Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241615

RESUMO

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Assuntos
Desenvolvimento Ósseo/fisiologia , Osso e Ossos/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Osso e Ossos/metabolismo , Cartilagem/citologia , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única/métodos , Células-Tronco/citologia , Células Estromais/citologia , Transcriptoma/genética
2.
Stem Cells ; 41(5): 493-504, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36888549

RESUMO

Regulator of G protein signaling 5 (RGS5) is a GTPase activator for heterotrimeric G-protein α-subunits, shown to be a marker of pericytes. Bone marrow stromal cell population (BMSCs) is heterogeneous. Populations of mesenchymal progenitors, cells supportive of hematopoiesis, and stromal cells regulating bone remodeling have been recently identified. Periosteal and bone marrow mesenchymal stem cells (MSCs) are participating in fracture healing, but it is difficult to distinguish the source of cells within the callus. Considering that perivascular cells exert osteoprogenitor potential, we generated an RGS5 transgenic mouse model (Rgs5-CreER) which when crossed with Ai9 reporter animals (Rgs5/Tomato), is suitable for lineage tracing during growth and post-injury. Flow cytometry analysis and histology confirmed the presence of Rgs5/Tomato+ cells within CD31+ endothelial, CD45+ hematopoietic, and CD31-CD45- mesenchymal/perivascular cells. A tamoxifen chase showed expansion of Rgs5/Tomato+ cells expressing osterix within the trabeculae positioned between mineralized matrix and vasculature. Long-term chase showed proportion of Rgs5/Tomato+ cells contributes to mature osteoblasts expressing osteocalcin. Following femoral fracture, Rgs5/Tomato+ cells are observed around newly formed bone within the BM cavity and expressed osterix and osteocalcin, while contribution within periosteum was low and limited to fibroblastic callus with very few positive chondrocytes. In addition, BM injury model confirmed that RGS5-Cre labels population of BMSCs expands during injury and participates in osteogenesis. Under homeostatic conditions, lineage-traced RGS5 cells within the trabecular area demonstrate osteoprogenitor capacity that in an injury model contributes to new bone formation primarily within the BM niche.


Assuntos
Calo Ósseo , Proteínas RGS , Camundongos , Animais , Osteocalcina/metabolismo , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Osteogênese , Consolidação da Fratura/fisiologia , Condrócitos/metabolismo , Camundongos Transgênicos , Osteoblastos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo
3.
J Nanobiotechnology ; 22(1): 411, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997706

RESUMO

The fracture healing outcome is largely dependent on the quantities as well as osteogenic differentiation capacities of mesenchymal stem cells (MSCs) at the lesion site. Herein, macrophage membrane (MM)-reversibly cloaked nanocomplexes (NCs) are engineered for the lesion-targeted and hierarchical co-delivery of short stromal derived factor-1α peptide (sSDF-1α) and Ckip-1 small interfering RNA (Ckip-1 siRNA, siCkip-1) to promote bone repair by concurrently fostering recruitment and osteogenic differentiation of endogenous MSCs. To construct the NCs, a membrane-penetrating α-helical polypeptide first assembles with siCkip-1, and the cationic NCs are sequentially coated with catalase and an outer shell of sSDF-1α-anchored MM. Due to MM-assisted inflammation homing, intravenously injected NCs could efficiently accumulate at the fractured femur, where catalase decomposes the local hydrogen peroxide to generate oxygen bubbles that drives the shedding of sSDF-1α-anchored MM in the extracellular compartment. The exposed, cationic inner core thus enables robust trans-membrane delivery into MSCs to induce Ckip-1 silencing. Consequently, sSDF-1α-guided MSCs recruitment cooperates with siCkip-1-mediated osteogenic differentiation to facilitate bone formation and accelerate bone fracture healing. This study provides an enlightened strategy for the hierarchical co-delivery of macromolecular drugs into different cellular compartments, and it also renders a promising modality for the management of fracture healing.


Assuntos
Diferenciação Celular , Consolidação da Fratura , Macrófagos , Células-Tronco Mesenquimais , Osteogênese , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Animais , Consolidação da Fratura/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , RNA Interferente Pequeno , Masculino , Membrana Celular/metabolismo , Humanos , Células RAW 264.7
4.
J Nanobiotechnology ; 22(1): 112, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491475

RESUMO

The challenges posed by delayed atrophic healing and nonunion stand as formidable obstacles in osteoporotic fracture treatment. The processes of type H angiogenesis and osteogenesis emerge as pivotal mechanisms during bone regeneration. Notably, the preconditioning of adipose-derived stem cell (ADSC) exosomes under hypoxic conditions has garnered attention for its potential to augment the secretion and functionality of these exosomes. In the present investigation, we embarked upon a comprehensive elucidation of the underlying mechanisms of hypo-ADSC-Exos within the milieu of osteoporotic bone regeneration. Our findings revealed that hypo-ADSC-Exos harboured a preeminent miRNA, namely, miR-21-5p, which emerged as the principal orchestrator of angiogenic effects. Through in vitro experiments, we demonstrated the capacity of hypo-ADSC-Exos to stimulate the proliferation, migration, and angiogenic potential of human umbilical vein endothelial cells (HUVECs) via the mediation of miR-21-5p. The inhibition of miR-21-5p effectively attenuated the proangiogenic effects mediated by hypo-ADSC-Exos. Mechanistically, our investigation revealed that exosomal miR-21-5p emanating from hypo-ADSCs exerts its regulatory influence by targeting sprouly1 (SPRY1) within HUVECs, thereby facilitating the activation of the PI3K/AKT signalling pathway. Notably, knockdown of SPRY1 in HUVECs was found to potentiate PI3K/AKT activation and, concomitantly, HUVEC proliferation, migration, and angiogenesis. The culminating stage of our study involved a compelling in vivo demonstration wherein GelMA loaded with hypo-ADSC-Exos was validated to substantially enhance local type H angiogenesis and concomitant bone regeneration. This enhancement was unequivocally attributed to the exosomal modulation of SPRY1. In summary, our investigation offers a pioneering perspective on the potential utility of hypo-ADSC-Exos as readily available for osteoporotic fracture treatment.


Assuntos
Exossomos , Gelatina , Células-Tronco Mesenquimais , Metacrilatos , MicroRNAs , Fraturas por Osteoporose , Humanos , Fraturas por Osteoporose/metabolismo , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Angiogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neovascularização Fisiológica , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia/metabolismo
5.
BMC Musculoskelet Disord ; 25(1): 677, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210389

RESUMO

BACKGROUND: Around 10% of fractures lead to complications. With increasing fracture incidences in recent years, this poses a serious burden on the healthcare system, with increasing costs for treatment. In the present study, we aimed to identify potential 'new' blood markers to predict the development of post-surgical complications in trauma patients following a fracture. METHODS: A total of 292 trauma patients with a complete three-month follow-up were included in this cohort study. Blood samples were obtained from 244 of these patients. Two complication groups were distinguished based on the Clavien-Dindo (CD) classification: CD grade I and CD grade III groups were compared to the controls (CD 0). The Mann-Whitney U test was used to compare the complication groups to the control group. RESULTS: Analysis of the patients' data revealed that risk factors are dependent on sex. Both, males and females who developed a CD III complication showed elevated blood levels of B7-1 (p = 0.015 and p = 0.018, respectively) and PlGF-1 (p = 0.009 and p = 0.031, respectively), with B7-1 demonstrating greater sensitivity (B7-1: 0.706 (male) and 0.692 (female), PlGF-1: 0.647 (male) and 0.615 (female)). Further analysis of the questionnaires and medical data revealed the importance of additional risk factors. For males (CD 0: 133; CD I: 12; CD III: 18 patients) alcohol consumption was significantly increased for CD I and CD III compared to control with p = 0.009 and p = 0.007, respectively. For females (CD 0: 107; CD I: 10; CD III: 12 patients) a significantly increased average BMI [kg/m2] from 25.5 to 29.7 with CD III was observed, as well as an elevation from one to three comorbidities (p = 0.003). CONCLUSIONS: These two potential new blood markers hold promise for predicting complication development in trauma patients. Nevertheless, further studies are necessary to evaluate the diagnostic utility of B7-1 and PlGF-1 in predicting complications in trauma patients and consider sex differences before their possible use as routine clinical screening tools.


Assuntos
Biomarcadores , Fraturas Ósseas , Fator de Crescimento Placentário , Humanos , Masculino , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , Adulto , Fraturas Ósseas/sangue , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/diagnóstico , Fraturas Ósseas/etiologia , Fator de Crescimento Placentário/sangue , Fatores de Risco , Estudos de Coortes , Idoso , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Seguimentos
6.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396834

RESUMO

The periosteum is known as the thin connective tissue covering most bone surfaces. Its extrusive bone regeneration capacity was confirmed from the very first century-old studies. Recently, pluripotent stem cells in the periosteum with unique physiological properties were unveiled. Existing in dynamic contexts and regulated by complex molecular networks, periosteal stem cells emerge as having strong capabilities of proliferation and multipotential differentiation. Through continuous exploration of studies, we are now starting to acquire more insight into the great potential of the periosteum in bone formation and repair in situ or ectopically. It is undeniable that the periosteum is developing further into a more promising strategy to be harnessed in bone tissue regeneration. Here, we summarized the development and structure of the periosteum, cell markers, and the biological features of periosteal stem cells. Then, we reviewed their pivotal role in bone repair and the underlying molecular regulation. The understanding of periosteum-related cellular and molecular content will help enhance future research efforts and application transformation of the periosteum.


Assuntos
Regeneração Óssea , Periósteo , Regeneração Óssea/fisiologia , Osteogênese/fisiologia , Células-Tronco , Diferenciação Celular , Engenharia Tecidual
7.
Bioessays ; 43(1): e2000202, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33155283

RESUMO

An emerging concept is that quiescent mature skeletal cells provide an important cellular source for bone regeneration. It has long been considered that a small number of resident skeletal stem cells are solely responsible for the remarkable regenerative capacity of adult bones. However, recent in vivo lineage-tracing studies suggest that all stages of skeletal lineage cells, including dormant pre-adipocyte-like stromal cells in the marrow, osteoblast precursor cells on the bone surface and other stem and progenitor cells, are concomitantly recruited to the injury site and collectively participate in regeneration of the damaged skeletal structure. Lineage plasticity appears to play an important role in this process, by which mature skeletal cells can transform their identities into skeletal stem cell-like cells in response to injury. These highly malleable, long-living mature skeletal cells, readily available throughout postnatal life, might represent an ideal cellular resource that can be exploited for regenerative medicine.


Assuntos
Plasticidade Celular , Emergências , Células da Medula Óssea , Regeneração Óssea , Diferenciação Celular , Linhagem da Célula , Humanos , Células-Tronco
8.
BMC Musculoskelet Disord ; 24(1): 920, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017411

RESUMO

BACKGROUND: Major adverse cardiovascular events (MACE) are critical complications responsible for the morbidity and mortality of elderly hip fracture patients. There was an urgent need to explore an effect biomarker for predicting MACE in elderly patients receiving hip fracture surgery. OBJECTIVE: This study focused on an age-related miRNA, miR-409-3p, and assessed its significance in elderly hip fracture patients. METHODS: A total of 267 hip fracture patients were enrolled in this study including 104 elderly patients (age ≥ 60 years). All patients were followed up for 1 year to monitor the occurrence of MACE. The risk factors for the occurrence of MACE were evaluated by the logistic regression analysis. RESULTS: Elderly age and reduced cardiac and renal function were identified as risk factors for MACE in hip fracture patients. Elderly patients also showed a high incidence of MACE. In elderly hip fracture patients, significant upregulation of miR-409-3p was observed, which was associated with patients' elderly age, higher level of revised cardiac risk index (RCRI), lower left ventricular ejection fraction (LVEF), and higher levels of N-terminal pro-brain natriuretic peptide (NT-proBNP), creatine kinase-MB (CK-MB), and high sensitivity troponin I (hsTnI). Additionally, miR-409-3p was identified as an independent factor for the MACE in elderly patients received hip fracture surgery. CONCLUSION: Upregulated miR-409-3p was an age-related miRNA and could predict the occurrence of MACE in elderly hip fracture patients.


Assuntos
Fraturas do Quadril , MicroRNAs , Humanos , Idoso , Pessoa de Meia-Idade , Volume Sistólico , Função Ventricular Esquerda , Fraturas do Quadril/cirurgia , Biomarcadores , MicroRNAs/genética , Fragmentos de Peptídeos , Prognóstico
9.
Eur J Orthop Surg Traumatol ; 33(6): 2297-2302, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36348100

RESUMO

INTRODUCTION: The purpose of this series is to report on the one-year clinical outcomes of instability related anterior glenoid fractures treated with open repair utilizing the subscapularis split technique. METHODS: Patients with displaced anterior glenoid fractures who underwent open surgical treatment via deltopectoral incision and subscapularis split were identified from a single surgeons database. Fractures were repaired using screw fixation or with distal tibia osteochondral allograft reconstruction. Patient Reported Outcome Measurement Information System (PROMIS) Upper Extremity Computer Adaptive Test (UE), PROMIS Pain interference (PI), PROMIS pain intensity (Pi), American Shoulder and Elbow Surgeons (ASES), Visual Analog Scale (VAS) pain, and Subjective Shoulder Value (SSV) scores were obtained at minimum one-year follow-up. RESULTS: Twelve patients with a mean age of 54 (range 28-72) years were included in our study with a follow-up at an average of 16.6 (range 12-30) months. Ten patients underwent internal fixation and two patients underwent allograft reconstruction. Postoperative imaging (n = 10) at latest follow-up demonstrated healed fractures without any hardware complication. Mean postoperative range of motion included forward elevation of 147 ± 44.0° and external rotation of 44 ± 17°. Postoperative PROMs were obtained from nine patients with a mean PROMIS UE, PI, and Pi score of 49.4 ± 4.1, 39.9 ± 3.8 and 35.6 ± 4.3, respectively. The respective mean ASES, VAS, and SSV scores were 91.8 ± 7.2, 1.2 ± 1.0, and 91.0 ± 8.0. CONCLUSION: Open surgical repair of anterior glenoid fractures utilizing subscapularis split results in good functional outcomes and low complications including risk of recurrent instability. LEVEL OF EVIDENCE: III case series.


Assuntos
Fraturas Ósseas , Instabilidade Articular , Luxação do Ombro , Articulação do Ombro , Humanos , Pré-Escolar , Criança , Manguito Rotador/cirurgia , Articulação do Ombro/cirurgia , Luxação do Ombro/cirurgia , Instabilidade Articular/etiologia , Instabilidade Articular/cirurgia , Escápula/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Artroscopia/métodos , Amplitude de Movimento Articular
10.
Sensors (Basel) ; 22(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36016004

RESUMO

There is an unmet need for improved, clinically relevant methods to longitudinally quantify bone healing during fracture care. Here we develop a smart bone plate to wirelessly monitor healing utilizing electrical impedance spectroscopy (EIS) to provide real-time data on tissue composition within the fracture callus. To validate our technology, we created a 1-mm rabbit tibial defect and fixed the bone with a standard veterinary plate modified with a custom-designed housing that included two impedance sensors capable of wireless transmission. Impedance magnitude and phase measurements were transmitted every 48 h for up to 10 weeks. Bone healing was assessed by X-ray, µCT, and histology. Our results indicated the sensors successfully incorporated into the fracture callus and did not impede repair. Electrical impedance, resistance, and reactance increased steadily from weeks 3 to 7-corresponding to the transition from hematoma to cartilage to bone within the fracture gap-then plateaued as the bone began to consolidate. These three electrical readings significantly correlated with traditional measurements of bone healing and successfully distinguished between union and not-healed fractures, with the strongest relationship found with impedance magnitude. These results suggest that our EIS smart bone plate can provide continuous and highly sensitive quantitative tissue measurements throughout the course of fracture healing to better guide personalized clinical care.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Animais , Placas Ósseas , Calo Ósseo/diagnóstico por imagem , Calo Ósseo/patologia , Espectroscopia Dielétrica/métodos , Fraturas Ósseas/diagnóstico por imagem , Coelhos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa