RESUMO
A portion of alpine meadows has been and will continue to be cultivated due to the concurrent increasing demands for animal- and crop-oriented foods and global warming. However, it remains unclear how these long-term changes in land use will affect nitric oxide (NO) emission. At a field site with a calcareous soil on the Qinghai-Tibetan Plateau, the authors measured the year-round NO fluxes and related variables in a typically winter-grazed natural alpine meadow (NAM) and its adjacent forage oat field (FOF). The results showed that long-term plow tillage, fertilization and growing forage oats significantly yielded ca. 2.7 times more (pâ¯<â¯0.01) NO emissions from the FOF than the NAM (conservatively 208 vs. 56â¯gâ¯N/(ha·year) on average). The spring freeze-thaw period and non-growing season accounted for 17%-35% of the annual emissions, respectively. The Q10 of surface soil temperature (Ts) was 8.9 in the NAM (vs. 3.8 in the FOF), indicating increases of 24%-93% in NO emissions per 1-3⯰C increase. However, the warming-induced increases could be smaller than those due to land use change and management practices. The Ts and concentrations of ammonium, nitrate and water-extractable organic carbon jointly explained 69% of the variance in daily NO fluxes from both fields during the annual period (pâ¯<â¯0.001). This result indicates that temporally and/or spatially distributed NO fluxes from landscapes with calcareous soils across native alpine meadows and/or fields cultivated with forage oats can be predicted by simultaneous observations of these four soil variables.
Assuntos
Ecossistema , Óxido Nítrico/análise , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Pradaria , Óxido Nítrico/química , Solo/químicaRESUMO
The Qinghai-Tibet Plateau (QTP) has the largest amount of permafrost in the low and middle latitudes, making it highly susceptible to the effects of global warming. In particular, the degradation of permafrost can be intensified by anomalous amplified warming. To accurately model the hydrothermal dynamics of permafrost and its future trends, the accumulation of high-precision, long-term data for the soil thermal conductivity (STC) in the active layer is crucial. However, no previous research has systematically investigated the spatio-temporal variation in the STC on the QTP over an extended period. Therefore, this study aims to fill this gap using the XGBoost model to analyze the STC in the permafrost on the QTP from 1980 to 2020. The findings of this study provide some preliminary insights. First, areas with high variation in the STC between the freeze-thaw periods over the 40 years gradually migrated from the western region to the central region. Second, since 2015, STC in more than 90 % of the permafrost region in the thawing period has shown positive growth. While, during the freezing period, the STC also exhibited an increase over most regions of the QTP, though the western region and parts of the northeastern region exhibited a decrease. Third, the spatial center of gravity for the STC during the freezing and thawing periods from 1980 to 2020 shifted. The mean STC was larger in the eastern and northeastern regions during the freezing period and larger in the western region during the thawing period. Fourth, both alpine swamp meadow and alpine meadow exhibited a gradual increase in the STC during the freeze-thaw period from 1980 to 2020. The conclusions and data products from this study are expected to support spatiotemporal modeling of the permafrost on the QTP and assist in the prognosis for its future.
RESUMO
Zhalong wetland is the largest inland saline wetland in Asia and susceptible to imbalance and frequent flooding during the freeze-thaw period. Changes in water level and temperature can alter the rate of greenhouse gas release from wetlands and have the potential to alter Earth's carbon budget. However, there are few reports on how water level, temperature, and their interactions affect greenhouse gas flux in inland saline wetland during the freeze-thaw period. This study revealed the characteristics of CO2 and CH4 fluxes in Zhalong saline wetlands at different water levels during the autumn freeze-thaw period and clarifies the response of CO2 and CH4 fluxes to water levels. The significance analysis of cumulative CO2 fluxes at different water levels showed that water levels did not have a significant effect on cumulative CO2 release fluxes from wetlands. Water levels, temperature, soil moisture content, soil nitrate, and ammonium nitrogen content and organic carbon content could explain 24.5-98.9% of CO2 and CH4 flux variation. There were significant differences in the average and cumulative CH4 fluxes at different water levels. The higher the water levels, the higher the CH4 fluxes. In short, water level had a significant effect on wetland methane fluxes, but not on carbon dioxide fluxes.
Assuntos
Gases de Efeito Estufa , Áreas Alagadas , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Óxido Nitroso/análise , China , Metano/análise , SoloRESUMO
The nitrogen cycle in cold regions during the freeze-thaw period is complex. Although previous studies have investigated the phenomenon of nitrogen transport and transformation, the underlying mechanisms are vague. Existing models have limitations in terms of loose coupling or weak physical mechanisms. Therefore, a new distributed nonpoint source pollution model, the water and energy transfer processes and nitrogen cycle processes model in cold regions, was developed in this study, with closely coupled water, heat, and nitrogen processes at the watershed scale. The model considered the driving effects of pressure, gravity, solute, and temperature potentials on water and nitrogen movement in soil and the transformation relationship among nitrogen forms. Physical evaluation and simulations were conducted for the Heidingzi River Watershed during two freeze-thaw periods: 2017-2018 and 2018-2019. The soil temperature absolute error was < 0.82 â. The relative errors in stratified liquid water, soil nitrogen content, river flow rate, and river nitrogen concentration were mostly < 10%. Nitrogen transport with water had an obvious "upward agglomeration effect" during the freezing period and a "concentrated release effect" during the thawing period, which was attributed to changes in soil water potential as the freezing front moved down. Disregarding the effects of solute potential and temperature potential will result in an underestimate of the outflow of pollutants during the thawing period. The model can be applied to reveal water quality deterioration in cold regions during thawing.
Assuntos
Nitrogênio , Poluição Difusa , Congelamento , Nitrogênio/análise , Temperatura Alta , SoloRESUMO
Autumn freeze-thaw period significantly influenced the soil temperature, moisture, nutrients, and then affected the structure and diversity of soil microbial community. In this paper, three types of wetlands in the permafrost region of Daxing'an Mountains were selected to investigate the greenhouse gas fluxes during the autumn freeze-thaw period. CO2, CH4, and N2O fluxes during the autumn freeze-thaw period ranged from 24.76 to 124.06 mg m-2 h-1, - 249.10 to 968.87 µg m-2 h-1, and - 4.21 to 12.86 µg m-2 h-1. CO2 fluxes were mainly influenced by soil temperature and moisture. CH4 fluxes were mainly influenced by temperature and soil moisture. And N2O fluxes were significantly affected by temperature, soil moisture, ammonia nitrogen, and nitrate nitrogen. Environmental factors could explain 64-73.2%, 51-85.4%, and 60.3-93.3% of temporal variation of CO2, CH4, and N2O fluxes, respectively. Comparing different wetlands, the soil temperature was the significant factor to affect the CH4 flux. The global warming potentials during the autumn freeze-thaw period ranged from 717.83 to 775.57 kg CO2-eq hm-2.
Assuntos
Gases de Efeito Estufa , Pergelissolo , Amônia , Dióxido de Carbono/análise , China , Gases de Efeito Estufa/análise , Metano/análise , Nitratos , Nitrogênio , Óxido Nitroso/análise , Solo/químicaRESUMO
To understand the response of Calamagrostis angustifolia wetland of the Sanjiang Plain to changes in snow cover, we examined the greenhouse gases emission flux of the removed snow treatment (0 cm, RS), the added snow treatment (50 cm, AS) and the control (20 cm, CK) of a C. angustifolia wetland, and their relations with environmental factors with the method of the static chamber-gas chromatography. The results showed that soil temperature, soil water content, and carbon emissions were lowest during the snow-covering period under all treatments, and gradually increased with time. With the increases of time and snow thickness, soil temperature was rised and the difference of three treatments gradually was decreased. Soil water content of RS was always lower than that of CK and AS. AS and CK could promote soil CO2 emission compared with RS during and after snowmelt. The soil cumulative CH4 emissions differed little among the treatments. There was significant correlation between soil temperature and cumulative CO2 and CH4 emissions. With the increases of soil temperature, soil cumulative CO2 emission continued to increase and soil cumulative CH4 emission decreased firstly and then increased rapidly. Soil water content was significantly correlated with cumulative CO2 and CH4 emissions. As the soil moisture increased, the cumulative soil CO2 emission gradually increased, reaching a certain threshold and then flattening, while soil cumulative CH4 emission continuously increased.