly susceptible to further damage through chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. To protect these exposed regions of single stranded DNA, all living organisms have members of the Single Stranded DNA Binding (SSB) protein family, which are characterised by a conserved oligonucleotide/oligosaccharide-binding (OB) domain. In humans, three such proteins members have been identified; namely the Replication Protein A (RPA) complex, hSSB1 and hSSB2. While RPA is extremely well characterised, the roles of hSSB1 and hSSB2 have only emerged recently. In this review, we discuss the critical roles that hSSB1 plays in the maintenance of genomic stability.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Mitocondriais/metabolismo , DNA/genética , Humanos
10.
Int J Mol Sci ; 19(10)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257459

RESUMO

The complete and accurate replication of the genome is a crucial aspect of cell proliferation that is often perturbed during oncogenesis. Replication stress arising from a variety of obstacles to replication fork progression and processivity is an important contributor to genome destabilization. Accordingly, cells mount a complex response to this stress that allows the stabilization and restart of stalled replication forks and enables the full duplication of the genetic material. This response articulates itself on three important platforms, Replication Protein A/RPA-coated single-stranded DNA, the DNA polymerase processivity clamp PCNA and the FANCD2/I Fanconi Anemia complex. On these platforms, the recruitment, activation and release of a variety of genome maintenance factors is regulated by post-translational modifications including mono- and poly-ubiquitylation. Here, we review recent insights into the control of replication fork stability and restart by the ubiquitin system during replication stress with a particular focus on human cells. We highlight the roles of E3 ubiquitin ligases, ubiquitin readers and deubiquitylases that provide the required flexibility at stalled forks to select the optimal restart pathways and rescue genome stability during stressful conditions.


Assuntos
Replicação do DNA , DNA/genética , Anemia de Fanconi/genética , Ubiquitinação , Animais , DNA/metabolismo , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Instabilidade Genômica , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Semin Cancer Biol ; 37-38: 16-25, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26805514

RESUMO

A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways to promote genome integrity during DNA replication. This includes suppressing new replication origin firing, stabilization of replicating forks, and the safe restart of forks to prevent any loss of genetic information. Here, we describe mechanisms by which oncogenes can interfere with DNA replication thereby causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy.


Assuntos
Replicação do DNA , Neoplasias/genética , Medicina de Precisão/métodos , Origem de Replicação , Dano ao DNA , Instabilidade Genômica , Humanos , Neoplasias/terapia , Oncogenes
12.
J Bacteriol ; 199(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28947673

RESUMO

The Escherichia colidnaXE145A mutation was discovered in connection with a screen for multicopy suppressors of the temperature-sensitive topoisomerase IV mutation parE10 The gene for the clamp loader subunits τ and γ, dnaX, but not the mutant dnaXE145A , was found to suppress parE10(Ts) when overexpressed. Purified mutant protein was found to be functional in vitro, and few phenotypes were found in vivo apart from problems with partitioning of DNA in rich medium. We show here that a large number of the replication forks that initiate at oriC never reach the terminus in dnaXE145A mutant cells. The SOS response was found to be induced, and a combination of the dnaXE145A mutation with recBC and recA mutations led to reduced viability. The mutant cells exhibited extensive chromosome fragmentation and degradation upon inactivation of recBC and recA, respectively. The results indicate that the dnaXE145A mutant cells suffer from broken replication forks and that these need to be repaired by homologous recombination. We suggest that the dnaX-encoded τ and γ subunits of the clamp loader, or the clamp loader complex itself, has a role in the restart of stalled replication forks without extensive homologous recombination.IMPORTANCE The E. coli clamp loader complex has a role in coordinating the activity of the replisome at the replication fork and loading ß-clamps for lagging-strand synthesis. Replication forks frequently encounter obstacles, such as template lesions, secondary structures, and tightly bound protein complexes, which will lead to fork stalling. Some pathways of fork restart have been characterized, but much is still unknown about the actors and mechanisms involved. We have in this work characterized the dnaXE145A clamp loader mutant. We find that the naturally occurring obstacles encountered by a replication fork are not tackled in a proper way by the mutant clamp loader and suggest a role for the clamp loader in the restart of stalled replication forks.


Assuntos
Proteínas de Bactérias/genética , DNA Polimerase III/genética , Replicação do DNA , Escherichia coli/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/crescimento & desenvolvimento , Recombinação Homóloga , Viabilidade Microbiana , Mutação , Complexo de Reconhecimento de Origem , Fenótipo , Recombinases Rec A/genética , Resposta SOS em Genética
13.
J Biol Chem ; 291(42): 21956-21962, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27601467

RESUMO

The replication protein A (RPA) complex binds single-stranded DNA generated at stalled replication forks and recruits other DNA repair proteins to promote recovery of these forks. Here, we identify Ewing tumor-associated antigen 1 (ETAA1), which has been linked to susceptibility to pancreatic cancer, as a new repair protein that is recruited to stalled forks by RPA. We demonstrate that ETAA1 interacts with RPA through two regions, each of which resembles two previously identified RPA-binding domains, RPA70N-binding motif and RPA32C-binding motif, respectively. In response to replication stress, ETAA1 is recruited to stalled forks where it colocalizes with RPA, and this recruitment is diminished when RPA is depleted. Notably, inactivation of the ETAA1 gene increases the collapse level of the stalled replication forks and decreases the recovery efficiency of these forks. Moreover, epistasis analysis shows that ETAA1 stabilizes stalled replication forks in an ataxia telangiectasia and Rad3-related protein (ATR)-independent manner. Thus, our results reveal that ETAA1 is a novel RPA-interacting protein that promotes restart of stalled replication forks.


Assuntos
Antígenos de Superfície/metabolismo , Epistasia Genética/fisiologia , Proteína de Replicação A/metabolismo , Motivos de Aminoácidos , Antígenos de Superfície/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células HeLa , Humanos , Domínios Proteicos , Proteína de Replicação A/genética
14.
DNA Repair (Amst) ; 126: 103488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37054652

RESUMO

The genome must be monitored to ensure its duplication is completed accurately to prevent genome instability. In Saccharomyces cerevisiae, the 5' to 3' DNA helicase Rrm3, a member of the conserved PIF1 family, facilitates replication fork progression through an unknown mechanism. Disruption of Rrm3 helicase activity leads to increased replication fork pausing throughout the yeast genome. Here, we show that Rrm3 contributes to replication stress tolerance in the absence of the fork reversal activity of Rad5, defined by its HIRAN domain and DNA helicase activity, but not in the absence of Rad5's ubiquitin ligase activity. The Rrm3 and Rad5 helicase activities also interact in the prevention of recombinogenic DNA lesions, and DNA lesions that accumulate in their absence need to be salvaged by a Rad59-dependent recombination pathway. Disruption of the structure-specific endonuclease Mus81 leads to accumulation of recombinogenic DNA lesions and chromosomal rearrangements in the absence of Rrm3, but not Rad5. Thus, at least two mechanisms exist to overcome fork stalling at replication barriers, defined by Rad5-mediated fork reversal and Mus81-mediated cleavage, and contribute to the maintenance of chromosome stability in the absence of Rrm3.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Helicases/metabolismo , DNA/metabolismo
15.
Mol Oncol ; 17(10): 1950-1952, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37681281

RESUMO

A new study by Longo, Roy et al. has solved the structure of the RAD51C-XRCC3 (CX3) heterodimer with a bound ATP analog, identifying two main structural interfaces and defining separable replication fork stability roles. One function relates to the ability of RAD51C to bind and assemble CX3 on nascent DNA, with an impact on the ability of forks to restart upon replication stress. The other relates to effective CX3 heterodimer formation, required for 5' RAD51 filament capping, with effects on RAD51 filament disassembly, fork protection and influencing the persistence of reversed forks.

16.
Bio Protoc ; 11(24): e4269, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087928

RESUMO

DNA replication always encounters numerous endogenous and exogenous stresses during the cell cycle. Measuring the cell responses to stress has primarily relied on cell survival and incorporation of radioactive dNTPs, which is limited in resolution. A higher resolution is required to monitor how replication and repair respond to these stresses. This protocol describes a procedure to monitor the length of new synthesized DNA in a single molecular resolution called DNA fiber assay. The fiber assay relies on labeling of nascent DNA with the nucleoside analog 5-Chloro-2'-deoxyuridine (CldU) and 5-Iodo-2'-deoxyuridine (IdU). We can visualize the labeled nascent DNA in single molecular resolution by immunostaining. By measuring labeled DNA length, the assay permits interrogation of replication speed at given conditions, end processing at the reversed fork, and fork restart after repair.

17.
Mol Cell Biol ; 41(11): e0009021, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34398682

RESUMO

DNA polymerase kappa (Pol κ) has been well documented thus far for its specialized DNA synthesis activity during translesion replication, progression of replication forks through regions difficult to replicate, restart of stalled forks, and replication checkpoint efficiency. Pol κ is also required for the stabilization of stalled forks, although the mechanisms are poorly understood. In this study, we unveiled an unexpected role for Pol κ in controlling the stability and abundance of checkpoint kinase 1 (Chk1), an important actor for the replication checkpoint and fork stabilization. We found that loss of Pol κ decreased the Chk1 protein level in the nuclei of four human cell lines. Pol κ and not the other Y family polymerase members is required to maintain the Chk1 protein pool all along the cell cycle. We showed that Pol κ depletion affected the protein stability of Chk1 and protected it from proteasome degradation. Importantly, we also observed that the fork restart defects observed in Pol κ-depleted cells could be overcome by the reexpression of Chk1. Strikingly, this new function of Pol κ does not require its catalytic activity. We propose that Pol κ could contribute to the protection of stalled forks through Chk1 stability.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Replicação do DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Ciclo Celular/genética , Linhagem Celular , Proliferação de Células/genética , Dano ao DNA/genética , Reparo do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Células HCT116 , Células HEK293 , Humanos
18.
Anticancer Agents Med Chem ; 20(11): 1311-1326, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32418530

RESUMO

Replication fork reversal and restart has gained immense interest as a central response mechanism to replication stress following DNA damage. Although the exact mechanism of fork reversal has not been elucidated precisely, the involvement of diverse pathways and different factors has been demonstrated, which are central to this phenomenon. RecQ helicases known for their vital role in DNA repair and maintaining genome stability has recently been implicated in the restart of regressed replication forks. Through interaction with vital proteins like Poly (ADP) ribose polymerase 1 (PARP1), these helicases participate in the replication fork reversal and restart phenomenon. Most therapeutic agents used for cancer chemotherapy act by causing DNA damage in replicating cells and subsequent cell death. These DNA damages can be repaired by mechanisms involving fork reversal as the key phenomenon eventually reducing the efficacy of the therapeutic agent. Hence the factors contributing to this repair process can be good selective targets for developing more efficient chemotherapeutic agents. In this review, we have discussed in detail the role of various proteins in replication fork reversal and restart with special emphasis on RecQ helicases. Involvement of other proteins like PARP1, recombinase rad51, SWI/SNF complex has also been discussed. Since RecQ helicases play a central role in the DNA damage response following chemotherapeutic treatment, we propose that targeting these helicases can emerge as an alternative to available intervention strategies. We have also summarized the current research status of available RecQ inhibitors and siRNA based therapeutic approaches that targets RecQ helicases. In summary, our review gives an overview of the DNA damage responses involving replication fork reversal and provides new directions for the development of more efficient and sustainable chemotherapeutic approaches.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , RecQ Helicases/antagonistas & inibidores , Antineoplásicos/química , Reparo do DNA , Replicação do DNA , Inibidores Enzimáticos/química , Humanos , Neoplasias/metabolismo , RecQ Helicases/metabolismo
19.
Genes (Basel) ; 11(6)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526925

RESUMO

Components of the nuclear pore complex (NPC) have been shown to play a crucial role in protecting against replication stress, and recovery from some types of stalled or collapsed replication forks requires movement of the DNA to the NPC in order to maintain genome stability. The role that nuclear positioning has on DNA repair has been investigated in several systems that inhibit normal replication. These include structure forming sequences (expanded CAG repeats), protein mediated stalls (replication fork barriers (RFBs)), stalls within the telomere sequence, and the use of drugs known to stall or collapse replication forks (HU + MMS or aphidicolin). Recently, the mechanism of relocation for collapsed replication forks to the NPC has been elucidated. Here, we will review the types of replication stress that relocate to the NPC, the current models for the mechanism of relocation, and the currently known protective effects of this movement.


Assuntos
Replicação do DNA/genética , DNA/genética , Instabilidade Genômica/genética , Poro Nuclear/genética , Dano ao DNA/genética , Reparo do DNA/genética , Humanos , Telômero/genética
20.
DNA Repair (Amst) ; 71: 135-147, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30220600

RESUMO

Flaws in the DNA replication process have emerged as a leading driver of genome instability in human diseases. Alteration to replication fork progression is a defining feature of replication stress and the consequent failure to maintain fork integrity and complete genome duplication within a single round of S-phase compromises genetic integrity. This includes increased mutation rates, small and large scale genomic rearrangement and deleterious consequences for the subsequent mitosis that result in the transmission of additional DNA damage to the daughter cells. Therefore, preserving fork integrity and replication competence is an important aspect of how cells respond to replication stress and avoid genetic change. Homologous recombination is a pivotal pathway in the maintenance of genome integrity in the face of replication stress. Here we review our recent understanding of the mechanisms by which homologous recombination acts to protect, restart and repair replication forks. We discuss the dynamics of these genetically distinct functions and their contribution to faithful mitoticsegregation.


Assuntos
Dano ao DNA , Replicação do DNA , Reparo de DNA por Recombinação , DNA/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa