Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Cell ; 176(3): 625-635.e14, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30682371

RESUMO

Programmed -1 ribosomal frameshifting (-1PRF) is a widely used translation recoding mechanism. HIV-1 expresses Gag-Pol protein from the Gag-coding mRNA through -1PRF, and the ratio of Gag to Gag-Pol is strictly maintained for efficient viral replication. Here, we report that the interferon-stimulated gene product C19orf66 (herein named Shiftless) is a host factor that inhibits the -1PRF of HIV-1. Shiftless (SFL) also inhibited the -1PRF of a variety of mRNAs from both viruses and cellular genes. SFL interacted with the -1PRF signal of target mRNA and translating ribosomes and caused premature translation termination at the frameshifting site. Downregulation of translation release factor eRF3 or eRF1 reduced SFL-mediated premature translation termination. We propose that SFL binding to target mRNA and the translating ribosome interferes with the frameshifting process. These findings identify SFL as a broad-spectrum inhibitor of -1PRF and help to further elucidate the mechanisms of -1PRF.


Assuntos
Proteínas de Fusão gag-pol/genética , HIV-1/genética , Sequência de Bases , Mudança da Fase de Leitura do Gene Ribossômico/genética , Regulação Viral da Expressão Gênica/genética , Humanos , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Ribossomos/metabolismo , Replicação Viral/genética
2.
Mol Cell ; 82(19): 3745-3749.e2, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36115342

RESUMO

The research article describing the discovery of ribosomal frameshifting in the bacterial CopA gene also reported the occurrence of frameshifting in the expression of the human ortholog ATP7B based on assays using dual luciferase reporters. An examination of the publicly available ribosome profiling data and the phylogenetic analysis of the proposed frameshifting site cast doubt on the validity of this claim and prompted us to reexamine the evidence. We observed similar apparent frameshifting efficiencies as the original authors using the same type of vector that synthesizes both luciferases as a single polyprotein. However, we noticed anomalously low absolute luciferase activities from the N-terminal reporter that suggests interference of reporter activity or levels by the ATP7B test cassette. When we tested the same proposed ATP7B frameshifting cassette in a more recently developed reporter system in which the reporters are released without being included in a polyprotein, no frameshifting was detected above background levels.


Assuntos
ATPases Transportadoras de Cobre/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico , Poliproteínas , Mudança da Fase de Leitura do Gene Ribossômico/genética , Humanos , Luciferases/genética , Conformação de Ácido Nucleico , Filogenia , Poliproteínas/genética , Poliproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Mol Cell ; 81(22): 4709-4721.e9, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34562372

RESUMO

mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis. Despite protein quality control mechanisms, amino acid shortage in melanoma induces aberrant proteins by ribosomal frameshifting. The extent and the underlying mechanisms related to this phenomenon are yet unknown. Here, we show that tryptophan depletion-induced ribosomal frameshifting is a widespread phenomenon in cancer. We termed this event sloppiness and strikingly observed its association with MAPK pathway hyperactivation. Sloppiness is stimulated by RAS activation in primary cells, suppressed by pharmacological inhibition of the oncogenic MAPK pathway in sloppy cells, and restored in cells with acquired resistance to MAPK pathway inhibition. Interestingly, sloppiness causes aberrant peptide presentation at the cell surface, allowing recognition and specific killing of drug-resistant cancer cells by T lymphocytes. Thus, while oncogenes empower cancer progression and aggressiveness, they also expose a vulnerability by provoking the production of aberrant peptides through sloppiness.


Assuntos
Neoplasias/genética , Oncogenes , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Linfócitos T/citologia , Animais , Carcinogênese , Membrana Celular/metabolismo , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Mutação da Fase de Leitura , Mudança da Fase de Leitura do Gene Ribossômico , Humanos , Imunoterapia/métodos , Sistema de Sinalização das MAP Quinases , Melanoma/metabolismo , Camundongos , Neoplasias/metabolismo , Peptídeos/química , Inibidores de Proteínas Quinases , Ribossomos/metabolismo , Linfócitos T/metabolismo , Triptofano/química , Triptofano/metabolismo
4.
Mol Cell ; 80(6): 1067-1077.e5, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33259809

RESUMO

The Coronaviridae is a family of positive-strand RNA viruses that includes SARS-CoV-2, the etiologic agent of the COVID-19 pandemic. Bearing the largest single-stranded RNA genomes in nature, coronaviruses are critically dependent on long-distance RNA-RNA interactions to regulate the viral transcription and replication pathways. Here we experimentally mapped the in vivo RNA-RNA interactome of the full-length SARS-CoV-2 genome and subgenomic mRNAs. We uncovered a network of RNA-RNA interactions spanning tens of thousands of nucleotides. These interactions reveal that the viral genome and subgenomes adopt alternative topologies inside cells and engage in different interactions with host RNAs. Notably, we discovered a long-range RNA-RNA interaction, the FSE-arch, that encircles the programmed ribosomal frameshifting element. The FSE-arch is conserved in the related MERS-CoV and is under purifying selection. Our findings illuminate RNA structure-based mechanisms governing replication, discontinuous transcription, and translation of coronaviruses and will aid future efforts to develop antiviral strategies.


Assuntos
COVID-19/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico , Genoma Viral/fisiologia , RNA Viral/biossíntese , SARS-CoV-2/fisiologia , Replicação Viral/fisiologia , Animais , COVID-19/genética , Chlorocebus aethiops , Humanos , Biossíntese de Proteínas , RNA Viral/genética , Transcrição Gênica , Células Vero
5.
Trends Biochem Sci ; 48(4): 391-406, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710231

RESUMO

RNA viruses are diverse and abundant pathogens that are responsible for numerous human diseases. RNA viruses possess relatively compact genomes and have therefore evolved multiple mechanisms to maximize their coding capacities, often by encoding overlapping reading frames. These reading frames are then decoded by mechanisms such as alternative splicing and ribosomal frameshifting to produce multiple distinct proteins. These solutions are enabled by the ability of the RNA genome to fold into 3D structures that can mimic cellular RNAs, hijack host proteins, and expose or occlude regulatory protein-binding motifs to ultimately control key process in the viral life cycle. We highlight recent findings focusing on less conventional mechanisms of gene expression and new discoveries on the role of RNA structures.


Assuntos
Vírus de RNA , RNA , Humanos , RNA/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico , Vírus de RNA/genética , Expressão Gênica , RNA Viral/genética , RNA Viral/metabolismo , Conformação de Ácido Nucleico , Genoma Viral
6.
Mol Cell ; 75(1): 172-183.e9, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31178355

RESUMO

Ribosomal frameshifting during the translation of RNA is implicated in human disease and viral infection. While previous work has uncovered many details about single RNA frameshifting kinetics in vitro, little is known about how single RNA frameshift in living systems. To confront this problem, we have developed technology to quantify live-cell single RNA translation dynamics in frameshifted open reading frames. Applying this technology to RNA encoding the HIV-1 frameshift sequence reveals a small subset (∼8%) of the translating pool robustly frameshift. Frameshifting RNA are translated at similar rates as non-frameshifting RNA (∼3 aa/s) and can continuously frameshift for more than four rounds of translation. Fits to a bursty model of frameshifting constrain frameshifting kinetic rates and demonstrate how ribosomal traffic jams contribute to the persistence of the frameshifting state. These data provide insight into retroviral frameshifting and could lead to alternative strategies to perturb the process in living cells.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , HIV-1/genética , Fases de Leitura Aberta , Osteoblastos/metabolismo , RNA Viral/genética , Imagem Individual de Molécula/métodos , Pareamento de Bases , Linhagem Celular Tumoral , HIV-1/metabolismo , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico , Sondas de Oligonucleotídeos/síntese química , Sondas de Oligonucleotídeos/genética , Sondas de Oligonucleotídeos/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Osteoblastos/virologia , RNA Viral/química , RNA Viral/metabolismo , Coloração e Rotulagem/métodos
7.
Proc Natl Acad Sci U S A ; 121(6): e2317453121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289956

RESUMO

The synthesis of proteins as encoded in the genome depends critically on translational fidelity. Nevertheless, errors inevitably occur, and those that result in reading frame shifts are particularly consequential because the resulting polypeptides are typically nonfunctional. Despite the generally maladaptive impact of such errors, the proper decoding of certain mRNAs, including many viral mRNAs, depends on a process known as programmed ribosomal frameshifting. The fact that these programmed events, commonly involving a shift to the -1 frame, occur at specific evolutionarily optimized "slippery" sites has facilitated mechanistic investigation. By contrast, less is known about the scope and nature of error (i.e., nonprogrammed) frameshifting. Here, we examine error frameshifting by monitoring spontaneous frameshift events that suppress the effects of single base pair deletions affecting two unrelated test proteins. To map the precise sites of frameshifting, we developed a targeted mass spectrometry-based method called "translational tiling proteomics" for interrogating the full set of possible -1 slippage events that could produce the observed frameshift suppression. Surprisingly, such events occur at many sites along the transcripts, involving up to one half of the available codons. Only a subset of these resembled canonical "slippery" sites, implicating alternative mechanisms potentially involving noncognate mispairing events. Additionally, the aggregate frequency of these events (ranging from 1 to 10% in our test cases) was higher than we might have anticipated. Our findings point to an unexpected degree of mechanistic diversity among ribosomal frameshifting events and suggest that frameshifted products may contribute more significantly to the proteome than generally assumed.


Assuntos
Escherichia coli , Proteômica , Escherichia coli/genética , Escherichia coli/metabolismo , Mutação da Fase de Leitura/genética , Mudança da Fase de Leitura do Gene Ribossômico/genética , Códon/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(22): e2221683120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216548

RESUMO

The triplet nature of the genetic code is considered a universal feature of known organisms. However, frequent stop codons at internal mRNA positions in Euplotes ciliates ultimately specify ribosomal frameshifting by one or two nucleotides depending on the context, thus posing a nontriplet feature of the genetic code of these organisms. Here, we sequenced transcriptomes of eight Euplotes species and assessed evolutionary patterns arising at frameshift sites. We show that frameshift sites are currently accumulating more rapidly by genetic drift than they are removed by weak selection. The time needed to reach the mutational equilibrium is several times longer than the age of Euplotes and is expected to occur after a several-fold increase in the frequency of frameshift sites. This suggests that Euplotes are at an early stage of the spread of frameshifting in expression of their genome. In addition, we find the net fitness burden of frameshift sites to be noncritical for the survival of Euplotes. Our results suggest that fundamental genome-wide changes such as a violation of the triplet character of genetic code can be introduced and maintained solely by neutral evolution.


Assuntos
Cilióforos , Euplotes , Euplotes/genética , Euplotes/metabolismo , Código Genético , Sequência de Bases , Códon de Terminação/genética , Códon de Terminação/metabolismo , Cilióforos/genética , Deriva Genética
9.
Proc Natl Acad Sci U S A ; 120(20): e2221324120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155888

RESUMO

The frameshifting RNA element (FSE) in coronaviruses (CoVs) regulates the programmed -1 ribosomal frameshift (-1 PRF) mechanism common to many viruses. The FSE is of particular interest as a promising drug candidate. Its associated pseudoknot or stem loop structure is thought to play a large role in frameshifting and thus viral protein production. To investigate the FSE structural evolution, we use our graph theory-based methods for representing RNA secondary structures in the RNA-As-Graphs (RAG) framework to calculate conformational landscapes of viral FSEs with increasing sequence lengths for representative 10 Alpha and 13 Beta-CoVs. By following length-dependent conformational changes, we show that FSE sequences encode many possible competing stems which in turn favor certain FSE topologies, including a variety of pseudoknots, stem loops, and junctions. We explain alternative competing stems and topological FSE changes by recurring patterns of mutations. At the same time, FSE topology robustness can be understood by shifted stems within different sequence contexts and base pair coevolution. We further propose that the topology changes reflected by length-dependent conformations contribute to tuning the frameshifting efficiency. Our work provides tools to analyze virus sequence/structure correlations, explains how sequence and FSE structure have evolved for CoVs, and provides insights into potential mutations for therapeutic applications against a broad spectrum of CoV FSEs by targeting key sequence/structural transitions.


Assuntos
Infecções por Coronavirus , Coronavirus , Humanos , RNA Viral/metabolismo , Coronavirus/genética , Coronavirus/metabolismo , Sequência de Bases , Conformação de Ácido Nucleico , Mudança da Fase de Leitura do Gene Ribossômico/genética , Infecções por Coronavirus/genética
10.
Trends Genet ; 38(11): 1123-1133, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35641342

RESUMO

Programmed ribosomal frameshifting (PRF) is a key mechanism that viruses use to generate essential proteins for replication, and as a means of regulating gene expression. PRF generally involves recoding signals or frameshift stimulators to elevate the occurrence of frameshifting at shift-prone 'slippery' sequences. Given its essential role in viral replication, targeting PRF was envisioned as an attractive tool to block viral infection. However, in contrast to controlled-PRF mechanisms, recent studies have shown that ribosomes of many human cancer cell types are prone to frameshifting upon amino acid shortage; thus, these cells are deemed to be sloppy. The resulting products of a sloppy frameshift at the 'hungry' codons are aberrant proteins the degradation and display of which at the cell surface can trigger T cell activation. In this review, we address recent discoveries in ribosomal frameshifting and their functional consequences for the proteome in human cancer cells.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Proteoma , Aminoácidos/genética , Códon/genética , Mudança da Fase de Leitura do Gene Ribossômico/genética , Humanos , Proteoma/genética , Ribossomos/genética , Ribossomos/metabolismo
11.
J Virol ; 98(7): e0053424, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38899932

RESUMO

The interplay between host factors and viral components impacts viral replication efficiency profoundly. Members of the cellular heterogeneous nuclear ribonucleoprotein family (hnRNPs) have been extensively studied as HIV-1 host dependency factors, but whether they play a role in innate immunity is currently unknown. This study aimed to identify hnRNPA0 as a type I interferon (IFN)-repressed host factor in HIV-1-infected cells. Knockdown of hnRNPA0, a situation that mirrors conditions under IFN stimulation, increased LTR activity, export of unspliced HIV-1 mRNA, viral particle production, and thus, increased infectivity. Conversely, hnRNPA0 overexpression primarily reduced plasmid-driven and integrated HIV-1 long terminal repeat (LTR) activity, significantly decreasing total viral mRNA and protein levels. In addition, high levels of hnRNPA0 significantly reduced the HIV-1 programmed ribosomal frameshifting efficiency, resulting in a shift in the HIV-1 p55/p15 ratio. The HIV-1 alternative splice site usage remained largely unaffected by altered hnRNPA0 levels suggesting that the synergistic inhibition of the LTR activity and viral mRNA transcription, as well as impaired ribosomal frameshifting efficiency, are critical factors for efficient HIV-1 replication regulated by hnRNPA0. The pleiotropic dose-dependent effects under high or low hnRNPA0 levels were further confirmed in HIV-1-infected Jurkat cells. Finally, our study revealed that hnRNPA0 levels in PBMCs were lower in therapy-naive HIV-1-infected individuals compared to healthy controls. Our findings highlight a significant role for hnRNPA0 in HIV-1 replication and suggest that its IFN-I-regulated expression levels are critical for viral fitness allowing replication in an antiviral environment.IMPORTANCERNA-binding proteins, in particular, heterogeneous nuclear ribonucleoproteins (hnRNPs), have been extensively studied. Some act as host dependency factors for HIV-1 since they are involved in multiple cellular gene expression processes. Our study revealed hnRNPA0 as an IFN-regulated host factor, that is differently expressed after IFN-I treatment in HIV-1 target cells and lower expressed in therapy-naïve HIV-1-infected individuals. Our findings demonstrate the significant pleiotropic role of hnRNPA0 in viral replication: In high concentrations, hnRNPA0 limits viral replication by negatively regulating Tat-LTR transcription, retaining unspliced mRNA in the nucleus, and significantly impairing programmed ribosomal frameshifting. Low hnRNPA0 levels as observed in IFN-treated THP-1 cells, particularly facilitate HIV LTR activity and unspliced mRNA export, suggesting a role in innate immunity in favor of HIV replication. Understanding the mode of action between hnRNPA0 and HIV-1 gene expression might help to identify novel therapeutically strategies against HIV-1 and other viruses.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Infecções por HIV , Repetição Terminal Longa de HIV , HIV-1 , RNA Mensageiro , Replicação Viral , Humanos , HIV-1/fisiologia , HIV-1/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Repetição Terminal Longa de HIV/genética , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/metabolismo , Infecções por HIV/imunologia , RNA Viral/genética , RNA Viral/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Interações Hospedeiro-Patógeno , Células HEK293 , Transporte de RNA , Células Jurkat
12.
Mol Cell ; 66(4): 558-567.e4, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525745

RESUMO

Ribosome frameshifting during translation of bacterial dnaX can proceed via different routes, generating a variety of distinct polypeptides. Using kinetic experiments, we show that -1 frameshifting predominantly occurs during translocation of two tRNAs bound to the slippery sequence codons. This pathway depends on a stem-loop mRNA structure downstream of the slippery sequence and operates when aminoacyl-tRNAs are abundant. However, when aminoacyl-tRNAs are in short supply, the ribosome switches to an alternative frameshifting pathway that is independent of a stem-loop. Ribosome stalling at a vacant 0-frame A-site codon results in slippage of the P-site peptidyl-tRNA, allowing for -1-frame decoding. When the -1-frame aminoacyl-tRNA is lacking, the ribosomes switch into -2 frame. Quantitative mass spectrometry shows that the -2-frame product is synthesized in vivo. We suggest that switching between frameshifting routes may enrich gene expression at conditions of aminoacyl-tRNA limitation.


Assuntos
Proteínas de Bactérias/biossíntese , DNA Polimerase III/biossíntese , Escherichia coli/enzimologia , Mudança da Fase de Leitura do Gene Ribossômico , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Proteínas de Bactérias/genética , DNA Polimerase III/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Cinética , Mutação , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
13.
Proc Natl Acad Sci U S A ; 119(44): e2212502119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36282914

RESUMO

Translocation of transfer RNA (tRNA) and messenger RNA (mRNA) through the ribosome is catalyzed by the GTPase elongation factor G (EF-G) in bacteria. Although guanosine-5'-triphosphate (GTP) hydrolysis accelerates translocation and is required for dissociation of EF-G, its fundamental role remains unclear. Here, we used ensemble Förster resonance energy transfer (FRET) to monitor how inhibition of GTP hydrolysis impacts the structural dynamics of the ribosome. We used FRET pairs S12-S19 and S11-S13, which unambiguously report on rotation of the 30S head domain, and the S6-L9 pair, which measures intersubunit rotation. Our results show that, in addition to slowing reverse intersubunit rotation, as shown previously, blocking GTP hydrolysis slows forward head rotation. Surprisingly, blocking GTP hydrolysis completely abolishes reverse head rotation. We find that the S13-L33 FRET pair, which has been used in previous studies to monitor head rotation, appears to report almost exclusively on intersubunit rotation. Furthermore, we find that the signal from quenching of 3'-terminal pyrene-labeled mRNA, which is used extensively to follow mRNA translocation, correlates most closely with reverse intersubunit rotation. To account for our finding that blocking GTP hydrolysis abolishes a rotational event that occurs after the movements of mRNA and tRNAs are essentially complete, we propose that the primary role of GTP hydrolysis is to create an irreversible step in a mechanism that prevents release of EF-G until both the tRNAs and mRNA have moved by one full codon, ensuring productive translocation and maintenance of the translational reading frame.


Assuntos
Fator G para Elongação de Peptídeos , Ribossomos , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/química , Guanosina Trifosfato/química , Hidrólise , Ribossomos/metabolismo , RNA de Transferência/química , RNA Mensageiro/química , GTP Fosfo-Hidrolases/genética , Pirenos/análise , Guanosina
14.
J Biol Chem ; 299(1): 102771, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470424

RESUMO

An emerging body of research is revealing mutations in elongation factor eEF2 that are implicated in both inherited and de novo neurodevelopmental disorders. Previous structural analysis has revealed that most pathogenic amino acid substitutions map to the three main points of contact between eEF2 and critical large subunit rRNA elements of the ribosome, specifically to contacts with Helix 69, Helix 95, also known as the sarcin-ricin loop, and Helix 43 of the GTPase-associated center. In order to further investigate these eEF2-ribosome interactions, we identified a series of yeast eEF2 amino acid residues based on their proximity to these functionally important rRNA elements. Based on this analysis, we constructed mutant strains to sample the full range of amino acid sidechain biochemical properties, including acidic, basic, nonpolar, and deletion (alanine) residues. These were characterized with regard to their effects on cell growth, sensitivity to ribosome-targeting antibiotics, and translational fidelity. We also biophysically characterized one mutant from each of the three main points of contact with the ribosome using CD. Collectively, our findings from these studies identified functionally critical contacts between eEF2 and the ribosome. The library of eEF2 mutants generated in this study may serve as an important resource for biophysical studies of eEF2/ribosome interactions going forward.


Assuntos
Fator 2 de Elongação de Peptídeos , Ribossomos , Humanos , Aminoácidos/química , Aminoácidos/genética , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutação
15.
Chembiochem ; : e202400130, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923096

RESUMO

Ribosome translocation catalyzed by elongation factor G (EF-G) is a critical step in protein synthesis where the ribosome typically moves along the mRNA by three nucleotides at each step. To investigate the mechanism of EF-G catalysis, it is essential to precisely resolve the ribosome motion at both ends of the mRNA, which, to our best knowledge, is only achieved with the magnetic-based force spectroscopy developed by our groups. Here, we introduce a novel multiplexed force spectroscopy technique that, for the first time, offers single-nucleotide resolution for multiple samples. This technique combines multiple acoustic force generators with the smallest atomic magnetometer designed for biological research. Utilizing this technique, we demonstrate that mutating EF-G at the GTP binding pocket results in the ribosome moving only two nucleotides on both ends of the mRNA, thereby compromising ribosome translocation. This finding suggests a direct link between GTP hydrolysis and ribosome translocation. Our results not only provide mechanistic insights into the role of GTP binding pocket but also illuminate how allosteric mutations can manipulate translocation. We anticipate broader applications of our technique in the ribosome field, leveraging its high efficiency and single-nucleotide resolution.

16.
RNA ; 28(3): 320-339, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34916334

RESUMO

Ribosome stalls can result in ribosome collisions that elicit quality control responses, one function of which is to prevent ribosome frameshifting, an activity that entails the interaction of the conserved yeast protein Mbf1 with uS3 on colliding ribosomes. However, the full spectrum of factors that mediate frameshifting during ribosome collisions is unknown. To delineate such factors in the yeast Saccharomyces cerevisiae, we used genetic selections for mutants that affect frameshifting from a known ribosome stall site, CGA codon repeats. We show that the general translation elongation factor eEF3 and the integrated stress response (ISR) pathway components Gcn1 and Gcn20 modulate frameshifting in opposing manners. We found a mutant form of eEF3 that specifically suppressed frameshifting, but not translation inhibition by CGA codons. Thus, we infer that frameshifting at collided ribosomes requires eEF3, which facilitates tRNA-mRNA translocation and E-site tRNA release in yeast and other single cell organisms. In contrast, we found that removal of either Gcn1 or Gcn20, which bind collided ribosomes with Mbf1, increased frameshifting. Thus, we conclude that frameshifting is suppressed by Gcn1 and Gcn20, although these effects are not mediated primarily through activation of the ISR. Furthermore, we examined the relationship between eEF3-mediated frameshifting and other quality control mechanisms, finding that Mbf1 requires either Hel2 or Gcn1 to suppress frameshifting with wild-type eEF3. Thus, these results provide evidence of a direct link between translation elongation and frameshifting at collided ribosomes, as well as evidence that frameshifting is constrained by quality control mechanisms that act on collided ribosomes.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Fatores de Alongamento de Peptídeos , Proteínas de Saccharomyces cerevisiae , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
Mol Ther ; 31(6): 1675-1687, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945774

RESUMO

CRISPR-Cas13-mediated viral genome targeting is a novel strategy for defending against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Here, we generated mRNA-encoded Cas13b targeting the open reading frame 1b (ORF1b) region to effectively degrade the RNA-dependent RNA polymerase gene. Of the 12 designed CRISPR RNAs (crRNAs), those targeting the pseudoknot site upstream of ORF1b were found to be the most effective in suppressing SARS-CoV-2 propagation. Pseudoknot-targeting Cas13b reduced expression of the spike protein and attenuated viral replication by 99%. It also inhibited the replication of multiple SARS-CoV-2 variants, exhibiting broad potency. We validated the therapeutic efficacy of this system in SARS-CoV-2-infected hACE2 transgenic mice, demonstrating that crRNA treatment significantly reduced viral titers. Our findings suggest that the pseudoknot region is a strategic site for targeted genomic degradation of SARS-CoV-2. Hence, pseudoknot-targeting Cas13b could be a breakthrough therapy for overcoming infections by SARS-CoV-2 or other RNA viruses.


Assuntos
COVID-19 , Animais , Camundongos , SARS-CoV-2/genética , Replicação Viral , RNA Viral/genética , RNA Viral/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507998

RESUMO

Diphthamide, a modification found only on translation elongation factor 2 (EF2), was proposed to suppress -1 frameshifting in translation. Although diphthamide is conserved among all eukaryotes, exactly what proteins are affected by diphthamide deletion is not clear in cells. Through genome-wide profiling for a potential -1 frameshifting site, we identified that the target of rapamycin complex 1 (TORC1)/mammalian TORC1 (mTORC1) signaling pathway is affected by deletion of diphthamide. Diphthamide deficiency in yeast suppresses the translation of TORC1-activating proteins Vam6 and Rtc1. Interestingly, TORC1 signaling also promotes diphthamide biosynthesis, suggesting that diphthamide forms a positive feedback loop to promote translation under nutrient-rich conditions. Our results provide an explanation for why diphthamide is evolutionarily conserved and why diphthamide deletion can cause severe developmental defects.


Assuntos
Histidina/análogos & derivados , Fator 2 de Elongação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Histidina/química , Histidina/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/genética
19.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34185680

RESUMO

Translation of open reading frame 1b (ORF1b) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires a programmed -1 ribosomal frameshift (-1 PRF) promoted by an RNA pseudoknot. The extent to which SARS-CoV-2 replication may be sensitive to changes in -1 PRF efficiency is currently unknown. Through an unbiased, reporter-based high-throughput compound screen, we identified merafloxacin, a fluoroquinolone antibacterial, as a -1 PRF inhibitor for SARS-CoV-2. Frameshift inhibition by merafloxacin is robust to mutations within the pseudoknot region and is similarly effective on -1 PRF of other betacoronaviruses. Consistent with the essential role of -1 PRF in viral gene expression, merafloxacin impedes SARS-CoV-2 replication in Vero E6 cells, thereby providing proof-of-principle for targeting -1 PRF as a plausible and effective antiviral strategy for SARS-CoV-2 and other coronaviruses.


Assuntos
Antivirais/farmacologia , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Betacoronavirus , Chlorocebus aethiops , Fluoroquinolonas/farmacologia , Mudança da Fase de Leitura do Gene Ribossômico/genética , Mutação , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , SARS-CoV-2/fisiologia , Células Vero
20.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339043

RESUMO

Programmed ribosomal frameshifting (PRF) exists in all branches of life that regulate gene expression at the translational level. The eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein essential in all eukaryotes. It is identified initially as an initiation factor and functions broadly in translation elongation and termination. The hypusination of eIF5A is specifically required for +1 PRF at the shifty site derived from the ornithine decarboxylase antizyme 1 (OAZ1) in Saccharomyces cerevisiae. However, whether the regulation of +1 PRF by yeast eIF5A is universal remains unknown. Here, we found that Sc-eIF5A depletion decreased the putrescine/spermidine ratio. The re-introduction of Sc-eIF5A in yeast eIF5A mutants recovered the putrescine/spermidine ratio. In addition, the Sc-eIF5A depletion decreases +1 PRF during the decoding of Ty1 retrotransposon mRNA, but has no effect on -1 PRF during the decoding of L-A virus mRNA. The re-introduction of Sc-eIF5A in yeast eIF5A mutants restored the +1 PRF rate of Ty1. The inhibition of the hypusine modification of yeast eIF5A by GC7 treatment or by mutating the hypusination site Lys to Arg caused decreases of +1 PRF rates in the Ty1 retrotransposon. Furthermore, mutational studies of the Ty1 frameshifting element support a model where the efficient removal of ribosomal subunits at the first Ty1 frame 0 stop codon is required for the frameshifting of trailing ribosomes. This dependency is likely due to the unique position of the frame 0 stop codon distance from the slippery sequence of Ty1. The results showed that eIF5A is a trans-regulator of +1 PRF for Ty1 retrotransposon and could function universally in yeast.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espermidina/metabolismo , Putrescina/metabolismo , Retroelementos/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa