Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2322424121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696465

RESUMO

Evolution equations with convolution-type integral operators have a history of study, yet a gap exists in the literature regarding the link between certain convolution kernels and new models, including delayed and fractional differential equations. We demonstrate, starting from the logistic model structure, that classical, delayed, and fractional models are special cases of a framework using a gamma Mittag-Leffler memory kernel. We discuss and classify different types of this general kernel, analyze the asymptotic behavior of the general model, and provide numerical simulations. A detailed classification of the memory kernels is presented through parameter analysis. The fractional models we constructed possess distinctive features as they maintain dimensional balance and explicitly relate fractional orders to past data points. Additionally, we illustrate how our models can reproduce the dynamics of COVID-19 infections in Australia, Brazil, and Peru. Our research expands mathematical modeling by presenting a unified framework that facilitates the incorporation of historical data through the utilization of integro-differential equations, fractional or delayed differential equations, as well as classical systems of ordinary differential equations.

2.
Network ; : 1-34, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319551

RESUMO

In Diabetic Retinopathy (DR), the retina is harmed due to the high blood pressure in small blood vessels. Manual screening is time-consuming, which can be overcome by using automated techniques. Hence, this paper proposed a new method for classifying the multi-level severity of DR. Initially, the input fundus image is pre-processed by Non-local means Denoising (NLMD). Then, lesion segmentation is carried out by the Recurrent Prototypical-squeeze U-SegNet (RP-squeeze U-SegNet). Next, feature extraction is effectuated to mine image-level features. DR is categorized as abnormal or normal by ShuffleNet and it is tuned by Fractional War Royale Optimization (FrWRO), and later, if DR is detected, severity classification is performed. Furthermore, the FrWRO-SqueezeNet obtained the maximum performance with sensitivity of 97%, accuracy of 93.8%, specificity of 95.1%, precision of 91.8%, and F-Measure of 94.3%. The devised scheme accurately visualizes abnormal regions in the fundus images. Also, it has the ability to identify the severity levels of DR effectively, which avoids the progression risk to vision loss and proliferative disease.

3.
Bull Math Biol ; 86(3): 26, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300429

RESUMO

The aim of this study is to develop and validate a unifying kinetic model for microvascular transport by introducing an impulse response function that incorporates essential physiological parameters and integrates key features of existing models. This new methodology combines a one-compartment model of fractional order with a model that uses the gamma distribution to describe the distribution of capillary transit times. Central to this model are two primary parameters: [Formula: see text], representing the kurtosis of residue times, and [Formula: see text], signifying the width of the distribution of capillary transit times within a tissue voxel. To validate this proposed model, data from dynamic contrast-enhanced magnetic resonance imaging (DCI-MRI) were employed and the findings were compared with three existing models. Using the Akaike information criterion for model selection, the results demonstrate that the integrative model, especially at elevated blood flow rates, frequently offers superior fits in comparison to constrained models.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Modelos Epidemiológicos , Cinética
4.
BMC Med Imaging ; 24(1): 190, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075336

RESUMO

BACKGROUND: This study explores the diagnostic value of combining fractional-order calculus (FROC) diffusion-weighted model with simultaneous multi-slice (SMS) acceleration technology in distinguishing benign and malignant breast lesions. METHODS: 178 lesions (73 benign, 105 malignant) underwent magnetic resonance imaging with diffusion-weighted imaging using multiple b-values (14 b-values, highest 3000 s/mm2). Independent samples t-test or Mann-Whitney U test compared image quality scores, FROC model parameters (D,, ), and ADC values between two groups. Multivariate logistic regression analysis identified independent variables and constructed nomograms. Model discrimination ability was assessed with receiver operating characteristic (ROC) curve and calibration chart. Spearman correlation analysis and Bland-Altman plot evaluated parameter correlation and consistency. RESULTS: Malignant lesions exhibited lower D, and ADC values than benign lesions (P < 0.05), with higher values (P < 0.05). In SSEPI-DWI and SMS-SSEPI-DWI sequences, the AUC and diagnostic accuracy of D value are maximal, with D value demonstrating the highest diagnostic sensitivity, while value exhibits the highest specificity. The D and combined model had the highest AUC and accuracy. D and ADC values showed high correlation between sequences, and moderate. Bland-Altman plot demonstrated unbiased parameter values. CONCLUSION: SMS-SSEPI-DWI FROC model provides good image quality and lesion characteristic values within an acceptable time. It shows consistent diagnostic performance compared to SSEPI-DWI, particularly in D and values, and significantly reduces scanning time.


Assuntos
Neoplasias da Mama , Imagem de Difusão por Ressonância Magnética , Humanos , Feminino , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias da Mama/diagnóstico por imagem , Pessoa de Meia-Idade , Adulto , Idoso , Curva ROC , Sensibilidade e Especificidade , Diagnóstico Diferencial , Estudos Retrospectivos , Interpretação de Imagem Assistida por Computador/métodos , Adulto Jovem
5.
Physica A ; 609: 128383, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36506918

RESUMO

To achieve the aim of immediately halting spread of COVID-19 it is essential to know the dynamic behavior of the virus of intensive level of replication. Simply analyzing experimental data to learn about this disease consumes a lot of effort and cost. Mathematical models may be able to assist in this regard. Through integrating the mathematical frameworks with the accessible disease data it will be useful and outlay to comprehend the primary components involved in the spreading of COVID-19. There are so many techniques to formulate the impact of disease on the population mathematically, including deterministic modeling, stochastic modeling or fractional order modeling etc. Fractional derivative modeling is one of the essential techniques for analyzing real-world issues and making accurate assessments of situations. In this paper, a fractional order epidemic model that represents the transmission of COVID-19 using seven compartments of population susceptible, exposed, infective, recovered, the quarantine population, recovered-exposed, and dead population is provided. The fractional order derivative is considered in the Caputo sense. In order to determine the epidemic forecast and persistence, we calculate the reproduction number R 0 . Applying fixed point theory, the existence and uniqueness of the solutions of fractional order derivative have been studied . Moreover, we implement the generalized Adams-Bashforth-Moulton method to get an approximate solution of the fractional-order COVID-19 model. Finally, numerical result and an outstanding graphic simulation are presented.

6.
Entropy (Basel) ; 25(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37372263

RESUMO

Using the Luchko's general fractional calculus (GFC) and its extension in the form of the multi-kernel general fractional calculus of arbitrary order (GFC of AO), a nonlocal generalization of probability is suggested. The nonlocal and general fractional (CF) extensions of probability density functions (PDFs), cumulative distribution functions (CDFs) and probability are defined and its properties are described. Examples of general nonlocal probability distributions of AO are considered. An application of the multi-kernel GFC allows us to consider a wider class of operator kernels and a wider class of nonlocality in the probability theory.

7.
Entropy (Basel) ; 25(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37372210

RESUMO

Understanding the dynamics of complex systems defined in the sense of Caputo, such as fractional differences, is crucial for predicting their behavior and improving their functionality. In this paper, the emergence of chaos in complex dynamical networks with indirect coupling and discrete systems, both utilizing fractional order, is presented. The study employs indirect coupling to produce complex dynamics in the network, where the connection between the nodes occurs through intermediate fractional order nodes. The temporal series, phase planes, bifurcation diagrams, and Lyapunov exponent are considered to analyze the inherent dynamics of the network. Analyzing the spectral entropy of the chaotic series generated, the complexity of the network is quantified. As a final step, we demonstrate the feasibility of implementing the complex network. It is implemented on a field-programmable gate array (FPGA), which confirms its hardware realizability.

8.
Entropy (Basel) ; 25(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37190488

RESUMO

This study proposes a continuous adaptive finite-time fractional-order sliding mode control method for fractional-order Buck converters. In order to establish a more accurate model, a fractional-order model based on the Riemann-Liouville (R-L) definition of the Buck converter is developed, which takes into account the non-integer order characteristics of electronic components. The R-L definition is found to be more effective in describing the Buck converter than the Caputo definition. To deal with parameter uncertainties and external disturbances, the proposed approach combines these factors as lumped matched disturbances and mismatched disturbances. Unlike previous literature that assumes a known upper bound of disturbances, adaptive algorithms are developed to estimate and compensate for unknown bounded disturbances in this paper. A continuous finite-time sliding mode controller is then developed using a backstepping method to achieve a chattering-free response and ensure a finite-time convergence. The convergence time for the sliding mode reaching phase and sliding mode phase is estimated, and the fractional-order Lyapunov theory is utilized to prove the finite-time stability of the system. Finally, simulation results demonstrate the robustness and effectiveness of the proposed controller.

9.
Proc Natl Acad Sci U S A ; 116(13): 6244-6249, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30867282

RESUMO

An approach to the coalescent, the fractional coalescent (f-coalescent), is introduced. The derivation is based on the discrete-time Cannings population model in which the variance of the number of offspring depends on the parameter α. This additional parameter α affects the variability of the patterns of the waiting times; values of [Formula: see text] lead to an increase of short time intervals, but occasionally allow for very long time intervals. When [Formula: see text], the f-coalescent and the Kingman's n-coalescent are equivalent. The distribution of the time to the most recent common ancestor and the probability that n genes descend from m ancestral genes in a time interval of length T for the f-coalescent are derived. The f-coalescent has been implemented in the population genetic model inference software Migrate Simulation studies suggest that it is possible to accurately estimate α values from data that were generated with known α values and that the f-coalescent can detect potential environmental heterogeneity within a population. Bayes factor comparisons of simulated data with [Formula: see text] and real data (H1N1 influenza and malaria parasites) showed an improved model fit of the f-coalescent over the n-coalescent. The development of the f-coalescent and its inclusion into the inference program Migrate facilitates testing for deviations from the n-coalescent.


Assuntos
Teorema de Bayes , Heterogeneidade Genética , Genética Populacional/métodos , Modelos Genéticos , Simulação por Computador , Meio Ambiente , Genoma Humano , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Malária , Modelos Estatísticos , Mutação , Crescimento Demográfico , Seleção Genética , Software
10.
Chaos Solitons Fractals ; 157: 111937, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36249286

RESUMO

In this article, we are studying a Covid-19 mathematical model in the fractal-fractional sense of operators for the existence of solution, Hyers-Ulam (HU) stability and computational results. For the qualitative analysis, we convert the model to an equivalent integral form and investigate its qualitative analysis with the help of iterative convergent sequence and fixed point approach. For the computational aspect, we take help from the Lagrange's interpolation and produce a numerical scheme for the fractal-fractional waterborne model. The scheme is then tested for a case study and we obtain interesting results.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36777796

RESUMO

The time-fractional telegraph equation with moving time-harmonic source is considered on a real line. We investigate two characteristic versions of this equation: the "wave-type" with the second and Caputo fractional time-derivatives as well as the "heat-type" with the first and Caputo fractional time-derivatives. In both cases the order of fractional derivative 1 < α < 2. For the time-fractional telegraph equation it is impossible to consider the quasi-steady-state corresponding to the solution being a product of a function of the spatial coordinate and the time-harmonic term. The considered problem is solved using the integral transforms technique. The solution to the "wave-type" equation contains wave fronts and describes the Doppler effect contrary to the solution for the "heat-type" equation. Numerical results are illustrated graphically for different values of nondimensional parameters.

12.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161795

RESUMO

In this paper, an analysis of the method that uses a fractional order calculus to multispectral images fusion is presented. We analyze some correct basic definitions of the fractional order derivatives that are used in the image processing context. Several methods of determining fractional derivatives of digital images are tested, and the influence of fractional order change on the quality of fusion is presented. Results achieved are compared with the results obtained for methods where the integer order derivatives were used.

13.
Sensors (Basel) ; 22(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270857

RESUMO

The uterine electromyogram, also called electrohysterogram (EHG), is the electrical signal generated by uterine contractile activity. The EHG has been considered an expanding technique for pregnancy monitoring and preterm risk evaluation. Data were collected on the abdominal surface. It has been speculated the effect of the placenta location on the characteristics of the EHG. In this work, a preliminary exploration method is proposed using the average spectra of Alvarez waves contractions of subjects with anterior and non-anterior placental position as a basis for the triple-dispersion Cole model that provides a best fit for these two cases. This leads to the uterine impedance estimation for these two study cases. Non-linear least square fitting (NLSF) was applied for this modelling process, which produces electric circuit fractional models' representations. A triple-dispersion Cole-impedance model was used to obtain the uterine impedance curve in a frequency band between 0.1 and 1 Hz. A proposal for the interpretation relating the model parameters and the placental influence on the myometrial contractile action is provided. This is the first report regarding in silico estimation of the uterine impedance for cases involving anterior or non-anterior placental positions.


Assuntos
Placenta , Contração Uterina , Eletromiografia/métodos , Feminino , Humanos , Recém-Nascido , Gravidez , Útero
14.
Sensors (Basel) ; 22(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35062488

RESUMO

This paper is devoted to identifying parameters of fractional order noises with application to noises obtained from MEMS accelerometer. The analysis and parameters estimation will be based on the Triple Estimation algorithm, which can simultaneously estimate state, fractional order, and parameter estimates. The capability of the Triple Estimation algorithm to fractional noises estimation will be confirmed by the sets of numerical analyses for fractional constant and variable order systems with Gaussian noise input signal. For experimental data analysis, the MEMS sensor SparkFun MPU9250 Inertial Measurement Unit (IMU) was used with data obtained from the accelerometer in x, y and z-axes. The experimental results clearly show the existence of fractional noise in this MEMS' noise, which can be essential information in the design of filtering algorithms, for example, in inertial navigation.

15.
Math Comput Simul ; 198: 65-84, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35194306

RESUMO

This paper aims to suggest a time-fractional S P E P I P A I P S P H P R P model of the COVID-19 pandemic disease in the sense of the Atangana-Baleanu-Caputo operator. The proposed model consists of six compartments: susceptible, exposed, infected (asymptomatic and symptomatic), hospitalized and recovered population. We prove the existence and uniqueness of solutions to the proposed model via fixed point theory. Furthermore, a stability analysis in the context of Ulam-Hyers and the generalized Ulam-Hyers criterion is also discussed. For the approximate solution of the suggested model, we use a well-known and efficient numerical technique, namely the Toufik-Atangana numerical scheme, which validates the importance of arbitrary order derivative ϑ and our obtained theoretical results. Finally, a concise analysis of the simulation is proposed to explain the spread of the infection in society.

16.
Entropy (Basel) ; 24(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37420515

RESUMO

In this research work, we deal with the stabilization of uncertain fractional-order neutral systems with delayed input. To tackle this problem, the guaranteed cost control method is considered. The purpose is to design a proportional-differential output feedback controller to obtain a satisfactory performance. The stability of the overall system is described in terms of matrix inequalities, and the corresponding analysis is performed in the perspective of Lyapunov's theory. Two application examples verify the analytic findings.

17.
Entropy (Basel) ; 24(2)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205439

RESUMO

In this paper, we study the fractional Sturm-Liouville problem with homogeneous Neumann boundary conditions. We transform the differential problem to an equivalent integral one on a suitable function space. Next, we discretize the integral fractional Sturm-Liouville problem and discuss the orthogonality of eigenvectors. Finally, we present the numerical results for the considered problem obtained by utilizing the midpoint rectangular rule.

18.
Entropy (Basel) ; 25(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36673176

RESUMO

Fractional calculus has gained a lot of attention in the last couple of years. Researchers have discovered that processes in various fields follow fractional dynamics rather than ordinary integer-ordered dynamics, meaning that the corresponding differential equations feature non-integer valued derivatives. There are several arguments for why this is the case, one of which is that fractional derivatives inherit spatiotemporal memory and/or the ability to express complex naturally occurring phenomena. Another popular topic nowadays is machine learning, i.e., learning behavior and patterns from historical data. In our ever-changing world with ever-increasing amounts of data, machine learning is a powerful tool for data analysis, problem-solving, modeling, and prediction. It has provided many further insights and discoveries in various scientific disciplines. As these two modern-day topics hold a lot of potential for combined approaches in terms of describing complex dynamics, this article review combines approaches from fractional derivatives and machine learning from the past, puts them into context, and thus provides a list of possible combined approaches and the corresponding techniques. Note, however, that this article does not deal with neural networks, as there is already extensive literature on neural networks and fractional calculus. We sorted past combined approaches from the literature into three categories, i.e., preprocessing, machine learning and fractional dynamics, and optimization. The contributions of fractional derivatives to machine learning are manifold as they provide powerful preprocessing and feature augmentation techniques, can improve physically informed machine learning, and are capable of improving hyperparameter optimization. Thus, this article serves to motivate researchers dealing with data-based problems, to be specific machine learning practitioners, to adopt new tools, and enhance their existing approaches.

19.
Entropy (Basel) ; 24(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36554257

RESUMO

Interpretations of Hadamard-type fractional integral and differential operators are proposed. The Hadamard-type fractional integrals of function with respect to another function are interpreted as an generalization of standard entropy, fractional entropies and cumulative entropies. A family of fractional cumulative entropies is proposed by using the Hadamard-type fractional operators.

20.
Entropy (Basel) ; 24(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35885225

RESUMO

The axisymmetric time-fractional diffusion equation with mass absorption is studied in a circle under the time-harmonic Dirichlet boundary condition. The Caputo derivative of the order 0<α≤2 is used. The investigated equation can be considered as the time-fractional generalization of the bioheat equation and the Klein−Gordon equation. Different formulations of the problem for integer values of the time-derivatives α=1 and α=2 are also discussed. The integral transform technique is employed. The outcomes of numerical calculations are illustrated graphically for different values of the parameters.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa