Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903046

RESUMO

Currently, the onset of bone damage and the interaction of cracks with the surrounding micro-architecture are still black boxes. With the motivation to address this issue, our research targets isolating lacunar morphological and densitometric effects on crack advancement under both static and cyclic loading conditions by implementing static extended finite element models (XFEM) and fatigue analyses. The effect of lacunar pathological alterations on damage initiation and progression is evaluated; the results indicate that high lacunar density considerably reduces the mechanical strength of the specimens, resulting as the most influencing parameter among the studied ones. Lacunar size has a lower effect on mechanical strength, reducing it by 2%. Additionally, specific lacunar alignments play a key role in deviating the crack path, eventually slowing its progression. This could shed some light on evaluating the effects of lacunar alterations on fracture evolution in the presence of pathologies.

2.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903134

RESUMO

Fluid penetration into the rock during hydraulic fracturing has been an essential issue in studying the mechanism of fracture initiation, especially the seepage force caused by fluid penetration, which has an important effect on the fracture initiation mechanism around a wellbore. However, in previous studies, the effect of seepage force under unsteady seepage on the fracture initiation mechanism was not considered. In this study, a new seepage model that can predict the variations of pore pressure and seepage force with time around a vertical wellbore for hydraulic fracturing was established by using the method of separation of variables and the Bessel function theory. Then, based on the proposed seepage model, a new circumferential stress calculation model considering the time-dependent effect of seepage force was established. The accuracy and applicability of the seepage model and the mechanical model were verified by comparison with numerical, analytical and experimental results. The time-dependent effect of seepage force on fracture initiation under unsteady seepage was analyzed and discussed. The results show that when the wellbore pressure is constant, the circumferential stress induced by seepage force increases over time, and the possibility of fracture initiation also increases. The higher the hydraulic conductivity, the lower the fluid viscosity and the shorter the time required for tensile failure during hydraulic fracturing. In particular, when the tensile strength of rock is lower, the fracture initiation may occur within the rock mass rather than on the wellbore wall. This study is promising to provide a theoretical basis and practical guidance for further research on fracture initiation in the future.

3.
J Mech Behav Biomed Mater ; 148: 106171, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37890344

RESUMO

In this study, the fracture behavior of ribosylated bovine cortical bone is investigated under loading conditions simulating a fall event. Single edge notched specimens, separated into a control group (n = 11) and a ribosylated group (n = 8), were extracted from the mid-diaphysis of a single bovine femur harvested from a mature cow. A seven-day ribosylation process results in the accumulation of Advanced-Glycation End Products (AGEs) cross-links and AGE adducts. Specimens were subjected to symmetric three point bending (opening mode) and an impact velocity of 1.6 m/s using a drop tower. Near-crack displacement fields up to fracture initiation are determined from high-speed images post-processed using digital image correlation. A constrained over-deterministic least squares regression and orthotropic material linear elastic fracture mechanics theory are used to extract the in-plane critical stress intensity factors at fracture initiation (i.e., fracture initiation toughness values). Statistically significant differences were not observed when comparing the in-plane fracture initiation toughness values (p≥0.96) or energy release rate (p=0.90) between the control and seven-day ribosylated groups. The intrinsic variability of bone may require high sample numbers in order to achieve an adequately powered experiment when assessing dynamic fracture behavior. While there are no detectable differences due to the ribosylation treatment investigated, this is likely due to the limited sample sizes utilized.


Assuntos
Fraturas Ósseas , Bovinos , Animais , Osso e Ossos , Osso Cortical , Fêmur , Extremidade Inferior
4.
Materials (Basel) ; 16(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37445155

RESUMO

This paper presents the first results on the characterisation of the damage behaviour of recycled carbon fibre (rCF) rovings manufactured into unidirectionally (UD) reinforced plates. In the first step, the mechanical properties of several material combinations were determined by mechanical tests (tensile, flexural, compression). This proves the usability of the material for load-bearing structures. For example, a tensile modulus of up to 80 GPa and a tensile strength of 800 MPa were measured. Subsequently, the fracture surface was analysed by scanning electron microscopy (SEM) to characterise the fibre-matrix adhesion and to obtain first indications of possible failure mechanisms. Despite the high mechanical properties, poor fibre-matrix adhesion was found for all matrix systems. In situ X-ray microscopy tests were then performed on smaller specimens under predefined load levels as transverse tensile and bending tests. The results provide further predictions of the failure behaviour and can be compared to the previous test results. The three-dimensional scan reconstruction results were used to visualise the failure behaviour of the staple fibres in order to detect fibre pull-out and fibre or inter-fibre failure and to draw initial conclusions about the damage behaviour in comparison to conventional fibre composites. In particular, a benign failure behaviour in the transverse tensile test was demonstrated with this procedure. In addition, first concepts and tests for the integration of AE analysis into the in situ setup of the X-ray microscope are presented.

5.
J Mech Behav Biomed Mater ; 112: 104083, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979609

RESUMO

PURPOSE: Fractographic analysis has been used to investigate the fracture behavior of Computer-aided design/computer-aided manufacturing (CAD/CAM) composite crowns by subjecting them to compression tests. However, it is difficult to investigate details of the fracture, including its initiation and propagation, using in vitro tests. The aim of this study was to determine the fracture origins and the order of crack initiation of CAD/CAM composite crowns using in silico nonlinear dynamic finite element analysis (FEA). MATERIAL AND METHODS: The following materials were used: Cerasmart (CS), Katana Avencia Block (KA), and Shofu Block HC (HC) as CAD/CAM crowns, Panavia SA Cement Plus (SA) as a luting material, and Clearfil DC Core Plus (DC) as an abutment. The elastic moduli and fracture strain of each material were obtained from the stress-strain curve of in vitro three-point bending tests. The fracture origins and order of crack initiation of the materials were determined by in silico nonlinear dynamic compression analysis. Load-displacement curves were statistically compared with the results of the in vitro compression tests (Pearson's correlation test, α = 0.05). RESULTS: The nonlinear dynamic FEA demonstrated that crack initiation was primarily observed near the lingual side of the CAD/CAM crowns and immediately propagated to the central fossa. The models were fractured following the in vitro fracture strains, showing the same order for the products tested (CS/KA/HC, SA, and DC). Load-displacement curves with the use of CS, KA, and HC were significantly correlated to the corresponding in vitro compression tests results (CS: r = 0.985, p < 0.05, KA: r = 0.987, p < 0.05, and HC: r = 0.997, p < 0.05). CONCLUSIONS: The in silico model established in this study clarified the crack initiation of the CAD/CAM composite crowns and the order of crack initiation among the investigated products, suggesting that the present approach is useful for analyzing the fracture behavior of CAD/CAM composite crowns in detail.


Assuntos
Desenho Assistido por Computador , Coroas , Cerâmica , Resinas Compostas , Simulação por Computador , Porcelana Dentária , Análise do Estresse Dentário , Cimentos de Ionômeros de Vidro , Teste de Materiais
6.
J Biomech ; 49(9): 1477-1481, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27036072

RESUMO

Ring apophysis fractures of the spine occur in physically-active adolescents causing low back pain and the potential for chronic pain. Many of these fractures occur without memorable trauma, suggesting that the fractures occur during everyday movements and activities. The benign nature of this poorly understood potential mechanism of injury hampers appropriate diagnosis and early treatment. The purpose of this study was to establish an ex-vivo model of ring apophysis fracture and demonstrate that these fractures can be initiated by repetitive non-traumatic loading. Six 5-vertebra cervine lumbar (L1-L5) motion segments were cyclically loaded in low-angle low-load flexion (to 15° flexion, with peak load of 230±50N), a representative movement component of daily activities for both human and deer lumbar spines. Pinned end conditions replicated physiologically realistic loading. Ring apophysis fractures were created under low-load low-angle conditions in healthy vertebrae of similar bone mineral density and a similar degree of skeletal maturity to adolescent humans. All specimens developed ring apophysis fractures, some as early as 1400 cycles. The load-displacement data, and hysteresis loops during the cyclic loading, suggest that the fractures occurred gradually, i.e., without trauma. The ease at which these fractures were created suggests that ring apophysis fractures may be more prevalent than current diagnosis rates. Therefore, clinically, healthcare providers should include the potential for ring apophysis fracture in the differential diagnosis of all physically-active adolescents who present with back pain.


Assuntos
Fraturas da Coluna Vertebral/etiologia , Fraturas da Coluna Vertebral/fisiopatologia , Animais , Densidade Óssea , Cervos , Modelos Animais de Doenças , Vértebras Lombares/fisiopatologia , Movimento , Amplitude de Movimento Articular , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa