Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Anat ; 245(4): 572-582, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39039731

RESUMO

Talpid moles (Talpidae, Eulipotyphla) are mammals highly specialised in burrowing using their forelimbs. Fossoriality has allowed moles to expand their ecological niche by enabling access to subterranean resources and spaces. This specialisation in burrowing has led to adaptations in the forelimb bones of moles for humeral rotation digging, a distinctive strategy unparalleled among other diggers. While bone robustness has been examined in moles through external morphology, the adaptation of bone microstructure to digging strategy remains unclear. Based on two assumptions, (1) the humerus of moles is subjected to a torsional load due to humeral rotation digging, and (2) the magnitude of torsional load correlates with the compactness of the substrate in which the individuals can dig, we hypothesised that humeral rotation digging influences bone microstructure. Comparative analyses of transverse sections from the humeri and femora of three mole species (Mogera imaizumii, Mogera wogura and Urotrichus talpoides; Talpidae) and an outgroup eulipotyphlan (Suncus murinus; Soricidae) revealed that (1) vascular canals distributed in the humeri of moles align more predominantly circumferential along the bone walls, indicating an adaptation to the torsion generated by humeral rotation digging, and (2) the laminarity of vascular canals, particularly in Mogera species compared with Urotrichus, potentially reflects differences in the magnitude of load due to substrate compactness during digging. The aligned vascular canals are distinctive traits not observed in mammals employing other digging strategies. This suggests that vascular canal laminarity can be an indicator of not only humeral rotation digging in fossorial animals, but also the variation of eco-spaces in talpid species.


Assuntos
Úmero , Toupeiras , Animais , Toupeiras/anatomia & histologia , Toupeiras/fisiologia , Úmero/anatomia & histologia , Úmero/diagnóstico por imagem , Fêmur/anatomia & histologia , Fêmur/fisiologia
2.
Mol Phylogenet Evol ; 178: 107635, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208694

RESUMO

Most of the unique and diverse vertebrate fauna that inhabits Madagascar derives from in situ diversification from colonisers that reached this continental island through overseas dispersal. The endemic Malagasy Scincinae lizards are amongst the most species-rich squamate groups on the island. They colonised all bioclimatic zones and display many ecomorphological adaptations to a fossorial (burrowing) lifestyle. Here we propose a new phylogenetic hypothesis for their diversification based on the largest taxon sampling so far compiled for this group. We estimated divergence times and investigated several aspects of their diversification (diversification rate, body size and fossorial lifestyle evolution, and biogeography). We found that diversification rate was constant throughout most of the evolutionary history of the group, but decreased over the last 6-4 million years and independently from body size and fossorial lifestyle evolution. Fossoriality has evolved from fully quadrupedal ancestors at least five times independently, which demonstrates that even complex morphological syndromes - in this case involving traits such as limb regression, body elongation, modification of cephalic scalation, depigmentation, and eyes and ear-opening regression - can evolve repeatedly and independently given enough time and eco-evolutionary advantages. Initial diversification of the group likely occurred in forests, and the divergence of sand-swimmer genera around 20 Ma appears linked to a period of aridification. Our results show that the large phenotypic variability of Malagasy Scincinae has not influenced diversification rate and that their rich species diversity results from a constant accumulation of lineages through time. By compiling large geographic and trait-related datasets together with the computation of a new time tree for the group, our study contributes important insights on the diversification of Malagasy vertebrates.


Assuntos
Lagartos , Animais , Filogenia , Serpentes , Tamanho Corporal , Madagáscar
3.
J Anat ; 242(5): 846-861, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36733264

RESUMO

Among fossorial mammals, forelimbs are major digging apparatuses for dwelling, sheltering and foraging underground. Forelimb-diggers have independently evolved in many lineages of mammals; thus, the method of digging with forelimbs varies by taxon. Therefore, the reconstruction of digging behaviours in extinct animals leads us to understand the evolutionary process of fossorial adaptation in each lineage. However, no morphological index was found to reconstruct if, or how, extinct taxa dug with forelimbs. In this study, we used the shoulder and elbow muscle moment arms in relation to the out-force lever on the manus as indices of the efficiency of motions. The mechanical advantage of two shoulder motions (medial rotation and retraction) and three elbow motions (extension, flexion and adduction) was measured in 381 extant mammal specimens representing 332 species, 279 genera, 103 families and 24 orders. Assuming that both forelimb-digging and -paddling in water require relatively high-output moment arm efficiency, the studied taxa were categorised into four groups based on the presence or absence of forelimb-digging and -paddling abilities. We found that the efficiencies of all five muscle moment arms in the forelimb-diggers and -paddlers were higher than those of the non-diggers and non-paddlers. Furthermore, among the forelimb-diggers, the taxa that dig compact substrates or frequently burrow tend to emphasise the muscle moment arms compared to the taxa that dig loose substrates or dig less frequently. The comparison among the 53 extant forelimb-diggers revealed that the efficiency marked among the five muscle moment arms reflects the difference in digging strategy: humeral rotation diggers emphasise the shoulder medial rotator and elbow adductor, hook-and-pull diggers emphasise the shoulder retractor and elbow flexor and scratch diggers emphasise the shoulder retractor and elbow extensor. We propose that these indices will be powerful tools for reconstructing the fossorial behaviours of extinct mammals. Applying these indices to extinct taxa, Ceratogaulus, Ernanodon, Metacheiromys and Prozaedyus are capable of more efficient forelimb-digging, and each may have adopted different digging strategies.


Assuntos
Articulação do Cotovelo , Membro Anterior , Animais , Membro Anterior/anatomia & histologia , Extremidade Superior , Mamíferos , Articulação do Cotovelo/anatomia & histologia , Músculos , Músculo Esquelético/anatomia & histologia
4.
J Anat ; 238(1): 146-172, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815172

RESUMO

Comparative osteological analyses of extant organisms provide key insight into major evolutionary transitions and phylogenetic hypotheses. This is especially true for snakes, given their unique morphology relative to other squamates and the persistent controversy regarding their evolutionary origins. However, the osteology of several major snake groups remains undescribed, thus hindering efforts to accurately reconstruct the phylogeny of snakes. One such group is the Atractaspididae, a family of fossorial colubroids. We herein present the first detailed description of the atractaspidid skull, based on fully segmented micro-computed tomography (micro-CT) scans of Atractaspis irregularis. The skull of Atractaspis presents a highly unique morphology influenced by both fossoriality and paedomorphosis. This paedomorphosis is especially evident in the jaws, palate, and suspensorium, the major elements associated with macrostomy (large-gaped feeding in snakes). Comparison to scolecophidians-a group of blind, fossorial, miniaturized snakes-in turn sheds light on current hypotheses of snake phylogeny. Features of both the naso-frontal joint and the morphofunctional system related to macrostomy refute the traditional notion that scolecophidians are fundamentally different from alethinophidians (all other extant snakes). Instead, these features support the controversial hypothesis of scolecophidians as "regressed alethinophidians," in contrast to their traditional placement as the earliest-diverging snake lineage. We propose that Atractaspis and scolecophidians fall along a morphological continuum, characterized by differing degrees of paedomorphosis. Altogether, a combination of heterochrony and miniaturization provides a mechanism for the derivation of the scolecophidian skull from an ancestral fossorial alethinophidian morphotype, exemplified by the nonminiaturized and less extreme paedomorph Atractaspis.


Assuntos
Evolução Biológica , Arcada Osseodentária/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Serpentes/anatomia & histologia , Animais , Fósseis , Arcada Osseodentária/diagnóstico por imagem , Crânio/diagnóstico por imagem , Microtomografia por Raio-X
5.
Front Zool ; 16: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31198433

RESUMO

BACKGROUND: Lizards are excellent models to study the adaptations of the visual system to different scenarios, and surface-dwelling representatives have been relatively well studied. In contrast, very little is known about the functional anatomy of the eyes of fossorial lineages, and properties such as the light transmission by the ocular media have never been characterised in any fossorial species. Some lizards in the family Gymnophthalmidae endemic to the sand dunes of North Eastern Brazil have evolved sand-burrowing habits and nocturnal activity. Lizards in the sister group to Gymnophthalmidae, the family Teiidae, have decidedly diurnal and epigeal lifestyles, yet they are equally poorly known in terms of visual systems. We focussed on the eye anatomy, photoreceptor morphology and light transmittance properties of the ocular media and oil droplets in the gymnophthalmid Calyptommatus nicterus and the teiid Ameivula ocellifera. RESULTS: The general organisation of the eyes of the fossorial nocturnal C. nicterus and the epigeal diurnal A. ocellifera is remarkably similar. The lenses are highly transmissive to light well into the ultraviolet part of the spectrum. The photoreceptors have the typical cone morphology, with narrow short outer segments and oil droplets. The main difference between the two species is that C. nicterus has only colourless oil droplets, whereas A. ocellifera has colourless as well as green-yellow and pale-orange droplets. CONCLUSIONS: Our results challenge the assumption that fossorial lizards undergo loss of visual function, a claim that is usually guided by the reduced size and external morphology of their eyes. In the case of C. nicterus, the visual system is well suited for vision in bright light and shows specialisations that improve sensitivity in dim light, suggesting that they might perform some visually-guided behaviour above the surface at the beginning or the end of their daily activity period, when light levels are relatively high in their open dunes habitat. This work highlights how studies on the functional anatomy of sensory systems can provide insights into the habits of secretive species.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31176767

RESUMO

Water conservation requires osmoregulatory skills, sometimes limited by the environment and/or physiological and behavioral characteristics acquired along the evolutionary history of the species. Fossoriality had probably emerged as a survival mechanism to face increasing aridity, as suggested for Ctenomys, a genus that radiated to different environments. Ctenomys talarum (tuco-tuco) is an herbivorous subterranean rodent that lives in coastal grasslands inside humid burrows that reduce evaporation. However, their osmoregulatory mechanisms may be challenged by atmospheric variations when foraging aboveground and by the annual variability in dietary water and salt content. Then, it is of great interest to identify how much of this flexibility of C .talarum is attributed to physiological regulation. We analyzed the effect of water and salt content of diet on urinary, plasmatic, fecal and respiratory parameters. Tuco-tucos were not able to maintain their body weight under the offered monodiet, especially under the low hydrated diet, which explains its generalist and opportunistic foraging behavior. C. talarum mainly obtained water through food, whereas water metabolic production was negligible. Evaporative water loss did not vary between diets, but individuals under water restriction showed decreased fecal water loss and urine volume, high urine concentration but stable plasmatic osmolality and ionic concentration values. Under salt stress, urinary parameters remained relatively stable and high plasmatic osmolality was detected. Despite C. talarum produced more diluted urine than rodents from xeric environments, it is able to concentrate it 4 times above than the required at field even under the lowest water availability. This may be a characteristic associated with the evolutionary history of the species, which evolved in an arid context.


Assuntos
Metabolismo Energético , Osmorregulação/fisiologia , Roedores/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Peso Corporal , Dieta , Roedores/metabolismo , Água/química
7.
Mol Ecol ; 27(9): 2256-2270, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29603468

RESUMO

The frog genus Leptopelis is composed of ~50 species that occur across sub-Saharan Africa. The majority of these frogs are typically arboreal; however, a few species have evolved a fossorial lifestyle. Most species inhabit lowland forests, but a few species have adapted to high elevations. Five species of Leptopelis occupy the Ethiopian highlands and provide a good opportunity to study the evolutionary transition from an arboreal to a fossorial lifestyle, as well as the diversification in this biodiversity hot spot. We sequenced 14 nuclear and three mitochondrial genes, and generated thousands of SNPs from ddRAD sequencing to study the evolutionary relationships of Ethiopian Leptopelis. The five species of highland Leptopelis form a monophyletic group, which diversified during the late Miocene and Pliocene. We found strong population structure in the fossorial species L. gramineus, with levels of genetic differentiation between populations similar to those found between arboreal species. This could indicate that L. gramineus is a complex of cryptic species. We propose that after the original colonization of the Ethiopian highlands by the ancestor of the L. gramineus group, episodes of vicariance fragmented the ancestral populations of this group. We also report the re-evolution of arboreality in L. susanae, which evolved from a fossorial ancestor, a rare ecological switch in frogs that had previously been reported only once.


Assuntos
Anuros/genética , Evolução Biológica , Animais , Anuros/classificação , Biodiversidade , Ecossistema , Etiópia , Variação Genética , Filogenia , Análise de Sequência de DNA
8.
J Evol Biol ; 31(4): 587-598, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29418035

RESUMO

The tree of life is highly asymmetrical in its clade wise species richness, and this has often been attributed to variation in diversification rates either across time or lineages. Variations across lineages are usually associated with traits that increase lineage diversification. Certain traits can also hinder diversification by increasing extinction, and such traits are called evolutionary dead ends. Ecological specialization has usually been considered as an evolutionary dead end. However, recent analyses of specializations along single axes have provided mixed support for this model. Here, we test if fossoriality, a trait that forces specialization at multiple axes, acts as an evolutionary dead end in squamates (lizards and snakes) using recently developed phylogenetic comparative methods. We show that fossoriality is an evolutionary dead end in snakes but not in lizards. Fossorial snakes exhibit reduced speciation and increased extinction compared to nonfossorial snakes. Our analysis also indicates that transition rates from fossoriality to nonfossoriality in snakes are significantly lower than transition rates from nonfossoriality to fossoriality. Overall our results suggest that broad-scale ecological interactions that lead to specialization at multiple axes limit diversification.


Assuntos
Evolução Biológica , Serpentes , Animais , Ecossistema
9.
J Evol Biol ; 31(12): 1782-1793, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30193402

RESUMO

The phylogenetic relationships between the three main clades of worm snakes remain controversial. This question is, however, crucial to elucidate the origin of the successful snake radiation, as these burrowing and miniaturized wormlike organisms represent the earliest branching clades within the snake tree. The present molecular phylogenetic study, intended to minimize the amount of missing data, provides fully resolved inter-subfamilial relationships among Typhlopidae. It also brings robust evidence that worm snakes (Scolecophidia) are paraphyletic, with the scolecophidian family Anomalepididae recovered with strong support as sister clade to the 'typical snakes' (Alethinophidia). Ancestral state reconstructions applied to three different traits strongly associated to a burrowing life-style (scolecoidy, absence of retinal cones and microstomy) provide results in favour of a burrowing origin of snakes, and suggest that worm snakes might be the only extant fossorial representatives of the primordial snake incursion towards an underground environment.


Assuntos
Evolução Biológica , Especiação Genética , Serpentes/genética , Animais , Filogenia , Serpentes/classificação , Fatores de Tempo
10.
Front Zool ; 14: 52, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213295

RESUMO

BACKGROUND: Bone structure has a crucial role in the functional adaptations that allow vertebrates to conduct their diverse lifestyles. Much has been documented regarding the diaphyseal structure of long bones of tetrapods. However, the architecture of trabecular bone, which is for instance found within the epiphyses of long bones, and which has been shown experimentally to be extremely plastic, has received little attention in the context of lifestyle adaptations (virtually only in primates). We therefore investigated the forelimb epiphyses of extant xenarthrans, the placental mammals including the sloths, anteaters, and armadillos. They are characterised by several lifestyles and degrees of fossoriality involving distinct uses of their forelimb. We used micro computed tomography data to acquire 3D trabecular parameters at regions of interest (ROIs) for all extant genera of xenarthrans (with replicates). Traditional, spherical, and phylogenetically informed statistics (including the consideration of size effects) were used to characterise the functional signal of these parameters. RESULTS: Several trabecular parameters yielded functional distinctions. The main direction of the trabeculae distinguished lifestyle categories for one ROI (the radial trochlea). Among the other trabecular parameters, it is the degree of anisotropy (i.e., a preferential alignment of the trabeculae) that yielded the clearest functional signal. For all ROIs, the armadillos, which represent the fully terrestrial and fossorial category, were found as characterised by a greater degree of anisotropy (i.e., more aligned trabeculae). Furthermore, the trabeculae of the humeral head of the most fossorial armadillos were also found to be more anisotropic than in the less fossorial species. CONCLUSIONS: Most parameters were marked by an important intraspecific variability and by a size effect, which could, at least partly, be masking the functional signal. But for some parameters, the degree of anisotropy in particular, a clear functional distinction was recovered. Along with data on primates, our findings suggest that a trabecular architecture characterised by a greater degree of anisotropy is to be expected in species in which the relevant epiphyses withstand a restricted range of load directions. Trabecular architecture therefore is a promising research avenue for the reconstruction of lifestyles in extinct or cryptic species.

11.
J Evol Biol ; 28(7): 1309-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26012745

RESUMO

The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic.


Assuntos
Evolução Biológica , Opsinas/genética , Serpentes/fisiologia , Animais , Evolução Molecular , Lagartos/genética , Lagartos/fisiologia , Dados de Sequência Molecular , Filogenia , Retina/química , Serpentes/genética
12.
J Anat ; 225(1): 83-93, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24762299

RESUMO

It is widely accepted that a relationship exists between inner ear morphology and functional aspects of an animal's biology, such as locomotor behaviour. Animals that engage in agile and spatially complex behaviours possess semicircular canals that morphologically maximise sensitivity to correspondingly complex physical stimuli. Stemming from the prediction that fossorial tetrapods require a well-developed sense of spatial awareness, we investigate the hypothesis that fossoriality leads to inner ear morphology that is convergent with other spatially adept tetrapods. We apply morphometrics to otic capsule endocasts of 26 caecilian species to quantify aspects of inner ear shape, and compare these with a sample of frog and salamander species. Our results reveal caecilians (and also frogs) possess strongly curved canals, a feature in common with spatially adept species. However, significantly shorter canals in caecilians suggest reduced sensitivity, possibly associated with reduced reliance on vestibulo-ocular reflexes in this group of visually degenerate tetrapods. An elaboration of the sacculus of caecilians is interpreted as a unique adaptation among amphibians to increase sensitivity to substrate-borne vibrations transmitted through the head. This study represents the first quantitative analyses of inner ear morphology of limbless fossorial tetrapods, and identifies features within a new behavioural context that will contribute to our understanding of the biological consequences of physical stimuli on sensory function and associated morphological evolution.


Assuntos
Anfíbios/anatomia & histologia , Orelha Interna/anatomia & histologia , Locomoção/fisiologia , Análise de Variância , Animais , Canais Semicirculares/anatomia & histologia , Crânio/anatomia & histologia
13.
Ecol Evol ; 14(1): e10654, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38187920

RESUMO

Many mesocarnivores are fossorial and use burrow systems to avoid predators. But fossorial animals cannot stay safely underground forever; they must also risk emerging overground to forage and find mates. To make this trade-off effectively and maximise their own fitness, it is imperative they assess how risk varies in space and time and adapt their denning behaviour accordingly. We used the badger in Bialowieza Forest, Poland, as a model for investigating how the denning behaviour of a fossorial mesocarnivore varies in response to short-term large carnivore risk. To this end, we experimentally simulated perceived wolf presence outside 10 badger setts using audio playbacks of wolves (their howls). We assayed two behavioural measures of fear: badger emergence time from setts on the day playbacks were broadcast and their presence in setts on the day after. We found that neither badger emergence time nor next-day sett use varied in response to wolf playbacks. The results of the present study contrast with a previous study of ours that found badgers used setts in areas with high landscape level perceived wolf risk less often than those in lower-risk areas. Together, these papers' findings suggest that different spatiotemporal scales of perceived risk can have differential effects on badger behaviour. We conclude that rather than take risk avoidance measures at all risky times and places, badgers likely display a diversity of reactions to large carnivore presence that depend on the context and spatiotemporal scale of the risk being perceived.

14.
Genome Biol Evol ; 15(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972291

RESUMO

Olfactory receptor (OR) genes represent the largest multigenic family in mammalian genomes and encode proteins that bind environmental odorant molecules. The OR repertoire is extremely variable among species and is subject to many gene duplications and losses, which have been linked to ecological adaptations in mammals. Although they have been studied on a broad taxonomic scale (i.e., placental), finer sampling has rarely been explored in order to better capture the mechanisms that drove the evolution of the OR repertoire. Among placental mammals, rodents are well-suited for this task, as they exhibit diverse life history traits, and genomic data are available for most major families and a diverse array of lifestyles. In this study, 53 rodent published genomes were mined for their OR subgenomes. We retrieved more than 85,000 functional and pseudogene OR sequences that were subsequently classified into phylogenetic clusters. Copy number variation among rodents is similar to that of other mammals. Using our OR counts along with comparative phylogenetic approaches, we demonstrated that ecological niches such as diet, period of activity, and a fossorial lifestyle strongly impacted the proportion of OR pseudogenes. Within the OR subgenome, phylogenetic inertia was the main factor explaining the relative variations of the 13 OR gene families. However, a striking exception was a convergent 10-fold expansion of the OR family 14 among the phylogenetically divergent subterranean mole-rat lineages belonging to Bathyergidae and Spalacidae families. This study illustrates how the diversity of the OR repertoire has evolved among rodents, both shaped by selective forces stemming from species life history traits and neutral evolution along the rodent phylogeny.


Assuntos
Receptores Odorantes , Roedores , Feminino , Gravidez , Animais , Filogenia , Roedores/genética , Variações do Número de Cópias de DNA , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Placenta/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Evolução Molecular
15.
J Morphol ; 283(4): 510-538, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35094424

RESUMO

Fossoriality evolved early in snakes, and has left its signature on the cranial morphology of many extinct Mesozoic and early Caenozoic forms. Knowledge of the cranial osteology of extant snakes is indispensable for associating the crania of extinct lineages with a particular mode of life; this applies to fossorial taxa as well. In the present work, we provide a detailed description of the cranium of Hypoptophis wilsonii, a member of the subfamily Aparallactinae, using micro-computed tomography (CT). This is also the first thorough micro-CT-based description of any snake assigned to this African subfamily of predominantly mildly venomous, fossorial, and elusive snakes. The cranium of Hypoptophis is adapted for a fossorial lifestyle, with increased consolidation of skull bones. Aparallactines show a tendency toward reduction of maxillary length by bringing the rear fangs forward. This development attains its pinnacle in the sister subfamily Atractaspidinae, in which the rear fang has become the "front fang" by a loss of the part of the maxilla lying ahead of the fang. These dentitional changes likely reflect adaptation to subdue prey in snug burrows. An endocast of the inner ear of Hypoptophis shows that this genus has the inner ear typical of fossorial snakes, with a large, globular sacculus. A phylogenetic analysis based on morphology recovers Hypoptophis as a sister taxon to Aparallactus. We also discuss the implications of our observations on the burrowing origin hypothesis of snakes.


Assuntos
Osteologia , Crânio , Animais , Evolução Biológica , Filogenia , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Serpentes/anatomia & histologia , Microtomografia por Raio-X
16.
Zoology (Jena) ; 144: 125880, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33310388

RESUMO

Associations among ecology, morphology and locomotor performance have been intensively investigated in several vertebrate lineages. Knowledge on how phenotypes evolve in natural environments likely benefits from identification of circumstances that might expand current ecomorphological equations. In this study, we used two species of Calyptommatus lizards from Brazilian Caatingas to evaluate if specific soil properties favor burrowing performance. As a derived prediction, we expected that functional associations would be easily detectable at the sand condition that favors low-resistance burrowing. We collected two endemic lizards and soil samples in their respective localities, obtained morphological data and recorded performance of both species in different sand types. As a result, the two species burrowed faster at the fine and homogeneous sand, the only condition where we detected functional associations between morphology and locomotion. In this sand type, lizards from both Calyptommatus species that have higher trunks and more concave heads were the ones that burrowed faster, and these phenotypic traits did not morphologically discriminate the two Calyptommatus populations studied. We discuss that integrative approaches comprising manipulation of environmental conditions clearly contribute to elucidate processes underlying phenotypic evolution in fossorial lineages.


Assuntos
Comportamento Animal/fisiologia , Lagartos/anatomia & histologia , Lagartos/fisiologia , Distribuição Animal , Animais , Brasil , Lagartos/genética , Filogenia , Areia , Especificidade da Espécie
17.
PeerJ ; 8: e9214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477839

RESUMO

Recent comparative studies have suggested that cooperative breeding is associated with increases in maximum lifespan among mammals, replicating a pattern also seen in birds and insects. In this study, we re-examine the case for increased lifespan in mammalian cooperative breeders by analysing a large dataset of maximum longevity records. We did not find any consistent, strong evidence that cooperative breeders have longer lifespans than other mammals after having controlled for variation in body mass, mode of life and data quality. The only possible exception to this general trend is found in the African mole-rats (the Bathyergid family), where all members are relatively long-lived, but where the social, cooperatively breeding species appear to be much longer-lived than the solitary species. However, solitary mole-rat species have rarely been kept in captivity or followed longitudinally in the wild and so it seems likely that their maximum lifespan has been underestimated when compared to the highly researched social species. Although few subterranean mammals have received much attention in a captive or wild setting, current data instead supports a causal role of subterranean living on lifespan extension in mammals.

18.
J Morphol ; 280(12): 1777-1797, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31566797

RESUMO

We report on the first detailed study of the atlas-axis complex in the lizard clade Dibamidae, a family of poorly known fossorial squamates distributed in tropical or subtropical climates. This skeletal bridge is characterized by several features, such as the complete absence of the first intercentrum or the appearance of the first free cervical rib on the axis (usually less developed in Dibamus relative to that in Anelytropsis). Our study shows morphological differences of the atlas-axis complex in the Mexican blind lizard Anelytropsis relative to those of Asian Dibamus, the only two known extant genera of this clade. With regard to taxonomy and phylogenetic topology of the Dibamidae within Squamata, a huge conflict exists between morphology versus molecules. The morphology of the atlas-axis complex is therefore compared with several potential sister clades + Sphenodon. Dibamids share several features with limbless Gekkota, Scincoidea, and Amphisbaenia. The complete absence of the first intercentrum is observed in Rhineura floridana and in Ateuchosaurus chinensis as well, and the free rib associated with the synapophyses of the axis is also present in Acontias meleagris. However, some of these features may result from a limbless, burrowing ecology and thus could represent homoplastic characters. In any case, the morphology of the atlas-axis shows that dibamids share most character states with skinks. Although the atlas-axis complex forms only an additional source of information, this conclusion is consistent with most morphological rather than molecular tree topologies.


Assuntos
Vértebras Cervicais/anatomia & histologia , Lagartos/anatomia & histologia , Filogenia , Animais , Lagartos/genética , Pescoço/anatomia & histologia
19.
PeerJ ; 6: e5216, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018860

RESUMO

Bone microstructure has long been known as a powerful tool to investigate lifestyle-related biomechanical constraints, and many studies have focused on identifying such constraints in the limb bones of aquatic or arboreal mammals in recent years. The limb bone microstructure of fossorial mammals, however, has not been extensively described. Furthermore, so far, studies on this subject have always focused on the bone histology of small burrowers, such as subterranean rodents or true moles. Physiological constraints associated with digging, however, are known to be strongly influenced by body size, and larger burrowers are likely to exhibit a histological profile more conspicuously influenced by fossorial activity. Here, we describe for the first time the limb bone histology of the aardvark (Orycteropus afer), the largest extant burrowing mammal. The general pattern is very similar for all six sampled limb bones (i.e., humerus, radius, ulna, femur, tibia, and fibula). Most of the cortex at midshaft is comprised of compacted coarse cancellous bone (CCCB), an endosteal tissue formed in the metaphyses through the compaction of bony trabeculae. Conversely, the periosteal bone is highly resorbed in all sections, and is reduced to a thin outer layer, suggesting a pattern of strong cortical drift. This pattern contrasts with that of most large mammals, in which cortical bone is of mostly periosteal origin, and CCCB, being a very compliant bone tissue type, is usually resorbed or remodeled during ontogeny. The link between histology and muscle attachment sites, as well as the influence of the semi-arid environment and ant-eating habits of the aardvark on its bone microstructure, are discussed. We hypothesize that the unusual histological profile of the aardvark is likely the outcome of physiological constraints due to both extensive digging behavior and strong metabolic restrictions. Adaptations to fossoriality are thus the result of a physiological compromise between limited food availability, an environment with high temperature variability, and the need for biomechanical resistance during digging. These results highlight the difficulties of deciphering all factors potentially involved in bone formation in fossorial mammals. Even though the formation and maintaining of CCCB through ontogeny in the aardvark cannot be unambiguously linked with its fossorial habits, a high amount of CCCB has been observed in the limb bones of other large burrowing mammals. The inclusion of such large burrowers in future histological studies is thus likely to improve our understanding of the functional link between bone growth and fossorial lifestyle in an evolutionary context.

20.
Acta Zool, in press, dez. 2023
Artigo em Inglês | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-5242

RESUMO

Capturing data on the life of fossorial vertebrates is difficult since access to the subterranean environment is made unfeasible by its density and opacity. Collecting specimens is only possible through excavation work, causing damage or even death to the specimens. Due to the obstacles of in situ studies, the scarce information comes from reports obtained indirectly, mainly through specimens preserved in museums. Considering the adaptations to fossoriality, investments in studying these groups could be very enlightening since they would contribute enormously to the knowledge of the evolutionary strategies developed throughout the colonisation of the subterranean world. Amphisbaena alba is the species of Amphisbaenia with the broadest geographic distribution in the world. It occupies virtually all countries in South America except for Chile and southern Argentina. This study, carried out over the last 36 years, aims to provide data on the biology and behaviour of A. alba in captivity and in the field. Our main objective is to provide subsidies to expand the knowledge of the life history of this species and, by extension, of amphisbaenians in general.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa