Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biopharm Drug Dispos ; 45(2): 93-106, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488691

RESUMO

Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-ß (Aß40 and Aß42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aß40, and Aß42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aß efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aß peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aß peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aß accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aß peptides in guinea pig brain.


Assuntos
Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Cobaias , Humanos , Animais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Encéfalo/metabolismo , Envelhecimento , Colesterol/metabolismo
2.
J Lipid Res ; 64(2): 100327, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36596339

RESUMO

Human female infertility, 20% of which is idiopathic, is a public health problem for which better diagnostics and therapeutics are needed. A novel cause of infertility emerged from studies of female mice deficient in the HDL receptor gene (Scarb1). These mice are infertile and have high plasma HDL cholesterol (C) concentrations, due to elevated HDL-free cholesterol (FC), which transfers from HDL to all tissues. Previous studies have indicated that oral delivery of probucol, an HDL-lowering drug, to female Scarb1-/- mice reduces plasma HDL-C concentrations and rescues fertility. Additionally, serum opacity factor (SOF), a bacterial virulence factor, disrupts HDL structure, and bolus SOF injection into mice reduces plasma HDL-C concentrations. Here, we discovered that delivering SOF to female Scarb1-/- mice with an adeno-associated virus (AAVSOF) induces constitutive SOF expression, reduces HDL-FC concentrations, and rescues fertility while normalizing ovary morphology. Although AAVSOF did not alter ovary-FC content, the ovary-mol% FC correlated with plasma HDL-mol% FC in a fertility-dependent way. Therefore, reversing the abnormal plasma microenvironment of high plasma HDL-mol% FC in female Scarb1-/- mice rescues fertility. These data provide the rationale to search for similar mechanistic links between HDL-mol% FC and infertility and the rescue of fertility in women by reducing plasma HDL-mol% FC.


Assuntos
Colesterol , Infertilidade , Animais , Feminino , Humanos , Camundongos , Disponibilidade Biológica , Colesterol/metabolismo , HDL-Colesterol , Fertilidade , Receptores Depuradores Classe B/genética
3.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298640

RESUMO

Patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 polymorphism (I148M) is strongly associated with non-alcoholic steatohepatitis and advanced fibrosis; however, the underlying mechanisms remain largely unknown. In this study, we investigated the effect of PNPLA3-I148M on the activation of hepatic stellate cell line LX-2 and the progression of liver fibrosis. Immunofluorescence staining and enzyme-linked immunosorbent assay were used to detect lipid accumulation. The expression levels of fibrosis, cholesterol metabolism, and mitochondria-related markers were measured via real-time PCR or western blotting. Electron microscopy was applied to analyze the ultrastructure of the mitochondria. Mitochondrial respiration was measured by a Seahorse XFe96 analyzer. PNPLA3-I148M significantly promoted intracellular free cholesterol aggregation in LX-2 cells by decreasing cholesterol efflux protein (ABCG1) expression; it subsequently induced mitochondrial dysfunction characterized by attenuated ATP production and mitochondrial membrane potential, elevated ROS levels, caused mitochondrial structural damage, altered the oxygen consumption rate, and decreased the expression of mitochondrial-function-related proteins. Our results demonstrated for the first time that PNPLA3-I148M causes mitochondrial dysfunction of LX-2 cells through the accumulation of free cholesterol, thereby promoting the activation of LX-2 cells and the development of liver fibrosis.


Assuntos
Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Humanos , Predisposição Genética para Doença , Metabolismo dos Lipídeos , Cirrose Hepática/genética , Mitocôndrias/genética , Polimorfismo Genético
4.
J Clin Biochem Nutr ; 72(3): 199-206, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251957

RESUMO

Coenzyme Q (CoQ) is important not only as an essential lipid for the mitochondrial electron transport system, but also as an antioxidant. CoQ levels decrease during aging and in various diseases. Orally administered CoQ is not readily taken up in the brain, so it is necessary to develop a method to increase the amount of CoQ in neurons. CoQ is synthesized via mevalonate pathway, like cholesterol. Transferrin, insulin, and progesterone are factors used in the culture of neurons. In this study, we determined the effect of these reagents on cellular CoQ and cholesterol levels. The administration of transferrin, insulin, and progesterone increased cellular CoQ levels in undifferentiated PC12 cells. When serum was removed and only insulin was administered, intracellular CoQ levels increased. This increase was even more pronounced with concurrent administration of transferrin, insulin, and progesterone. Cholesterol level decreased by the administration of transferrin, insulin, and progesterone. Progesterone treatment lowered intracellular cholesterol levels in a concentration-dependent manner. Our findings suggest that transferrin, insulin, and progesterone may be useful in regulating CoQ levels and cholesterol levels, which are products of the mevalonate pathway.

5.
Semin Cancer Biol ; 73: 76-85, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32805396

RESUMO

Cholesterol is a crucial component of membrane bilayers that determines their physical and functional properties. Cells largely satisfy their need for cholesterol through the novo synthesis from acetyl-CoA and this demand is particularly critical for cancer cells to sustain dysregulated cell proliferation. However, the association between serum or tissue cholesterol levels and cancer development is not well established as epidemiologic data do not consistently support this link. While most preclinical studies focused on the role of total celular cholesterol, the specific contribution of the mitochondrial cholesterol pool to alterations in cancer cell biology has been less explored. Although low compared to other bilayers, the mitochondrial cholesterol content plays an important physiological function in the synthesis of steroid hormones in steroidogenic tissues or bile acids in the liver and controls mitochondrial function. In addition, mitochondrial cholesterol metabolism generates oxysterols, which in turn, regulate multiple pathways, including cholesterol and lipid metabolism as well as cell proliferation. In the present review, we summarize the regulation of mitochondrial cholesterol, including its role in mitochondrial routine performance, cell death and chemotherapy resistance, highlighting its potential contribution to cancer. Of particular relevance is hepatocellular carcinoma, whose incidence in Western countries had tripled in the past decades due to the obesity and type II diabetes epidemic. A better understanding of the role of mitochondrial cholesterol in cancer development may open up novel opportunities for cancer therapy.


Assuntos
Colesterol/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/metabolismo , Neoplasias , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
6.
Curr Atheroscler Rep ; 24(5): 323-336, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332444

RESUMO

PURPOSE OF REVIEW: As both a cholesterol acceptor and carrier in the reverse cholesterol transport (RCT) pathway, high-density lipoprotein (HDL) is putatively atheroprotective. However, current pharmacological therapies to increase plasma HDL cholesterol (HDL-c) concentration have paradoxically failed to prevent or reduce atherosclerosis and cardiovascular disease (CVD). Given that free cholesterol (FC) transfer between surfaces of lipoproteins and cells is reversible, excess plasma FC can be transferred to the cells of peripheral tissue sites resulting in atherosclerosis. Here, we summarize potential mechanisms contributing to this paradox and highlight the role of excess free cholesterol (FC) bioavailability in atherosclerosis vs. atheroprotection. RECENT FINDINGS: Recent findings have established a complex relationship between HDL-c concentration and atherosclerosis. Systemic scavenger receptor class B type 1 (SR-B1) knock out (KO) mice exhibit with increased diet-induced atherosclerosis despite having an elevated plasma HDL-c concentration compared to wild type (WT) mice. The greater bioavailability of HDL-FC in SR-B1 vs. WT mice is associated with a higher FC content in multiple cell types and tissue sites. These results suggest that dysfunctional HDL with high FC bioavailability is atheroprone despite high HDL-c concentration. Past oversimplification of HDL-c involvement in cholesterol transport has led to the failures in HDL targeted therapy. Evidence suggests that FC-mediated functionality of HDL is of higher importance than its quantity; as a result, deciphering the regulatory mechanisms by which HDL-FC bioavailability can induce atherosclerosis can have far-reaching clinical implications.


Assuntos
Aterosclerose , Colesterol , Animais , Aterosclerose/metabolismo , Colesterol/metabolismo , HDL-Colesterol , Humanos , Lipoproteínas HDL/metabolismo , Camundongos , Camundongos Knockout , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
7.
Hepatol Res ; 51(5): 580-592, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33247991

RESUMO

AIM: We recently reported that lipoprotein lipase (LPL)-mediated free cholesterol (FC) accumulation in hepatic stellate cells (HSCs) augmented liver fibrosis in non-alcoholic steatohepatitis (NASH). The aim of the present study was to explore the role of angiopoietin-like protein 4 (Angptl4), an LPL inhibitor, in the pathogenesis of liver fibrosis in NASH. METHODS: Angptl4-deficient or wild-type mice were used to investigate the role of Angptl4 in the pathogenesis of NASH induced by feeding a methionine- and choline-deficient diet. We also examined the effect of Angptl4 on FC accumulation in HSCs, and the subsequent activation of HSCs, using Angptl4-deficient HSCs. RESULTS: In the NASH model, Angptl4-deficient mice had significantly aggravated liver fibrosis and activated HSCs without enhancement of hepatocellular injury, liver inflammation, or liver angiogenesis. FC levels were significantly higher in HSCs from Angptl4-deficient mice than in those from wild-type mice. Treatment with Angptl4 reversed low-density lipoprotein-induced FC accumulation in HSCs through the inhibition of LPL. The Angptl4 deficiency-induced FC accumulation in HSCs suppressed HSC expression of the transforming growth factor-ß (TGF-ß) pseudoreceptor, bone morphogenetic protein, and activin membrane-bound inhibitor, and sensitized HSCs to TGF-ß-induced activation in vivo and in vitro. CONCLUSIONS: Angptl4 plays an important role in the pathogenesis of FC accumulation in HSCs. In addition, regulation of FC levels in HSCs by Angptl4 plays a critical role in the pathogenesis of liver fibrosis in NASH. Thus, Angptl4 could represent a novel therapeutic option for NASH.

8.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445279

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary malignant tumor in the world. Sorafenib is the first-line drug for patients with advanced HCC. However, long-term treatment with sorafenib often results in reduced sensitivity of tumor cells to the drug, leading to acquired resistance. Identifying biomarkers which can predict the response to sorafenib treatment may represent a clinical challenge in the personalized treatment era. Niemann-Pick type C2 (NPC2), a secretory glycoprotein, plays an important role in regulating intracellular free cholesterol homeostasis. In HCC patients, downregulation of hepatic NPC2 is correlated with poor clinical pathological features through regulating mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) activation. This study aimed to investigate the roles of secretory NPC2-mediated free cholesterol levels as biomarkers when undergoing sorafenib treatment and evaluate its impact on acquired sorafenib resistance in HCC cells. Herein, we showed that NPC2 downregulation and free cholesterol accumulation weakened sorafenib's efficacy through enhancing MAPK/AKT signaling in HCC cells. Meanwhile, NPC2 overexpression slightly enhanced the sorafenib-induced cytotoxic effect. Compared to normal diet feeding, mice fed a high-cholesterol diet had much higher tumor growth rates, whereas treatment with the free cholesterol-lowering agent, hydroxypropyl-ß-cyclodextrin, enhanced sorafenib's tumor-inhibiting ability. In addition, sorafenib treatment induced higher NPC2 secretion, which was mediated by inhibition of the Ras/Raf/MAPK kinase (MEK)/ERK signaling pathway in HCC cells. In both acquired sorafenib-resistant cell and xenograft models, NPC2 and free cholesterol secretion were increased in culture supernatant and serum samples. In conclusion, NPC2-mediated free cholesterol secretion may represent a candidate biomarker for the likelihood of HCC cells developing resistance to sorafenib.


Assuntos
Carcinoma Hepatocelular/metabolismo , Colesterol/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Sorafenibe/farmacologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
9.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29643243

RESUMO

Professional antigen-presenting cells (APC; myeloid dendritic cells [DC] and macrophages [MΦ]; B lymphocytes) mediate highly efficient HIV-1 infection of CD4+ T cells, termed trans infection, that could contribute to HIV-1 pathogenesis. We have previously shown that lower cholesterol content in DC and B lymphocytes is associated with a lack of HIV-1 trans infection in HIV-1-infected nonprogressors (NP). Here, we assessed whether HIV-1 trans infection mediated by another major APC, MΦ, is deficient in NP due to altered cholesterol metabolism. When comparing healthy HIV-1 seronegatives (SN), rapid progressors (PR), and NP, we found that monocyte-derived MΦ from NP did not mediate HIV-1 trans infection of autologous CD4+ T cells, in contrast to efficient trans infection mediated by SN and PR MΦ. MΦ trans infection efficiency was directly associated with the number of DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-expressing MΦ. Significantly fewer NP MΦ expressed DC-SIGN. Unesterified (free) cholesterol in MΦ cell membranes and lipid rafting was significantly lower in NP than PR, as was virus internalization in early endosomes. Furthermore, simvastatin (SIMV) decreased the subpopulation of DC-SIGN+ MΦ as well as cis and trans infection. Notably, SIMV decreased cell membrane cholesterol and led to lipid raft dissociation, effectively mimicking the incompetent APC trans infection environment characteristic of NP. Our data support that DC-SIGN and membrane cholesterol are central to MΦ trans infection, and a lack of these limits HIV-1 disease progression. Targeting the ability of MΦ to drive HIV-1 dissemination in trans could enhance HIV-1 therapeutic strategies.IMPORTANCE Despite the success of combination antiretroviral therapy, neither a vaccine nor a cure for HIV infection has been developed, demonstrating a need for novel prophylactic and therapeutic strategies. Here, we show that efficiency of MΦ-mediated HIV trans infection of CD4+ T cells is a unique characteristic associated with control of disease progression, and it is impaired in HIV-infected NP. In vitro treatment of MΦ from healthy donors with SIMV lowers their cholesterol content, which results in a strongly reduced trans infection ability, similar to the levels of MΦ from NP. Taken together, our data support the hypothesis that MΦ-mediated HIV-1 trans infection plays a role in HIV infection and disease progression and demonstrate that the use of SIMV to decrease this mechanism of virus transfer should be considered for future HIV therapeutic development.


Assuntos
Linfócitos T CD4-Positivos/virologia , Moléculas de Adesão Celular/metabolismo , Colesterol/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Lectinas Tipo C/metabolismo , Macrófagos/virologia , Receptores de Superfície Celular/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Lipídeos de Membrana/metabolismo
10.
Hepatol Res ; 48(5): 397-407, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29243365

RESUMO

AIM: Liver fibrosis is a life-threatening disorder for which no approved therapy is available. Recently, we reported that mouse hepatic stellate cell (HSC) activation increased free cholesterol (FC) accumulation, partly by enhancing signaling through sterol regulatory element-binding protein 2 (SREBP2) and microRNA-33a (miR-33a), which resulted in HSC sensitization to transforming growth factor-ß (TGFß)-induced activation in a "vicious cycle" of liver fibrosis. METHODS: Human HSCs were isolated from surgical liver specimens from control patients and patients with liver fibrosis. C57BL/6 mice were treated with carbon tetrachloride for 4 weeks and concurrently given SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes. RESULTS: In human activated HSCs obtained from patients with liver fibrosis, FC accumulation was enhanced independently of serum cholesterol levels through increased signaling by both SREBP2 and miR-33a. This increased FC accumulation enhanced Toll-like receptor 4 (TLR4) protein levels and lowered the TGFß-pseudoreceptor Bambi (bone morphogenetic protein and activin membrane-bound inhibitor) mRNA levels in HSCs. Notably, in a mouse liver fibrosis model, reduction of FC accumulation, specifically in activated HSCs by suppression of SREBP2 or miR-33a expression using SREBP2-siRNA- or anti-miR-33a-bearing vitamin A-coupled liposomes, downregulated TLR4 signaling, increased Bambi expression, and consequently ameliorated liver fibrosis. CONCLUSIONS: Our results suggest that FC accumulation in HSCs, as an intracellular mediator promoting HSC activation, contributes to a vicious cycle of HSC activation in human and mouse liver fibrosis independent of serum cholesterol levels. Targeting FC accumulation-related molecules in HSCs through a vitamin A-coupled liposomal system represents a favorable therapeutic strategy for liver fibrosis.

11.
Proc Natl Acad Sci U S A ; 112(12): 3728-33, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775599

RESUMO

Eukaryotic cells have evolved robust mechanisms to counter excess cholesterol including redistribution of lipids into different compartments and compensatory up-regulation of phospholipid biosynthesis. We demonstrate here that excess cellular cholesterol increased the activity of the endoplasmic reticulum (ER) enzyme serine palmitoyl-CoA transferase (SPT), the rate-limiting enzyme in sphingomyelin synthesis. This increased SPT activity was not due to altered levels of SPTLC1 or SPTLC2, the major subunits of SPT. Instead, cholesterol loading decreased the levels of ORMDL1, a negative regulator of SPT activity, due to its increased turnover. Several lines of evidence demonstrated that free-cholesterol-induced autophagy, which led to increased turnover of ORMDL1. Cholesterol loading induced ORMDL1 redistribution from the ER to cytoplasmic p62 positive autophagosomes. Coimmunoprecipitation analysis of cholesterol-loaded cells showed increased association between ORMDL1 and p62. The lysosomal inhibitor chloroquine or siRNA knockdown of Atg7 inhibited ORMDL1 degradation by cholesterol, whereas proteasome inhibitors showed no effect. ORMDL1 degradation was specific to free-cholesterol loading as autophagy induced by serum starvation or general ER stress did not lead to ORMDL1 degradation. ORMDL proteins are thus previously unidentified responders to excess cholesterol, exiting the ER to activate SPT and increase sphingomyelin biosynthesis, which may buffer excess cellular cholesterol.


Assuntos
Autofagia , Orosomucoide/metabolismo , Animais , Asma/metabolismo , Aterosclerose/metabolismo , Transporte Biológico , Linhagem Celular , Colesterol/metabolismo , Cicloeximida/química , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Eosinófilos/metabolismo , Homeostase , Lipídeos/química , Macrófagos/metabolismo , Microdomínios da Membrana/química , Proteínas de Membrana , Camundongos , Transporte Proteico , Serina C-Palmitoiltransferase/química , Esfingolipídeos/química , Esfingomielinas/química
12.
Int J Mol Sci ; 19(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874879

RESUMO

Liver fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. A high-cholesterol diet is associated with liver fibrosis via the accumulation of free cholesterol in hepatic stellate cells (HSCs). Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular free cholesterol homeostasis via direct binding with free cholesterol. Previously, we reported that NPC2 was downregulated in liver cirrhosis tissues. Loss of NPC2 enhanced the accumulation of free cholesterol in HSCs and made them more susceptible to transforming growth factor (TGF)-ß1. In this study, we showed that knockdown of NPC2 resulted in marked increases in platelet-derived growth factor BB (PDGF-BB)-induced HSC proliferation through enhanced extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK), and protein kinase B (AKT) phosphorylation. In contrast, NPC2 overexpression decreased PDGF-BB-induced cell proliferation by inhibiting p38, JNK, and AKT phosphorylation. Although NPC2 expression did not affect caspase-related apoptosis, the autophagy marker light chain 3ß (LC3B) was decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs. The mitochondrial respiration functions (such as oxygen consumption rate, ATP production, and maximal respiratory capacity) were decreased in NPC2 knockdown, and free cholesterol accumulated in the HSCs, while NPC2-overexpressed cells remained normal. In addition, NPC2 expression did not affect the susceptibility of HSCs to lipopolysaccharides (LPS), and U18666A treatment induced free cholesterol accumulation, which enhanced LPS-induced Toll-like receptor 4 (TLR4), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 phosphorylation, interleukin (IL)-1 and IL-6 expression. Our study demonstrated that NPC2-mediated free cholesterol homeostasis controls HSC proliferation and mitochondrial function.


Assuntos
Proteínas de Transporte/genética , Colesterol/metabolismo , Glicoproteínas/genética , Cirrose Hepática/genética , Mitocôndrias/metabolismo , Becaplermina , Proteínas de Transporte/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Respiração Celular/genética , Colesterol/genética , Regulação da Expressão Gênica/genética , Glicoproteínas/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/fisiologia , Homeostase , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Mitocôndrias/genética , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-sis/genética , Fator de Crescimento Transformador beta1/genética , Proteínas de Transporte Vesicular
13.
J Hepatol ; 67(4): 780-790, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28554874

RESUMO

BACKGROUND & AIMS: Although obesity is a risk factor for acute liver failure, the pathogenic mechanisms are not yet fully understood. High cholesterol (HC) intake, which often underlies obesity, is suggested to play a role in the mechanism. We aimed to elucidate the effect of a HC diet on acetaminophen-induced acute liver injury, the most frequent cause of acute liver failure in the USA. METHODS: C57BL/6 Toll-like receptor 9 (TLR9) knockout (Tlr9-/-) mice and their Tlr9+/+ littermates were fed an HC diet for fourweeks and then treated with acetaminophen. Liver sinusoidal endothelial cells (LSECs) were isolated from the mice for in vivo and in vitro analyses. RESULTS: The HC diet exacerbated acetaminophen-induced acute liver injury in a TLR9/inflammasome pathway-dependent manner. LSECs played a major role in the cholesterol loading-induced exacerbation. The accumulation of free cholesterol in the endolysosomes in LSECs enhanced TLR9-mediated signaling, thereby exacerbating the pathology of acetaminophen-induced liver injury through the activation of the TLR9/inflammasome pathway. The accumulation of free cholesterol in LSEC endolysosomes induced a dysfunction of the Rab7 membrane trafficking recycling mechanism, thus disrupting the transport of TLR9 from late endosomes to the lysosomes. Consequently, the level of active TLR9 in the late endosomes increased, thereby enhancing TLR9 signaling in LSECs. CONCLUSIONS: HC intake exaggerated acetaminophen-induced acute liver injury via free cholesterol accumulation in LSECs, demonstrating a novel role of free cholesterol as a metabolic factor in TLR9 signal regulation and pathologies of acetaminophen-induced liver injury. Therapeutic approaches may target this pathway. Lay summary: High cholesterol intake exacerbated acetaminophen-induced acute liver injury via the accumulation of free cholesterol in the endolysosomes of liver sinusoidal endothelial cells. This accumulation enhanced Toll-like receptor 9 signaling via impairment of its membrane trafficking mechanism. Thus, free cholesterol accumulation, as an underlying metabolic factor, exacerbated the pathology of acetaminophen-induced liver injury through activation of the TLR9/inflammasome pathway.


Assuntos
Acetaminofen/toxicidade , Colesterol/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligodesoxirribonucleotídeos/farmacologia , Transporte Proteico , Transdução de Sinais , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
14.
Biochim Biophys Acta ; 1852(9): 1765-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26027904

RESUMO

Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of hepatic histopathological changes ranging from non-inflammatory intracellular fat deposition to non-alcoholic steatohepatitis (NASH), which may progress into hepatic fibrosis, cirrhosis, or hepatocellular carcinoma. NAFLD hallmark is the excessive hepatic accumulation of neutral lipids that result from an imbalance between lipid availability and lipid removal. Recent data suggest that disturbed hepatic cholesterol homeostasis and liver free cholesterol (FC) accumulation are relevant to the pathogenesis of NAFLD/NASH. Hepatic FC accumulation in NAFLD results from alterations in intracellular cholesterol transport and from unbalanced cellular cholesterol homeostasis characterized by activation of cholesterol biosynthetic pathways, increased cholesterol de-esterification and attenuation of cholesterol export and bile acid synthesis pathways. FC accumulation leads to liver injury through the activation of intracellular signaling pathways in Kupffer cells (KCs), Stellate cells (HSCs) and hepatocytes. The activation of KCs and HSCs promotes inflammation and fibrogenesis. In addition, FC accumulation in liver mitochondria induces mitochondrial dysfunction, which results in increasing production of reactive oxygen species, and triggers the unfolded protein response in the endoplasmic reticulum (ER) causing ER stress and apoptosis. These events create a vicious circle that contributes to the maintenance of steatosis and promotes ongoing hepatocyte death and liver damage, which in turn may translate into disease progression. In the present review we summarize the current knowledge on dysregulated cholesterol homeostasis in NAFLD and examine the cellular mechanisms of hepatic FC toxicity and its contribution to ongoing liver injury in this disease. The therapeutic implications of this knowledge are also discussed.

15.
Int J Mol Sci ; 17(7)2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27420058

RESUMO

In chronic liver diseases, regardless of their etiology, the development of fibrosis is the first step toward the progression to cirrhosis, portal hypertension, and hepatocellular carcinoma. Hepatic stellate cells (HSCs) are the main profibrogenic cells that promote the pathogenesis of liver fibrosis, and so it is important to identify the molecules that regulate HSCs activation and liver fibrosis. Niemann-Pick type C2 (NPC2) protein plays an important role in the regulation of intracellular cholesterol homeostasis by directly binding with free cholesterol. However, the roles of NPC2 in HSCs activation and liver fibrosis have not been explored in detail. Since a high-cholesterol diet exacerbates liver fibrosis progression in both rodents and humans, we propose that the expression of NPC2 affects free cholesterol metabolism and regulates HSCs activation. In this study, we found that NPC2 is decreased in both thioacetamide- and carbon tetrachloride-induced liver fibrosis tissues. In addition, NPC2 is expressed in quiescent HSCs, but its activation status is down-regulated. Knockdown of NPC2 in HSC-T6 cells resulted in marked increases in transforming growth factor-ß1 (TGF-ß1)-induced collagen type 1 α1 (Col1a1), α-smooth muscle actin (α-SMA) expression, and Smad2 phosphorylation. In contrast, NPC2 overexpression decreased TGF-ß1-induced HSCs activation. We further demonstrated that NPC2 deficiency significantly increased the accumulation of free cholesterol in HSCs, increasing Col1a1 and α-SMA expression and activating Smad2, and leading to sensitization of HSCs to TGF-ß1 activation. In contrast, overexpression of NPC2 decreased U18666A-induced free cholesterol accumulation and inhibited the subsequent HSCs activation. In conclusion, our study has demonstrated that NPC2 plays an important role in HSCs activation by regulating the accumulation of free cholesterol. NPC2 overexpression may thus represent a new treatment strategy for liver fibrosis.


Assuntos
Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Glicoproteínas/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Animais , Western Blotting , Tetracloreto de Carbono/toxicidade , Modelos Animais de Doenças , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Humanos , Técnicas Imunoenzimáticas , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Tioacetamida/toxicidade , Fator de Crescimento Transformador beta1/farmacologia , Proteínas de Transporte Vesicular
16.
J Hepatol ; 62(5): 1180-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25514555

RESUMO

BACKGROUND & AIMS: Anthocyanins may have beneficial effects on lipid metabolism and inflammation and are demonstrated to have hepatoprotective properties in models of restraint-stress- and chemically-induced liver damage. However, their potential to protect against non-alcoholic steatohepatitis (NASH) under conditions relevant for human pathogenesis remains unclear. Therefore, we studied the effects of the standardised anthocyanin-rich extract Mirtoselect on diet-induced NASH in a translational model of disease. METHODS: ApoE(∗)3Leiden mice were fed a Western-type cholesterol-containing diet without (HC) or with 0.1% (w/w) Mirtoselect (HCM) for 20weeks to study the effects on diet-induced NASH. RESULTS: Mirtoselect attenuated HC-induced hepatic steatosis, as observed by decreased macro- and microvesicular hepatocellular lipid accumulation and reduced hepatic cholesteryl ester content. This anti-steatotic effect was accompanied by local anti-inflammatory effects in liver, as demonstrated by reduced inflammatory cell clusters and reduced neutrophil infiltration in HCM. On a molecular level, HC diet significantly induced hepatic expression of pro-inflammatory genes Tnf, Emr1, Ccl2, Mpo, Cxcl1, and Cxcl2 while this induction was less pronounced or significantly decreased in HCM. A similar quenching effect was observed for HC-induced pro-fibrotic genes, Acta2 and Col1a1 and this anti-fibrotic effect of Mirtoselect was confirmed histologically. Many of the pro-inflammatory and pro-fibrotic parameters positively correlated with intrahepatic free cholesterol levels. Mirtoselect significantly reduced accumulation and crystallisation of intrahepatic free cholesterol, providing a possible mechanism for the observed hepatoprotective effects. CONCLUSIONS: Mirtoselect attenuates development of NASH, reducing hepatic lipid accumulation, inflammation and fibrosis, possibly mediated by local anti-inflammatory effects associated with reduced accumulation and crystallisation of intrahepatic free cholesterol.


Assuntos
Antocianinas/farmacologia , Cirrose Hepática/prevenção & controle , Hepatopatia Gordurosa não Alcoólica , Vaccinium myrtillus/química , Actinas/metabolismo , Animais , Anti-Infecciosos/farmacologia , Proteínas de Ligação ao Cálcio , Quimiocina CXCL1/metabolismo , Ésteres do Colesterol/metabolismo , Colesterol na Dieta/metabolismo , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Citoproteção , Dieta Ocidental , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/fisiopatologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Extratos Vegetais , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G , Resultado do Tratamento
17.
Biochem Biophys Res Commun ; 463(1-2): 48-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25983325

RESUMO

BACKGROUND: High density lipoprotein receptor SR-BI plays a vital role in cholesterol homeostasis. Depletion of SR-BI causes plasma free cholesterol (FC) accumulation, which disrupts erythrocytes membrane and might induce hemolytic anemia. Here we explored the effects of hypercholesteremia, induced by depletion of low density lipoprotein receptor (LDL-R) and high fat diet (HFD) feeding, on plasma FC and possible hemolysis in SR-BI knockout (KO) mice, and the therapeutic effects of a lipid-lowering drug probucol. METHODS AND RESULTS: To determine the effects of LDL-R depletion, SR-BI KO mice were cross-bred with LDL-R KO mice to generate SR-BI/LDL-R double KO (dKO) mice. Compared to control wild type (WT), SR-BI KO and LDL-R KO mice fed normal chow diet (NCD), dKO mice fed NCD had increased plasma FC and developed macrocytic anemia, splenomegaly, jaundice and renal tubular hemosiderin deposition, indicating spontaneous hemolysis. To determine the effects of HFD feeding and probucol therapy, dKO and LDL-R KO mice were fed HFD containing 0.5% cholesterol and 20% fat with or without 1% probucol. HFD further increased plasma FC and aggravated hemolysis while probucol almost normalized plasma FC and corrected hemolysis in dKO mice. CONCLUSION: We demonstrated that in SR-BI KO mice, hypercholesteremia due to LDL-R deficiency significantly increased plasma FC and induced spontaneous hemolysis, which could be further exacerbated by HFD feeding. Probucol almost normalized plasma FC and corrected diet-aggravated hemolysis in SR-BI KO mice with LDL-R deficiency.


Assuntos
Anticolesterolemiantes/farmacologia , Dieta Hiperlipídica/efeitos adversos , Hemólise/efeitos dos fármacos , Hemólise/fisiologia , Probucol/farmacologia , Receptores de LDL/deficiência , Receptores Depuradores Classe B/deficiência , Anemia Macrocítica/sangue , Anemia Macrocítica/tratamento farmacológico , Anemia Macrocítica/etiologia , Animais , Colesterol/sangue , Feminino , Hemossiderina/metabolismo , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/etiologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Camundongos , Camundongos Knockout , Receptores de LDL/genética , Receptores Depuradores Classe B/genética
18.
Acta Biochim Biophys Sin (Shanghai) ; 47(12): 951-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26474739

RESUMO

Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) is a key enzyme exclusively using free cholesterols as the substrates in cell and is involved in the cellular cholesterol homeostasis. In this study, we used human neuroblastoma cell line SK-N-SH as a model and first observed that inhibiting ACAT1 can decrease the amyloid precursor protein (APP)-α-processing. Meanwhile, the transfection experiments using the small interfering RNA and expression plasmid of ACAT1 indicated that ACAT1 can dependently affect the APP-α-processing. Furthermore, inhibiting ACAT1 was found to increase the free cholesterols in plasma membrane (PM-FC), and the increased PM-FC caused by inhibiting ACAT1 can lead to the decrease of the APP-α-processing, indicating that ACAT1 regulates the dynamics of PM-FC, which leads to the alteration of the APP-α-processing. More importantly, further results showed that under the ACAT1 inhibition, the alterations of the PM-FC and the subsequent APP-α-processing are not dependent on the cellular total cholesterol level, confirming that ACAT1 regulates the dynamics of PM-FC. Finally, we revealed that even when the Niemann-Pick-Type C-dependent pathway is blocked, the ACAT1 inhibition still obviously results in the PM-FC increase, suggesting that the ACAT1-dependent pathway is responsible for the shuttling of PM-FC to the intracellular pool. Our data provide a novel insight that ACAT1 which enzymatically regulates the dynamics of PM-FC may play important roles in the human neuronal cells.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Regulação da Expressão Gênica , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Inflamação , Plasmídeos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
19.
Biochim Biophys Acta ; 1831(11): 1609-17, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23896361

RESUMO

In this study we have used mass spectrometry in order to characterize the HDL lipidome in three groups of women from the DIWA cohort; one control group, plus two groups with type 2 diabetes with insulin resistance; one dyslipidemic and one normolipidemic. The aim was to investigate whether dyslipidemia is required in addition to insulin resistance for the occurrence of an altered HDL lipidome, which in turn might impact HDL functionality. The dyslipidemic type 2 diabetic subjects were distinguished by obesity, hypertriglyceridemia with elevated apoC3, low HDL-cholesterol and chronic low grade inflammation. In a stepwise multivariate linear regression analysis, including biomarkers of dyslipidemia and insulin resistance as independent variables, only dyslipidemia showed a significant correlation with HDL lipid classes. Small HDL-particles predominated in dyslipidemic subjects in contrast to the normolipidemic diabetic and control groups, and were enriched in lysophosphatidylcholine (+13%), a product of proinflammatory phospholipases, and equally in two core lipids, palmitate-rich triacylglycerols and diacylglycerols (+77 %), thereby reflecting elevated CETP activity. Dyslipidemic small HDL particles were further distinguished not only as the primary carrier of ceramides, which promote inflammation and insulin resistance, but also by a subnormal plasmalogen/apoAI ratio, consistent with elevated oxidative stress typical of type 2 diabetes. From these data we conclude that in type 2 diabetes, dyslipidemia predominates relative to hyperglycemia for the occurrence of an altered HDL lipidome. Furthermore, dyslipidemia alters the cargo of bioactive lipids, with implications for HDL function.


Assuntos
HDL-Colesterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/metabolismo , Dislipidemias/fisiopatologia , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Resistência à Insulina/fisiologia , Feminino , Humanos , Lisofosfatidilcolinas/metabolismo , Espectrometria de Massas , Pessoa de Meia-Idade
20.
J Hepatol ; 61(1): 98-106, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24657401

RESUMO

BACKGROUND & AIMS: Acyl-coenzyme A: cholesterol acyltransferase (ACAT) catalyzes the conversion of free cholesterol (FC) to cholesterol ester, which prevents excess accumulation of FC. We recently found that FC accumulation in hepatic stellate cells (HSCs) plays a role in progression of liver fibrosis, but the effect of ACAT1 on liver fibrosis has not been clarified. In this study, we aimed to define the role of ACAT1 in the pathogenesis of liver fibrosis. METHODS: ACAT1-deficient and wild-type mice, or Toll-like receptor 4 (TLR4)(-/-)ACAT1(+/+) and TLR4(-/-)ACAT1(-/-) mice were subjected to bile duct ligation (BDL) for 3 weeks or were given carbon tetrachloride (CCl4) for 4 weeks to induce liver fibrosis. RESULTS: ACAT1 was the major isozyme in mice and human primary HSCs, and ACAT2 was the major isozyme in mouse primary hepatocytes and Kupffer cells. ACAT1 deficiency significantly exaggerated liver fibrosis in the mouse models of liver fibrosis, without affecting the degree of hepatocellular injury or liver inflammation, including hepatocyte apoptosis or Kupffer cell activation. ACAT1 deficiency significantly increased FC levels in HSCs, augmenting TLR4 protein and downregulating expression of transforming growth factor-ß (TGFß) pseudoreceptor Bambi (bone morphogenetic protein and activin membrane-bound inhibitor), leading to sensitization of HSCs to TGFß activation. Exacerbation of liver fibrosis by ACAT1 deficiency was dependent on FC accumulation-induced enhancement of TLR4 signaling. CONCLUSIONS: ACAT1 deficiency exaggerates liver fibrosis mainly through enhanced FC accumulation in HSCs. Regulation of ACAT1 activities in HSCs could be a target for treatment of liver fibrosis.


Assuntos
Colesterol/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Esterol O-Aciltransferase/metabolismo , Animais , Células Cultivadas , Ésteres do Colesterol/metabolismo , Progressão da Doença , Células Estreladas do Fígado/patologia , Humanos , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Esterol O-Aciltransferase/deficiência , Esterol O-Aciltransferase/genética , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa